
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

WTMaxMiner: Efficient Mining of Maximal
Frequent Patterns Based on Weighted Directed Graph

Traversals*

Runian GENG1,2, Xiangjun DONG2
2. School of Information Science and Technology

Shandong Institute of Light Industry
Jinan, China

gengrnn@163.com, d-xj@163.com,

Ping ZHANG1, Wenbo XU1
1. School of Information Technology

Jiangnan University
Wuxi, China

zpshh@126.com, xwb_sytu@hotmail.com

 Abstract—Frequent itemset mining for traversal patterns
have been found useful in several applications. However, (closed)
frequent mining can generate huge and redundant patterns, and
traditional model of traversal patterns mining considered only
un-weighted traversals. In this paper, a transformable model
between EWDG (Edge-Weighted Directed Graph) and VWDG
(Vertex-Weighted Directed Graph) is proposed. Based on the
model, an effective algorithm, called WTMaxMiner (Weighted
Traversals-based Maximal Frequent Patterns Miner), is
developed to discover maximal weighted frequent patterns from
weighted traversals on directed graph. Experimental comparison
results with previous work on synthetic data show that the
algorithm has a good performance and scalable property to the
problem of mining maximal frequent patterns based on weighted
graph traversals.

Keywords—data mining, traversal patterns, maximal
weighted frequent pattern mining, closed pattern mining

I. INTRODUCTION
Data mining on graph traversals have been an active

research field during recent years. Graph and traversal on it are
widely used to model several classes of data in real world. One
example for this is WWW. The structure of Web site can be
modeled as a graph in which the vertices represent Web pages,
and the edges represent hyperlinks between the pages. That is,
user's navigation on the Web site can be modeled as traversals
on the graph. Capturing user access patterns in such
environments is referred to as mining traversal patterns [1].
Traditional model of traversal patterns mining hardly
considered weighted traversals on the graph [1][2][3]. To
reflect importance difference of Web sites, we can assign a
weight to each site.

Since the frequent itemsets mining problem (FIM) was first
addressed [4], frequent itemsets mining in large database has
become an important problem. The drawback of mining all
frequent itemsets is that if there is a large frequent itemset with

*This work was supported in part by the Natural Science Fund of Shandong
Province (No.Y2007G25), the Excellent Young Scientist Foundation of
Shandong Province, China (No.2006BS01017) and the Scientific Research
Development Project of Shandong Provincial Education Department, China
(No. J06N06).

size l, then almost all 2l candidate subsets of the items might be
generated. So the large length of frequent itemset leads to no
feasible of FIM. Smaller alternatives to FIM that still contain
compact yet lossless representation of the frequent itemsets is
frequent closed itemset mining (FCIM)[5][6][7]. It is the task
of discovering frequent itemsets whose support counts are
different than those of their supersets. However, when the
frequent patterns are long (more 15 to 20 items), FIM and
FCIM become very large and most traditional methods count
too many itemsets to be feasible [8]. A frequent itemset is
called maximal frequent itemset (MFI) if it has no frequent
superset. It is straightforward to see that the following
relationship holds: MFI ⊆ FCI ⊆ FI. Since frequent itemsets
are upward closed, it is sufficient to discover only all maximal
frequent itemsets (MFI).

In this paper, we extend previous works by attaching
weights to the traversals and propose a new effective &
scalable algorithm called WTMaxMiner (Weighted Traversals-
based Maximal Frequent Patterns Miner) to discover maximal
frequent patterns from weighed traversals on graph, which
exploits a divide-and-conquer approach in a bottom-up manner
and incorporates the maximal property with weight constrains
to reduce effectively search space and extracts succinct and
lossless patterns from weighted graph traversal TDB. To our
knowledge, ours is the first work to considering maximal
frequent patterns mining from directed graph with weight
constraints.

The organization of this paper is as follows. Section Ⅱ
reviews previous works. The related definitions and notions of
problem are given in Section Ⅲ . Section Ⅳ proposes the
algorithm named WTMaxMiner. Experimental research and the
performance analysis of algorithm are reported in Section Ⅴ.
Finally, Section Ⅵ gives the conclusion as well as future
research works.

