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 Abstract—Frequent itemset mining for traversal patterns 
have been found useful in several applications. However, (closed) 
frequent mining can generate huge and redundant patterns, and 
traditional model of traversal patterns mining considered only 
un-weighted traversals. In this paper, a transformable model 
between EWDG (Edge-Weighted Directed Graph) and VWDG 
(Vertex-Weighted Directed Graph) is proposed. Based on the 
model, an effective algorithm, called WTMaxMiner (Weighted 
Traversals-based Maximal Frequent Patterns Miner), is 
developed to discover maximal weighted frequent patterns from 
weighted traversals on directed graph. Experimental comparison 
results with previous work on synthetic data show that the 
algorithm has a good performance and scalable property to the 
problem of mining maximal frequent patterns based on weighted 
graph traversals.  

Keywords—data mining, traversal patterns, maximal 
weighted frequent pattern mining, closed pattern mining 

I.  INTRODUCTION 
Data mining on graph traversals have been an active 

research field during recent years. Graph and traversal on it are 
widely used to model several classes of data in real world. One 
example for this is WWW.  The structure of Web site can be 
modeled as a graph in which the vertices represent Web pages, 
and the edges represent hyperlinks between the pages. That is, 
user's navigation on the Web site can be modeled as traversals 
on the graph. Capturing user access patterns in such 
environments is referred to as mining traversal patterns [1]. 
Traditional model of traversal patterns mining hardly 
considered weighted traversals on the graph [1][2][3]. To 
reflect importance difference of Web sites, we can assign a 
weight to each site.  

Since the frequent itemsets mining problem (FIM) was first 
addressed [4], frequent itemsets mining in large database has 
become an important problem. The drawback of mining all 
frequent itemsets is that if there is a large frequent itemset with 
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size l, then almost all 2l candidate subsets of the items might be 
generated. So the large length of frequent itemset leads to no 
feasible of FIM. Smaller alternatives to FIM that still contain 
compact yet lossless representation of the frequent itemsets is 
frequent closed itemset mining (FCIM)[5][6][7]. It is the task 
of discovering frequent itemsets whose support counts are 
different than those of their supersets. However, when the 
frequent patterns are long (more 15 to 20 items), FIM and 
FCIM become very large and most traditional methods count 
too many itemsets to be feasible [8]. A frequent itemset is 
called maximal frequent itemset (MFI) if it has no frequent 
superset. It is straightforward to see that the following 
relationship holds: MFI ⊆ FCI ⊆ FI. Since frequent itemsets 
are upward closed, it is sufficient to discover only all maximal 
frequent itemsets (MFI). 

In this paper, we extend previous works by attaching 
weights to the traversals and propose a new effective & 
scalable algorithm called WTMaxMiner (Weighted Traversals-
based Maximal Frequent Patterns Miner) to discover maximal 
frequent patterns from weighed traversals on graph, which 
exploits a divide-and-conquer approach in a bottom-up manner 
and incorporates the maximal property with weight constrains 
to reduce effectively search space and extracts succinct and 
lossless patterns from weighted graph traversal TDB. To our 
knowledge, ours is the first work to considering maximal 
frequent patterns mining from directed graph with weight 
constraints.  

The organization of this paper is as follows. Section Ⅱ
reviews previous works. The related definitions and notions of 
problem are given in Section Ⅲ . Section Ⅳ  proposes the 
algorithm named WTMaxMiner. Experimental research and the 
performance analysis of algorithm are reported in Section Ⅴ. 
Finally, Section Ⅵ  gives the conclusion as well as future 
research works. 

II. RELATED WORKS 
The main stream of data mining related to our work, can be 

divided into three categories, i.e. the traversal pattern mining, 
the maximal frequent pattern mining and the (weight) 
constraint based pattern mining. For the traversal pattern 



         

mining, there have been few works. Chen et al. [1] proposed 
two algorithms—FS and SS about traversal pattern mining. 
However, they did not consider graph structure on which the 
traversals occur. Nanopoulos et al. [2] proposed three 
algorithms which considered the graph structure. However, the 
above works dealt with the mining of un-weighted traversal 
patterns. 