II. RELATED WORKS
The main stream of data mining related to our work, can be

divided into three categories, i.e. the traversal pattern mining,
the maximal frequent pattern mining and the (weight)
constraint based pattern mining. For the traversal pattern

mining, there have been few works. Chen et al. [1] proposed
two algorithms—FS and SS about traversal pattern mining.
However, they did not consider graph structure on which the
traversals occur. Nanopoulos et al. [2] proposed three
algorithms which considered the graph structure. However, the
above works dealt with the mining of un-weighted traversal
patterns.

In the last several years, extensive studies have proposed
fast algorithms for mining maximal frequent itemsets, such as
Mafia [8], MaxMiner [9], Genmax [10], CfpMfi[11] and
Fpmax[12]. CfpMfi and Fpmax are based on the pattern growth
method [13] which has a high performance.

For the (weight) constraint mining, most of previous works
are related to the mining of association rules and frequent
itemsets [14][15][16]. Recently, constraint-based frequent
pattern mining algorithms [17] based on the pattern growth
method were suggested. Although the above works take the
notion of weight into account as examined in this paper, they
only concerned on the mining from items, but not from
traversals.

III. PROBLEM STATEMENT

A. Correlative Definitions of Mining Traversal Pattern
Definition 1 (Weighed Directed Graph) A WDG

(Weighted Directed Graph), denotes as G, is a finite set of
vertices and edges, in which each edge joins one ordered pair
of vertices, and each vertex or edge is associated with a weight
value.

By definition 1, we know that there should be two kinds of
WDGs. One is VWDG (Vertex-WDG) which assigns weights
to each vertex in the graph, and the other is EWDG (Edge-
WDG) which assigns weights to each edge (We will know
they are essentially equivalent in next section,. So, we only
study the former in this paper). For example, Fig.1 (a) is
VWDG G which has 6 vertices and 8 edges. Next, we will
know they are essentially equivalent.

Definition 2 (Traversal on Graph) A traversal on graph is a
sequence of consecutive vertices along a sequence of edges on
a G.

Clearly, a traversal can be regarded as a pattern. To easily
consider, we may assume that every traversal has no repeated
vertices. The length of a traversal is the number of vertices in
the traversal. A traversal database T is a set of traversals. Since
there are two WDG, then it must exit that there are two types
of traversals-traversals on VWDG and traversals on EWDG.
Figure 2(a) and (b) respectively describe them, and (c) is the
combination of two cases.

Definition 3 (Subtraversal) A subtraversal is any

subsequence of consecutive vertices in a traversal.

Definition 4 (Sup_count & support.) The support count
of a pattern P, denoted as sup_count (P), is the number of
traversals containing the pattern. The support of a pattern P,
support (P), is the fraction of traversals containing the pattern P,
denoted as: (|T| be the number of traversals.)

()sup_count P
support(P)=

T
 . (1)

Definition 5 (Maximal frequent traversal pattern) Given a
threshold minimum support min_sup, a traversal pattern Y is a
maximal frequent traversal pattern if support (Y) ≥min_sup
and there exists no proper superset Y’⊃ Y such that support (Y’)
≥min_sup.

Definition 6 (Weighted Pattern) A weighted pattern is a set
of items each which has a weight.

Definition 7 (Weight of Pattern) The weight of pattern is
an average value of weights of all items in it.

Given a weighted pattern P=<p1,p2,….,pk>, the weight of
each item in P, denoted as w(pi) (i=1,2,…,k), then the weight
of P is represented as follows.

 ()
()

1

k

i
i

w p
Weight P

P
==
∑

 (2)

Definition 8 (Weighted Support) The weighted support of
a pattern P, called wsupport (P), is

() ()()()wsupport P Weight P support P= (3)

A P is said to be weighted frequent when its weighted
support is no less than a given minimum weighted support
threshold called wminsup, i.e.,

()wsupport P minwsup≥ (4)

Thus, the problem concerned in this paper is stated as
follows. Given a weighted directed graph G and a set of path
traversals on the graph — traversal database T, we find all
maximal frequent patterns with weight constraint in T.
However, the weight constraint is neither the anti-monotone
nor the monotone constraint. So we cannot directly use the
anti-monotone property to prune weighted infrequent patterns.

B. Model of transforming EWDG into VWDG
Essentially, the two WDGs cases can be reduced to one

case. There we reduce the two cases to one case— assigning
weight to vertices. The reason why we can reduce is that two
nodes with a weighted edge in an EWDG can be thought as a
node with same weight value in the corresponding VWDG, and
the edges between vertices in corresponding VWDG have no

Figure 2. Three cases of assigning weights to traversals

TID Traversal
1
2
3
4
5
6

<A, B>
<B, C, E, F>
<A, C>
<B, C, E>
<A>
<A, C, E, D>

 Example of VWDG

B

Traversal database T

Figure 1. An example of VWDG & traversal database T

weight value, and their linking directions refer to the source
EWDG.

Figure 3 describes this change method: Fig.3 (a), (c) and (e)
are EWDGs, and Fig.3(b),(d),(g) and (h)are VWDGs. In
Fig.3(b) or (d), the nodes named ‘bd’, ‘de’, ‘ec’ and ‘bc’
respectively represents the corresponding nodes with directed
edges named <B,D>,<D,E>,<E,C> and <B,C> in Fig.3(a) or
(c). Figure 3(e), (f), (g) and (h) truly describe how to change
EWDG into VWDG. The transformable process undergoes
three phases.

Phase 1: Fields transforming phase.

In this phase, all nodes and the edge between each pair of
nodes in EWDG are converted to some corresponding nodes
with the same weight value as that of source edge. For
example, the nodes named ‘bd:3.8’, ‘de:4.4’, ‘ec:3.3’ and
‘bc:2.1’ in Fig.3(f) respectively represents the corresponding
nodes with weighted directed edges named <B,D>:3.8,
<D,E>:4.4, <E,C>:3.3 and <B,C>:2.1 in Fig.3(e). There x:
number means that x is the name of node or edge and number
is the corresponding weight value.

Phase 2: Generating edges’ direction between nodes
generated from phase 1 in new birth VWDG.

 Each edge’s direction in new birth VWDG is based on the
balance of indegree and outdegree of fields in source EWDG,
e.g., for node ‘de’ in Fig.3(g), because its corresponding field
in (e) is joined by two directed edges named <B,D> (i.e.
indegree) and <E,C> (i.e. outdegree), so there are two edges
named <‘bd’→‘de’> and <‘de’→‘ec’> in (g), the other edges’
direction are similar to the above method. That is to say that it
is balance between indegree and outdegree of source field in
EWDG by which we decide each new edge’s direction in the
new VWDG.

Phase 3: Shape rotation phase.

In this phase, we rotate the new birth VWDG generated by
phase 2 to a shape easy to distinguish. Clearly, this phase can
be omitted according the actual situation.

Thus, we construct a union between EWDG and VWDG.
This union is convenient to reduce pattern mining problem on
weighted graph. In practice, the fields in Fig. 3(a) and (c) may
represent subnet of any size under the Web environments.

C. Revised Weighted Support
We know that the weight constraint is neither the anti-

monotone nor the monotone constraint. Can we use anti-
monotone property to mine weighted frequent pattern mining?
The answer is ‘yes’. We know that the weights of items on

graph containing n nodes , denoted as wi (i=1,2,…,n), must
satisfy: min(W) ≤ wi ≤ max(W), there, W={w1,w2,…,wn}. To let
weighted patterns satisfy the anti-monotone property (i.e., if
wsupport (P) ≤ minwsup ⇒ wsupport (P’) ≤ minwsup), we
revise weight (pi) as two following representations.

()iweight p =min(W) or ()iweight p =max(W)

That is, the weight of pattern is revised as:

()
()

1 1

k k

i
i i

w p min(W)
weight P .

P P
= == =

∑ ∑
 (5)

or

()
()

1 1

k k

i
i i

w p max(W)
weight P .

P P
= == =

∑ ∑
 (6)

Thus, the anti-monotone property can be used in mining
weighted frequent patterns since wsupport (P’) ≤ wsupport (P).
However, if we adopt (5), we could prune some patterns which
should have been weighted frequent to lead to incorrect
mining results. Avoiding this flaw, we adopt (6) to compute
revised weight of the pattern Note, the weight support value
computed by this is only an approximate value, therefore, in
final step, we should check if the pattern is really weighted
frequent pattern with his real weight value, by the condition:

()
()()1

k

k

i
i

weight p
support P minwsup .

k
= ≥
∑

Data mining from itemsets with the anti-monotone

property can adopt the pattern growth strategy.

D. Order of Joining the Closure and Constraint
There are two ways to joining the closure and constrains

with frequent patterns mining [18].