In the last several years, extensive studies have proposed 
fast algorithms for mining maximal frequent itemsets, such as 
Mafia [8], MaxMiner [9], Genmax [10], CfpMfi[11] and 
Fpmax[12]. CfpMfi and Fpmax are based on the pattern growth 
method [13] which has a high performance. 

For the (weight) constraint mining, most of previous works 
are related to the mining of association rules and frequent 
itemsets [14][15][16]. Recently, constraint-based frequent 
pattern mining algorithms [17] based on the pattern growth 
method were suggested. Although the above works take the 
notion of weight into account as examined in this paper, they 
only concerned on the mining from items, but not from 
traversals. 

III. PROBLEM STATEMENT 

A. Correlative Definitions of Mining Traversal Pattern 
Definition 1 (Weighed Directed Graph) A WDG 

(Weighted Directed Graph), denotes as G, is a finite set of 
vertices and edges, in which each edge joins one ordered pair 
of vertices, and each vertex or edge is associated with a weight 
value. 

By definition 1, we know that there should be two kinds of 
WDGs. One is VWDG (Vertex-WDG ) which assigns weights 
to each vertex in the graph, and the other is EWDG (Edge-
WDG ) which assigns weights to each edge (We will know 
they are essentially equivalent in next section,. So, we only 
study the former in this paper). For example, Fig.1 (a) is 
VWDG G which has 6 vertices and 8 edges. Next, we will 
know they are essentially equivalent.  

Definition 2 (Traversal on Graph) A traversal on graph is a 
sequence of consecutive vertices along a sequence of edges on 
a G.  

Clearly, a traversal can be regarded as a pattern. To easily 
consider, we may assume that every traversal has no repeated 
vertices. The length of a traversal is the number of vertices in 
the traversal. A traversal database T is a set of traversals. Since 
there are two WDG, then it must exit that there are two types 
of traversals-traversals on VWDG and traversals on EWDG. 
Figure 2(a) and (b) respectively describe them, and (c) is the 
combination of two cases.  

Definition 3 (Subtraversal) A subtraversal is any 

subsequence of consecutive vertices in a traversal.  

Definition 4 (Sup_count & support.) The support count 
of a pattern P, denoted as sup_count (P), is the number of 
traversals containing the pattern. The support of a pattern P, 
support (P), is the fraction of traversals containing the pattern P, 
denoted as: (|T| be the number of traversals.) 

( )sup_count P
support(P)=

T
 .                             (1) 

Definition 5 (Maximal frequent traversal pattern) Given a 
threshold minimum support min_sup, a traversal pattern Y is a 
maximal frequent traversal pattern if support (Y) ≥min_sup 
and there exists no proper superset Y’⊃ Y such that support (Y’) 
≥min_sup. 

Definition 6 (Weighted Pattern) A weighted pattern is a set 
of items each which has a weight.  

Definition 7 (Weight of Pattern) The weight of pattern is 
an average value of weights of all items in it.  

Given a weighted pattern P=<p1,p2,….,pk>, the weight of 
each item in P, denoted as w(pi) (i=1,2,…,k), then the weight 
of P is represented as follows. 

      ( )
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Definition 8 (Weighted Support) The weighted support of 
a pattern P, called wsupport (P), is 

( ) ( )( )( )wsupport P Weight P support P=             (3) 

A P is said to be weighted frequent when its weighted 
support is no less than a given minimum weighted support 
threshold called wminsup, i.e., 

( )wsupport P minwsup≥                                    (4) 

Thus, the problem concerned in this paper is stated as 
follows. Given a weighted directed graph G and a set of path 
traversals on the graph — traversal database T, we find all 
maximal frequent patterns with weight constraint in T. 
However, the weight constraint is neither the anti-monotone 
nor the monotone constraint. So we cannot directly use the 
anti-monotone property to prune weighted infrequent patterns.  

B. Model of transforming EWDG into VWDG 
Essentially, the two WDGs cases can be reduced to one 

case. There we reduce the two cases to one case— assigning 
weight to vertices. The reason why we can reduce is that two 
nodes with a weighted edge in an EWDG can be thought as a 
node with same weight value in the corresponding VWDG, and 
the edges between vertices in corresponding VWDG have no 

 
Figure 2. Three cases of assigning weights to traversals 

TID Traversal
1 
2 
3 
4 
5 
6 

<A, B> 
<B, C, E, F>
<A, C> 
<B, C, E> 
<A> 
<A, C, E, D>

 Example of VWDG

B

Traversal database T 
 

Figure 1. An example of VWDG & traversal database T 



         

weight value, and their linking directions refer to the source 
EWDG. 

Figure 3 describes this change method: Fig.3 (a), (c) and (e) 
are EWDGs, and Fig.3(b),(d),(g) and (h)are VWDGs. In 
Fig.3(b) or (d), the nodes named ‘bd’, ‘de’, ‘ec’ and ‘bc’ 
respectively represents the corresponding nodes with directed 
edges named <B,D>,<D,E>,<E,C> and <B,C> in Fig.3(a) or 
(c). Figure 3(e), (f), (g) and (h) truly describe how to change 
EWDG into VWDG. The transformable process undergoes 
three phases.  

Phase 1: Fields transforming phase. 

In this phase, all nodes and the edge between each pair of 
nodes in EWDG are converted to some corresponding nodes 
with the same weight value as that of source edge. For 
example, the nodes named ‘bd:3.8’, ‘de:4.4’, ‘ec:3.3’ and 
‘bc:2.1’ in Fig.3(f) respectively represents the corresponding 
nodes with weighted directed edges named <B,D>:3.8, 
<D,E>:4.4, <E,C>:3.3 and <B,C>:2.1 in Fig.3(e). There x: 
number means that x is the name of node or edge and number 
is the corresponding weight value. 

Phase 2: Generating edges’ direction between nodes 
generated from phase 1 in new birth VWDG. 

 Each edge’s direction in new birth VWDG is based on the 
balance of indegree and outdegree of fields in source EWDG, 
e.g., for node ‘de’ in Fig.3(g), because its corresponding field 
in (e) is joined by two directed edges named <B,D> (i.e. 
indegree) and <E,C> (i.e. outdegree), so there are two edges 
named <‘bd’→‘de’> and <‘de’→‘ec’> in (g), the other edges’ 
direction are similar to the above method. That is to say that it 
is balance between indegree and outdegree of source field in 
EWDG by which we decide each new edge’s direction in the 
new VWDG. 

Phase 3: Shape rotation phase.  

In this phase, we rotate the new birth VWDG generated by 
phase 2 to a shape easy to distinguish. Clearly, this phase can 
be omitted according the actual situation. 

Thus, we construct a union between EWDG and VWDG. 
This union is convenient to reduce pattern mining problem on 
weighted graph. In practice, the fields in Fig. 3(a) and (c) may 
represent subnet of any size under the Web environments. 

C. Revised Weighted Support 
We know that the weight constraint is neither the anti-

monotone nor the monotone constraint. Can we use anti-
monotone property to mine weighted frequent pattern mining? 
The answer is ‘yes’. We know that the weights of items on 

graph containing n nodes , denoted as wi (i=1,2,…,n), must 
satisfy: min(W) ≤ wi ≤ max(W), there, W={w1,w2,…,wn}. To let 
weighted patterns satisfy the anti-monotone property (i.e., if 
wsupport (P) ≤ minwsup ⇒ wsupport (P’) ≤ minwsup), we 
revise weight (pi) as two following representations. 

( )iweight p =min(W )        or    ( )iweight p =max(W )     

That is, the weight of pattern is revised as: 
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Thus, the anti-monotone property can be used in mining 
weighted frequent patterns since wsupport (P’) ≤ wsupport (P). 
However, if we adopt (5), we could prune some patterns which 
should have been weighted frequent to lead to incorrect 
mining results. Avoiding this flaw, we adopt (6) to compute 
revised weight of the pattern Note, the weight support value 
computed by this is only an approximate value, therefore, in 
final step, we should check if the pattern is really weighted 
frequent pattern with his real weight value, by the condition: 

( )
( )( )1

k

k

i
i

weight p
support P minwsup .

k
= ≥
∑

                       
Data mining from itemsets with the anti-monotone 

property can adopt the pattern growth strategy. 

D. Order of Joining the Closure and Constraint 
There are two ways to joining the closure and constrains 

with frequent patterns mining [18].  