Ⅰ. ()()() ()D D amD
Cl FTh sup X min sup FTh C .≥ ∩ (7)

Ⅱ. ()()()()D D am
Cl FTh sup X min sup C .≥ ∧ (8)

There, Cam is an anti-monotone constraint, as to weight
constraint, it is revised weight constraints. InⅠ , frequent
patterns are first tested whether the patterns are closed frequent
patterns, and then for the closed patterns weighted constraints
are applied to discover weighted closed frequent patterns. Ⅱ is
one the way round: the weight constraint is first mined and then
the closures of the weighted frequent patterns are computed.
From [18], we already know only way Ⅱ not can lead to
information loss. In addition, because a maximal frequent
pattern must be a closed frequent pattern (i.e. MFI⊆CFI), so
we adapt way Ⅱ in our problem, i.e., we first extract the
weighted frequent patterns then check if they are maximal . We
call these patterns extracted by way Ⅱas maximal weighted
frequent patterns.

IV. MINING MAXIMAL FREQUENT PATTERNS FROM WDG
TRAVERSALS USING WEIGHTED FP-TREES

As we described above, revised weighted setting has an
anti-monotone property. We also know that the way of weight
constraints being first mined and then the maximal property of
the weighted frequent patterns being checked can mine the correct
information. We devise an efficient and scalable algorithm,
called WTMaxMiner which is based on a weighted FP-tree

(h)
Figure 3. The change process from EWDG to VWDG

and exploits a divide-and-conquer strategy with a pattern
growth method, to mine the maximal frequent patterns with
weight constraint from directed graph.

A. Weighted FP-tree Construction
FP-tree is a compact representation of all relevant

frequency information in a database [13]. To get a high
performance, we adopt a modified weighted FP-tree as a
compression technique based on pattern growth method. Each
node in the weighted FP-tree has four fields: ‘item-name’,
‘sup_count’ ‘weight’ and ‘node-link’. Additionally, for each
weighted FP-tree, there is a header table which has there fields:
‘item-id’, ‘support’ and a ‘headpointer’ to the first node in the
FP-tree with the item-id. Initially, in our approach, a modified
FP-tree has only a root node. The weighted FP-trees in our
algorithm are constructed as shown as Fig. 4. Through this
way, compressed data from the original TDB is stored in the
FP-tree. For the transaction database shown in Fig.1 with
support threshold minwsup=1.5 (max(W) =12). Fig. 5 presents
the corresponding global weighted FP-tree and a header table.

B. Search Space Pruning Techniques and Necessary
Checkings in WTMaxMiner

Because we use a revised weight support, so we only
generates approximate weighted frequent patters and can not
assure that they are real maximal weighted frequent patterns on
directed graph G. From [7], we already know that newly found
frequent patterns cannot be included by any later found
frequent patterns based on the divide-and-conquer approach.
Therefore, we only need to do subset-checking in order to
assure a newly found weighted frequent pattern is maximal.
That is, a newly found weighted frequent pattern is compared
with already generated maximal weighted patterns to know if
the newly found pattern is a subset of already found maximal
weighted patterns. In our algorithm, we use MFI-tree [12] to
store so far found maximal weighted frequent patterns. Every
newly found maximal frequent pattern named Sc is compared
with maximal weighted frequent patterns in the MFI-tree. If
there is no superset of the pattern Sc in MFI-tree, the pattern Sc
is inserted into the MFI-tree. In addition, because our all works
are all based on graph traversals, we must check if the result
mined patterns are included in G and if the order of vertices in
result mined patterns is corrected order referring to G.

In summary, through the process of mining, we must do
five ordered necessary checkings: (1) Extract the candidate
approximate weighted frequent patterns P (which is the local
candidate weighted frequent pattern) from weighted FP-tree, by
checking if wsurpport (P) = support (P)*max (W)≥minwsup. (2)
Toward newly found (local) candidate approximate weighted