Ⅰ. ( )( )( ) ( )D D amD
Cl FTh sup X min sup FTh C .≥ ∩            (7) 

Ⅱ. ( )( )( )( )D D am
Cl FTh sup X min sup C .≥ ∧                   (8) 

There, Cam is an anti-monotone constraint, as to weight 
constraint, it is revised weight constraints. InⅠ , frequent 
patterns are first tested whether the patterns are closed frequent 
patterns, and then for the closed patterns weighted constraints 
are applied to discover weighted closed frequent patterns. Ⅱ is 
one the way round: the weight constraint is first mined and then 
the closures of the weighted frequent patterns are computed. 
From [18], we already know only way Ⅱ  not can lead to 
information loss. In addition, because a maximal frequent 
pattern must be a closed frequent pattern (i.e. MFI⊆CFI), so 
we adapt way Ⅱ  in our problem, i.e., we first extract the 
weighted frequent patterns then check if they are maximal . We 
call these patterns extracted by way Ⅱas maximal weighted 
frequent patterns. 

IV. MINING MAXIMAL FREQUENT PATTERNS FROM WDG 
TRAVERSALS USING WEIGHTED FP-TREES 

As we described above, revised weighted setting has an 
anti-monotone property. We also know that the way of weight 
constraints being first mined and then the maximal property of 
the weighted frequent patterns being checked can mine the correct 
information. We devise an efficient and scalable algorithm, 
called WTMaxMiner which is based on a weighted FP-tree

(h)  
Figure 3. The change process from EWDG to VWDG 



         

and exploits a divide-and-conquer strategy with a pattern 
growth method, to mine the maximal frequent patterns with 
weight constraint from directed graph. 

A. Weighted FP-tree Construction 
FP-tree is a compact representation of all relevant 

frequency information in a database [13]. To get a high 
performance, we adopt a modified weighted FP-tree as a 
compression technique based on pattern growth method. Each 
node in the weighted FP-tree has four fields: ‘item-name’, 
‘sup_count’ ‘weight’ and ‘node-link’. Additionally, for each 
weighted FP-tree, there is a header table which has there fields: 
‘item-id’, ‘support’ and a ‘headpointer’ to the first node in the 
FP-tree with the item-id. Initially, in our approach, a modified 
FP-tree has only a root node. The weighted FP-trees in our 
algorithm are constructed as shown as Fig. 4. Through this 
way, compressed data from the original TDB is stored in the 
FP-tree. For the transaction database shown in Fig.1 with 
support threshold minwsup=1.5 (max(W) =12). Fig. 5 presents 
the corresponding global weighted FP-tree and a header table. 

B. Search Space Pruning Techniques and Necessary 
Checkings in WTMaxMiner 

Because we use a revised weight support, so we only  
generates approximate weighted frequent patters and can not 
assure that they are real maximal weighted frequent patterns on 
directed graph G. From [7], we already know that newly found 
frequent patterns cannot be included by any later found 
frequent patterns based on the divide-and-conquer approach. 
Therefore, we only need to do subset-checking in order to 
assure a newly found weighted frequent pattern is maximal. 
That is, a newly found weighted frequent pattern is compared 
with already generated maximal weighted patterns to know if 
the newly found pattern is a subset of already found maximal 
weighted patterns. In our algorithm, we use MFI-tree [12] to 
store so far found maximal weighted frequent patterns. Every 
newly found maximal frequent pattern named Sc is compared 
with maximal weighted frequent patterns in the MFI-tree. If 
there is no superset of the pattern Sc in MFI-tree, the pattern Sc 
is inserted into the MFI-tree. In addition, because our all works 
are all based on graph traversals, we must check if the result 
mined patterns are included in G and if the order of vertices in 
result mined patterns is corrected order referring to G. 

In summary, through the process of mining, we must do 
five ordered necessary checkings: (1) Extract the candidate 
approximate weighted frequent patterns P (which is the local 
candidate weighted frequent pattern) from weighted FP-tree, by 
checking if wsurpport (P) = support (P)*max (W)≥minwsup. (2) 
Toward newly found (local) candidate approximate weighted 

frequent patterns, we check their real wsupport, and those 
whose real wsupport ≥ minwsup are remained, the others are 
removed. (3) Toward local really weighted frequent patterns, 
we check if they are included in the path of G according to the 
original TDB T on G. The checking contents consist of two 
aspects. One is to check the order of vertices in it, and the other 
is to check the sup_count of it with correct order vertices. The 
patterns included in the path of G but the order of vertices in it 
is not correct, must be revised the correct vertices order and 
corresponding sup_count referring to the path on G. If 
corresponding sup_count of some pattern P is changed, we 
must check if P satisfies the condition: wsurpport (P) = 
support (P)*Weight (P)≥minwsup. Those patterns whose real 
wsupport is less than minwsup are pruned. The remained 
patterns are local really weighted frequent patterns included in 
path of G. The reason of doing the above checking is that the 
traversal on G is a ordered sequence of vertices, but the method 
of minding weighted frequent patterns by weighted FP-tree 
approach break down the original vertices order of weighted 
frequent patterns. (4) Toward local really weighted frequent 
patterns, we do local maximal property checking to remove he 
non-maximal local patterns and remain local maximal 
weighted patterns. (5) Lastly, for local maximal weighted 
patterns, compare them with already generated maximal 
weighted patterns in MFI-tree to check if it satisfies global 
maximal property. Those frequent patterns which satisfy global 
maximal weighted property are inserted into MFI-tree. 

C. Bottom- up Traversal of Weighted FP-tree with Divide- 
and-conquer Strategy 

With the global weighted FP-tree, WTMaxMiner mines 
maximal weighted frequent patterns by adapting the divide-
and-conquer approach. For the traversal transaction database 
shown in Fig. 1(b) (minwsup=1.5), it divides mining the FP-
tree into mining smaller FP-trees with bottom up traversal of 
the FP-tree, and mines first (1) the patterns containing item ‘F’ 
and then (2) the patterns including ‘D’ but not ‘F’,. . .and 
finally the patterns containing item ‘A’. Fig. 6 is the 
conditional (weighted) FP-tree of each node in head table. 

Using 5 necessary ordered checkings described in section 
B, we can get the final global maximal weighted frequent 
patterns of each node in f_list. It is shown in Fig. 7(a). Due to 

1. First, scan the TDB once to identify the set of weighted frequent 
items and their corresponding support counts, and sort them by
sup_count descending to form the set of f-list.
2. Second, weighted infrequent items whose weighted supports are 
less than a minwsup are removed . 
3. Next, those remaining weighted frequent items in each transaction 
are  sorted by the sup_count descending order.
4. Lastly, scan the new TDB again and the sorted weighted frequent 
items in each transaction are sequentially inserted in a global 
weighted FP-tree along a path from the root to the corresponding 
node. If a  new node is inserted in the path, the ‘sup-count’ field of 
the node is set to one. If an existing node in the FP-tree is met, the 
‘sup-count’ of  node in the FP-tree is incremented by 1. 
5. Stop when all the transactions are insert to the global weighted FP-
tree.                  

A 4 •

C 4 •

B 3 •

E 3 •

D 1 •

F 1 •                  

C 1 •

B 1 •

E 1 •

A 1 •

C 1 •

E 1 •

A 1 •

C 3 •

B 2 •

A 2 •A 1 •

C 2 •

 
Figure 4.  Process of constructing the weighted FP-tree                   Figure 5. Global weighted FP-tree                        Figure 6. Conditional weighted FP-trees 

Suffix node in 
f-list 

Result 
patterns 

F <C,F> 
D ∅ 
E <B,C,E> 
B ∅ 
C <A,C> 
A ∅ 

(a) Result patterns of each node  (b)  The maximal frequent itemset tree  

C:1

F:2

Root

A:1B:1

C:2C:2

E:3

A •

C •

B •

E •

D •

F •

Figure 7. Result patterns of f-list & MFI-tree 



         

the space limitation, here we do not give the detail of mining 
process. 

D. WTMaxMiner  Algorithm 
In WTMaxMiner, a descending sup_count order method 

and a divide-and-conquer traversal paradigm are used to mine 
weighted FP-tree for mining closed weighted patterns in 
bottom-up manner. WTMaxMiner algorithm is given in Fig. 8. 
Fig. 9 gives the procedure WTMaxM (T, Max, MFI-tree), in it, 
the MFI-tree is used to store so far found (global) maximal 
weighted frequent patterns. For the traversal transaction in Fig. 
1, after mining, the set of real maximal weighted frequent 
patterns is :{ <CF>, <BCE>, <AC>}, and the MFI-tree is 
shown as Figure 7(b), there the node ‘x:l’ means that the node 
is for item ‘x’, its level is ‘l’ (the length of path from this node 
to the root node). 