frequent patterns, we check their real wsupport, and those
whose real wsupport ≥ minwsup are remained, the others are
removed. (3) Toward local really weighted frequent patterns,
we check if they are included in the path of G according to the
original TDB T on G. The checking contents consist of two
aspects. One is to check the order of vertices in it, and the other
is to check the sup_count of it with correct order vertices. The
patterns included in the path of G but the order of vertices in it
is not correct, must be revised the correct vertices order and
corresponding sup_count referring to the path on G. If
corresponding sup_count of some pattern P is changed, we
must check if P satisfies the condition: wsurpport (P) =
support (P)*Weight (P)≥minwsup. Those patterns whose real
wsupport is less than minwsup are pruned. The remained
patterns are local really weighted frequent patterns included in
path of G. The reason of doing the above checking is that the
traversal on G is a ordered sequence of vertices, but the method
of minding weighted frequent patterns by weighted FP-tree
approach break down the original vertices order of weighted
frequent patterns. (4) Toward local really weighted frequent
patterns, we do local maximal property checking to remove he
non-maximal local patterns and remain local maximal
weighted patterns. (5) Lastly, for local maximal weighted
patterns, compare them with already generated maximal
weighted patterns in MFI-tree to check if it satisfies global
maximal property. Those frequent patterns which satisfy global
maximal weighted property are inserted into MFI-tree.

C. Bottom- up Traversal of Weighted FP-tree with Divide-
and-conquer Strategy

With the global weighted FP-tree, WTMaxMiner mines
maximal weighted frequent patterns by adapting the divide-
and-conquer approach. For the traversal transaction database
shown in Fig. 1(b) (minwsup=1.5), it divides mining the FP-
tree into mining smaller FP-trees with bottom up traversal of
the FP-tree, and mines first (1) the patterns containing item ‘F’
and then (2) the patterns including ‘D’ but not ‘F’,. . .and
finally the patterns containing item ‘A’. Fig. 6 is the
conditional (weighted) FP-tree of each node in head table.

Using 5 necessary ordered checkings described in section
B, we can get the final global maximal weighted frequent
patterns of each node in f_list. It is shown in Fig. 7(a). Due to

1. First, scan the TDB once to identify the set of weighted frequent
items and their corresponding support counts, and sort them by
sup_count descending to form the set of f-list.
2. Second, weighted infrequent items whose weighted supports are
less than a minwsup are removed .
3. Next, those remaining weighted frequent items in each transaction
are sorted by the sup_count descending order.
4. Lastly, scan the new TDB again and the sorted weighted frequent
items in each transaction are sequentially inserted in a global
weighted FP-tree along a path from the root to the corresponding
node. If a new node is inserted in the path, the ‘sup-count’ field of
the node is set to one. If an existing node in the FP-tree is met, the
‘sup-count’ of node in the FP-tree is incremented by 1.
5. Stop when all the transactions are insert to the global weighted FP-
tree.

A 4 •

C 4 •

B 3 •

E 3 •

D 1 •

F 1 •

C 1 •

B 1 •

E 1 •

A 1 •

C 1 •

E 1 •

A 1 •

C 3 •

B 2 •

A 2 •A 1 •

C 2 •

Figure 4. Process of constructing the weighted FP-tree Figure 5. Global weighted FP-tree Figure 6. Conditional weighted FP-trees

Suffix node in
f-list

Result
patterns

F <C,F>
D ∅
E <B,C,E>
B ∅
C <A,C>
A ∅

(a) Result patterns of each node (b) The maximal frequent itemset tree

C:1

F:2

Root

A:1B:1

C:2C:2

E:3

A •

C •

B •

E •

D •

F •

Figure 7. Result patterns of f-list & MFI-tree

the space limitation, here we do not give the detail of mining
process.

D. WTMaxMiner Algorithm
In WTMaxMiner, a descending sup_count order method

and a divide-and-conquer traversal paradigm are used to mine
weighted FP-tree for mining closed weighted patterns in
bottom-up manner. WTMaxMiner algorithm is given in Fig. 8.
Fig. 9 gives the procedure WTMaxM (T, Max, MFI-tree), in it,
the MFI-tree is used to store so far found (global) maximal
weighted frequent patterns. For the traversal transaction in Fig.
1, after mining, the set of real maximal weighted frequent
patterns is :{ <CF>, <BCE>, <AC>}, and the MFI-tree is
shown as Figure 7(b), there the node ‘x:l’ means that the node
is for item ‘x’, its level is ‘l’ (the length of path from this node
to the root node).

V. EXPERIMENTAL EVALUATION
We explored our experimental results on the performance

of WTMaxMiner in comparison with FPmax [12]. Because
there are not real datasets about WDG currently, we test the
algorithm performance using synthetic dataset. We implement
our algorithm with C++ language, running under Microsoft
VC++ 6.0. The experiments were performed on Windows XP

Professional operating system with Pentium IV PC at 2.93
GHz and 768MB of main memory. We used Microsoft SQL
Server 2000 database to generate simulation of WDG and the
traversals no it. All the reported runtimes are in seconds.

A. Generate Synthetic Datasets
During the experiment, the WDG is generated mainly

according to following parameters: number of vertices and
max number of edges per vertex. And then, we assigned
random weight to each vertex of the graph. To easily compare
algorithm’s performance, we generated 8 sets of traversal
database with the same set of weights, in each of which the
maximum length of traversals varies from 5 to 10. The
distribution of weight is generated from Gauss distribution
(μ=5.0, σ=1.5) shown as Fig.10. All experimental results are
average value of 8 sets of synthetic datasets. Due to space
considerations, our experimental evaluation only illustrates the
results of one smaller value of minwsup (minwsup=1.5) in all
of our experiments. However, our own experimental
evaluation (not presented in this paper) showed that it is
equally effective for other value of minwsup. The
characteristics of these datasets are summarized in Table I.

B. Effectiveness Comparison of WTMaxMiner and FPmax
For algorithms FPmax and WTMaxMiner, we made a set of

comparing experiments among minwsup, Max_L and
execution time etc. The difference between WTMaxMiner and
FPmax results from weight constraints. Figure 11 shows the
trend of the execution time of WTMaxMiner and FPmax with
respect to different minwsup and Max_L based on |T|=10,000.
As shown in Fig. 11(a), along with minwsup’s decreasing, the
average execution time of two algorithm increases. When the

Figure 8. Algorithm WTMaxMiner

Procedure WTMaxM (T, Max, MFI-tree)
: (1) T, an FP-tree, (2) Max, the result set of maximal weighted frequent patterns and

(3) , an tree building with real closed weighted frequent patterns
: Set of real maximal weighted frequent patterns

1: T only contains a single path B {
2: the single path B mine all (approximate) maximal weighted frequent patterns set, AWF
3: (∀P AWF) {
4: (∑i=1,|P|weight(pi)/|P|*support(P) minwsup){//get local real candidate pattern
5: SP={sp1,sp2,…,spm|spiis a certain presentation of P with the original orders of vertices

according to original TDB T on G, 1 i m, ∑i=1,msup_count(spi)= sup_count(P)}
6: (∀spi SP) {
7: (∑j=1,|spi|weight(tj)/|spi|*support(spi) minwsup) //tj is the vertex in spi
8: LRWFP=LRWFP∪syi;} //end of 6 for
9: } //end of line 4 if
10: } //end of line 3 for
11: set LM=localmaximal(LRWFP) //LM is the local weighted maximal patterns
12: if (not maximal-subset-checking(LM,MFI-tree)) {
13: Max=Max∪LM;
14: insert LM into MFI-tree; } //end of line 12 if
15: } //end of line 1 if
16: else {
17: (∀ f-list in T.header) { //from bottom to up
18: initialize LRWFP= LRWFP is set of local really weighted frequent patterns
19: set Y={i}∪T.base;
20: (max(W)*support(Y) minwsup) {
21: (∑i=1,|Y|weight(yi)/|Y|*support(Y) minwsup){
22: SY={sy1,sy2,…,sym|syiis a certain presentation of Y with the original orders of vertices

according to original TDB T on G, 1 i m, ∑i=1,msup_count(syi)= sup_count(Y)}
23: (∀syi SY) {
24: (∑j=1,|syi|weight(tj)/|syi|*support(syi) minwsup) //tj is the vertex in syi
25: LRWFP=LRWFP∪syi;} //end of 23 for
26: } //end of 21 if
27: } //end of 20 if
28: Gen-conditionalDB(i); //generate i’s conditional database
29: scan Gen-conditionalDB(i) once, remove items whose approximate wsupport minwsup and

sort the remaining weighted frequent items in each transaction by sup count descending order.
30: Gen-FP-tree(Y); //generate the FP-tree of Y
31: call WTMaxM (FP-treeY,Max,MFI-tree);
32: } //end of 17 for
33: } //end of line16 else