V. EXPERIMENTAL EVALUATION 
We explored our experimental results on the performance 

of WTMaxMiner in comparison with FPmax [12]. Because 
there are not real datasets about WDG currently, we test the 
algorithm performance using synthetic dataset. We implement 
our algorithm with C++ language, running under Microsoft 
VC++ 6.0. The experiments were performed on Windows XP 

Professional operating system with Pentium IV PC at 2.93 
GHz and 768MB of main memory. We used Microsoft SQL 
Server 2000 database to generate simulation of WDG and the 
traversals no it. All the reported runtimes are in seconds. 

A. Generate Synthetic Datasets 
During the experiment, the WDG is generated mainly 

according to following parameters: number of vertices and 
max number of edges per vertex. And then, we assigned 
random weight to each vertex of the graph. To easily compare 
algorithm’s performance, we generated 8 sets of traversal 
database with the same set of weights, in each of which the 
maximum length of traversals varies from 5 to 10. The 
distribution of weight is generated from Gauss distribution 
(μ=5.0, σ=1.5) shown as Fig.10. All experimental results are 
average value of 8 sets of synthetic datasets. Due to space 
considerations, our experimental evaluation only illustrates the 
results of one smaller value of minwsup (minwsup=1.5) in all 
of our experiments. However, our own experimental 
evaluation (not presented in this paper) showed that it is 
equally effective for other value of minwsup. The 
characteristics of these datasets are summarized in Table I. 

B. Effectiveness Comparison of WTMaxMiner and FPmax 
For algorithms FPmax and WTMaxMiner, we made a set of 

comparing experiments among minwsup, Max_L and 
execution time etc. The difference between WTMaxMiner and 
FPmax results from weight constraints. Figure 11 shows the 
trend of the execution time of WTMaxMiner and FPmax with 
respect to different minwsup and Max_L based on |T|=10,000. 
As shown in Fig. 11(a), along with minwsup’s decreasing, the 
average execution time of two algorithm increases. When the 

Figure 8.  Algorithm WTMaxMiner 

Procedure WTMaxM (T, Max, MFI-tree)
: (1) T, an FP-tree, (2) Max, the result set of maximal weighted frequent patterns and 

(3) , an tree building with real closed weighted frequent patterns 
: Set of real maximal weighted frequent patterns 

1: T only contains a single path B {
2:  the single path B mine all (approximate) maximal weighted frequent patterns set, AWF
3: (∀P AWF) {
4:     (∑i=1,|P|weight(pi)/|P|*support(P) minwsup){//get local real candidate pattern
5:     SP={sp1,sp2,…,spm|spiis a certain presentation of P with the original orders of vertices

according to original TDB T on G, 1 i m, ∑i=1,msup_count(spi)= sup_count(P)} 
6:      (∀spi SP) {
7:         (∑j=1,|spi|weight(tj)/|spi|*support(spi) minwsup) //tj is the vertex in spi
8:            LRWFP=LRWFP∪syi;} //end of 6 for
9:       } //end of line 4 if
10:   } //end of line 3 for
11:    set LM=localmaximal(LRWFP) //LM is the local weighted maximal patterns
12:     if (not maximal-subset-checking(LM,MFI-tree)) {
13:          Max=Max∪LM;
14:          insert LM into MFI-tree; } //end of line 12 if
15: } //end of line 1 if
16: else {
17:   (∀ f-list in T.header) { //from bottom to up
18:  initialize LRWFP= LRWFP is set of local really weighted frequent patterns
19:    set Y={i}∪T.base;
20:    (max(W)*support(Y) minwsup) {
21:      (∑i=1,|Y|weight(yi)/|Y|*support(Y) minwsup){
22:        SY={sy1,sy2,…,sym|syiis a certain presentation of Y with the original orders of vertices

according to original TDB T on G, 1 i m, ∑i=1,msup_count(syi)= sup_count(Y)} 
23:          (∀syi SY) {
24:             (∑j=1,|syi|weight(tj)/|syi|*support(syi) minwsup) //tj is the vertex in syi
25:                  LRWFP=LRWFP∪syi;} //end of 23 for
26:      } //end of 21 if
27:     } //end of 20 if 
28:    Gen-conditionalDB(i); //generate i’s conditional database 
29:    scan Gen-conditionalDB(i) once, remove items whose approximate wsupport minwsup and

sort the remaining weighted frequent items in each transaction by sup count descending order.
30:     Gen-FP-tree(Y);  //generate the FP-tree of Y
31:     call WTMaxM (FP-treeY,Max,MFI-tree);
32:   } //end of 17 for
33: } //end of line16 else