Figure 9. Procedure WTMaxM

0 1 2 3 4 5 6 7 8 9 1010
0

0.05

0.1

0.15

0.2

0.25

0.30.3

Weight

D
en

tis
ty

mu=5, sigma=1.5

 0 1 2 3 4 5 6 7 8 9 1010
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.59.5

Vn=500

Vn=400

Vn=300

Vn=200

Vn=100

Weight

F
re

qn
ec

y
(%

)

Vn=500

Vn=400

Vn=300

Vn=200

Vn=100

(a) Gauss distribution density (b) Weight distributions of different Vn

Fig. 10 Weight distribution

TABLE I. EXPERIMENTAL PARAMETERS

Parameter Meaning or parameter Value in experiment
Vn
Emax
wi
minwsup
|T|
num_TSet
Max_L

Number of nodes per set
Max number of edges per vertex
Weight of vertex
Min weighted support threshold
Number of traversals per set
Number of traversal set
Max length of pattern per traversal set

100 to 500
1≤ Emax ≤4
0≤ w≤ 10
1 to 5
4k to 12k
8
5,6,7,8,9,10

0.511.522.53
0

10

20

30

40

50

60

70

80

Minwsup

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e(
se

c.
)

Max-L=7 |T|=10,000

FPmax
WTMaxMiner

5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e(
se

c.
)

Max length of traversal patterns

minwsup=1.5 |T|=10,000

FPmax

WTMaxMiner

(a) (b)

Figure 11. Runtime comparison w.r.t. different minwsup & Max_L

minwsup is lowered, the performance difference between two
algorithms becomes larger. In all case of minwsup,
WTMaxMiner outperforms algorithm FPmax. This is because
WTMaxMiner carries out the maximal frequent pattern mining
with weight constraints, and can reduced effectively search
space, but FPmax only do the maximal frequent pattern
mining without weight constraints, its search space is larger
than that of algorithm WTMaxMiner. Our own experimental
evaluation (not presented in this paper) showed that
WTMaxMiner is equally effective for other value of Max_L as
well. Figure 11(b) shows that WTMaxMiner is faster than
FPmax. The performance difference between two algorithms
becomes larger when Max_L becomes longer.

C. Scalability Study
To evaluate how the performance of WTMaxMiner scales

with the size of the database, we performed an experiment in
which we respectively varied the number of vertices from 100 to
500 and the number of traversal transactions |T| from 4 to 12k
for the synthetic datasets. Due to space considerations, we only
illustrate the results of Max_L=7, and the experimental results
(not presented in this paper) of other value of Max_L has a
similar performance to it. Fig. 12 shows the experimental
results. From these results we can see WTMaxMiner
approximately scales linearly with the size of the vertices and
traversal transactions. As shown in Fig. 12, WTMaxMiner has
much better scale-up properties than FPmax with respect to
the numbers of vertices & the number of traversal transactions.
Fig. 12(a) shows, although itself runtime also increases,
WTMaxMiner runs faster than FPmax along with increase of
number of vertices. In Fig. 12(b), WTMaxMiner also has a
better scalability in terns of number of traversal transactions
and runs faster than FPmax. The reason for that is
WTMaxMiner has a weight constraint to reduce the search
space than FPmax which has not weight constraint.

VI. CONCLUSIONS AND FUTURE WOEKS
This paper explores the problems of discovering maximal

frequent patterns with weight constraint from weighted
traversals on graph. Differently from previous approaches,
vertices of directed graph are attached with weights which
reflect their importance. With the weight setting, a
transformable model between EWDG and VWDG is proposed.
Based on the model, we present algorithm named
WTMaxMiner. In this algorithm, we use divide-and-conquer
paradigm with a bottom-up pattern-growth method and
incorporates the closure property with weight constrain to
reduce effectively search space. Experimental results on

synthetic datasets show that the algorithms is effective and
scalable to the problem of mining maximal weighted frequent
patterns based on WDG traversals. Many opportunities exist to
apply WDG traversals-based maximal frequent pattern mining.
How to scale the model and algorithms proposed in this paper
to a larger scale, can we deeply optimize the algorithm, and
how to efficiently put it into practice are still worthy doing
further explorations for researches.

REFERENCES
[1] Chen, M.S., Park, J.S., Yu, P.S., “Efficient data mining for path traversal

patterns,” IEEE Trans. on Knowledge and Data Engineering, Los
Alamitos, CA, USA, vol. 10, pp. 209–221, April 1998.