Figure 9.  Procedure WTMaxM 
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Fig. 10 Weight distribution  

TABLE I. EXPERIMENTAL   PARAMETERS

Parameter Meaning or parameter Value in experiment
Vn 
Emax 
wi 
minwsup 
|T| 
num_TSet 
Max_L 

Number of nodes per set 
Max number of edges per vertex 
Weight of vertex 
Min weighted support threshold 
Number of traversals per set 
Number of traversal set 
Max length of pattern per traversal set 

100 to 500 
1≤ Emax ≤4 
0≤ w≤ 10 
1 to 5 
4k to 12k 
8 
5,6,7,8,9,10 

0.511.522.53
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Figure 11. Runtime comparison w.r.t. different minwsup & Max_L 



         

minwsup is lowered, the performance difference between two 
algorithms becomes larger. In all case of minwsup, 
WTMaxMiner outperforms algorithm FPmax. This is because 
WTMaxMiner carries out the maximal frequent pattern mining 
with weight constraints, and can reduced effectively search 
space, but FPmax only do the maximal frequent pattern 
mining without weight constraints, its search space is larger 
than that of algorithm WTMaxMiner. Our own experimental 
evaluation (not presented in this paper) showed that 
WTMaxMiner is equally effective for other value of Max_L as 
well. Figure 11(b) shows that WTMaxMiner is faster than 
FPmax. The performance difference between two algorithms 
becomes larger when Max_L becomes longer. 

C. Scalability Study 
To evaluate how the performance of WTMaxMiner scales 

with the size of the database, we performed an experiment in 
which we respectively varied the number of vertices from 100 to 
500 and the number of traversal transactions |T| from 4 to 12k 
for the synthetic datasets. Due to space considerations, we only 
illustrate the results of Max_L=7, and the experimental results 
(not presented in this paper) of other value of Max_L has a 
similar performance to it. Fig. 12 shows the experimental 
results. From these results we can see WTMaxMiner 
approximately scales linearly with the size of the vertices and 
traversal transactions. As shown in Fig. 12, WTMaxMiner has 
much better scale-up properties than FPmax with respect to 
the numbers of vertices & the number of traversal transactions. 
Fig. 12(a) shows, although itself runtime also increases, 
WTMaxMiner runs faster than FPmax along with increase of 
number of vertices. In Fig. 12(b), WTMaxMiner also has a 
better scalability in terns of number of traversal transactions 
and runs faster than FPmax. The reason for that is 
WTMaxMiner has a weight constraint to reduce the search 
space than FPmax which has not weight constraint. 

VI. CONCLUSIONS AND FUTURE WOEKS 
This paper explores the problems of discovering maximal 

frequent patterns with weight constraint from weighted 
traversals on graph. Differently from previous approaches, 
vertices of directed graph are attached with weights which 
reflect their importance. With the weight setting, a 
transformable model between EWDG and VWDG is proposed. 
Based on the model, we present algorithm named 
WTMaxMiner. In this algorithm, we use divide-and-conquer 
paradigm with a bottom-up pattern-growth method and 
incorporates the closure property with weight constrain to 
reduce effectively search space. Experimental results on 

synthetic datasets show that the algorithms is effective and 
scalable to the problem of mining maximal weighted frequent 
patterns based on WDG traversals. Many opportunities exist to 
apply WDG traversals-based maximal frequent pattern mining. 
How to scale the model and algorithms proposed in this paper 
to a larger scale, can we deeply optimize the algorithm, and 
how to efficiently put it into practice are still worthy doing 
further explorations for researches. 
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Figure 12. Scale-up property test of WTMaxMiner 