[2] Nanopoulos, A., Manolopoulos, Y., “Mining patterns from graph
traversals”, Data and Knowledge Engineering, Netherlands, vol. 37, pp.
243–266, June 2001.

[3] YEN S. J., Chen A. L P., “A graph-based approach for discovering
various types of association rules”, IEEE Trans. on Knowledge and Data
Engineer, Los Alamitos, CA, USA, vol.13, pp. 839-845, Oct. 2001.

[4] R. Agrawal, R. Srikant, “Fast algorithms for mining association rules”,
In: proceedings of VLDB’94, Santigo, Chile, pp. 487-499, Sept. 1994.

[5] N. Pasquier, Y. Bastide, et.al., “Discovering frequent closed itemsets for
association rules”, Proceedings of ICDT'99, Jerusalem, Israel, pp. 398-
416, Jan. 1999.

[6] M. J. Zaki,C.-J. Hsiao, “Charm: an efficient algorithm for closed
itemsets mining”, Proceedings of 2002 SIAM Int. Conf. on Data Mining,
Arlington,VA, pp. 12-28, April 2002.

[7] J. Wang, J. Pei, J. Han, “Closet+: searching for the best strategies for
mining frequent closed itemsets”, Proceedings of SIGKDD’03,
Washington, D.C., pp. 236-245, Aug. 2003.

[8] R. J. Bayardo, “Efficiently mining long patterns from databases”,
Proceeding of Special Interest Group on Management of Data, Seattle,
WA, pp. 85-93, June 1998.

[9] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: a maximal frequent
itemset algorithm for transactional databases”, Proceedings of ICDE’01,
Heidelberg, Germany, pp. 443-452, April, 2001.

[10] K. Gouda, M.J. Zaki, “Efficiently Mining Maximal Frequent Itemsets”,
In Proceedings of ICDM’01, San Jose pp. 163-170, Nov. 2001.

[11] Yuejin Yan, Zhoujunli, Tao Wang, Yuexin Chen and Huowang Chen,
“Mining maximal frequent itemsets using combined FP-Tree”,
Proceedings of the 17th Australian Computer Society (ACS) Australian
Joint Conference on Artificial Intelligence (AI'2004), Cairns, Australia,
pp. 475-487, Dec., 2004.

[12] Gösta Grahne and Jianfei Zhu, “High performance mining of maximal
frequent itemsets”, In Proceedings of SIAM’03 Workshop on High
Performance Data Mining: Pervasive and Data Stream Mining, pp. 135-
143, May 2003.

[13] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation”, Proceedings of SIGMOD’00, Dallas, pp. 1-12, May 2000.

[14] W. Wang, J. Yang, P.S. Yu, “Efficient mining of Weighted Association
Rules (WAR)”, Proceedings of SIGKDD’00, Boston, Massachusetts, pp.
270-274, Aug.2000.

[15] F. Tao, F. Murtagh, M. Farid, “Weighted association rule mining using
weighted support and significance framework”, Proceedings of ACM
SIGKDD’03, Washington DC, USA. pp. 661–666, Aug. 2003.

[16] Cai, C.H., Ada, W.C., Fu, W.C et. al., “Mining association rules with
weighted items”, In Proceedings of IDEAS’98, Cardiff, U, pp. 68–77,
Aug. 1998.

[17] U. Yun, J.J. Leggett, “WLPMiner: weighted frequent pattern mining
with length-decreasing support constraints”, Proceedings of PAKDD‘05,
Hanoi, pp. 555-567, May, 2005.

[18] F. Bonchi, C. Lunnhese, “On closed constrained frequent pattern
mining”, Proceedings of ICDM‘04, Brighton, UK, pp. 35-42, Nov.,
2004.

100 200 300 400 500
0

10

20

30

40

50

60

70

Number of vertices

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e(
se

c.
)

Max-L=7 |T|=10,000 minsup=1.5

FPclose
CWTPMiner

3 4 5 6 7 8 9 10 11 12 1313

0

10

20

30

40

50

60

Number of transactions(K)

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e(
se

c.
)

Max-L=7 minwsup=1.5

FPmax
WTMaxMiner

(a). Number of vertices (b). Number of traversal transaction

Figure 12. Scale-up property test of WTMaxMiner

