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Abstract—Soar is a major exemplar of architectural approach
to machine cognition with numerous applications including
speech recognition, machine perception, robotic, and strategy
planning. We have replaced language used in Soar architecture
with our own developed XML based Unified Knowledge Ma-
nipulation Language (UKML) to demonstrate this language as
a shared platform for procedural knowledge representation in
cognitive architectures, and enhance Soar with some valuable new
features including the ability of manipulating XML formatted
factual knowledge, greatly improved code readability and orga-
nization, and elimination of some ambiguities of Soar traditional
language. This paper is a report on this implementation of
UMKL, enriched with some examples and their results.

Index Terms—Soar, Knowledge Manipulation Language, Cog-
nitive Systems, XML, Machine Inference, Logic Programming
Language

I. INTRODUCTION

Background — Many researchers like us, are trying to pro-
pose an ultimate solution for machine cognition, resulting in
a zoo of different machine cognition architectures like CLAR-
ION [21], ACT-R [14], and Soar [12], [15], to name a few,
each proposed by some university or institution. According to
Minsky [18] a single solution cannot be ultimate since it has its
own weaknesses; but a society of agents, each able to solve a
problem in its own way, will be the most effective solution for
machine cognition. Our aim is to provide a unified language
trough which all of the architectures that are been created so
far and those are not created yet, become able to express their
perceptions in a same way. Such an effort is nothing new as we
will explain later, but our solution is. With such a solution at
hand, agents across the world, each developed using a different
architecture, can form a collaborative social environment to
provided a “society of mind” like that dreamed by Minsky
[17].

We build our proposed language based on three W3C
specifications, namely, XPath [1], XQuery [2], and XSLT
[10], which will be briefly reviewed in the next section.
Symbolic cognitive architectures like those named earlier, can
be equipped with this new language. Among them, Soar has
put a few steps outside the laboratory toward the world of

applications like strategy learning [3] , visual imagery [13],
emotion modeling [16], and speech analysis [20]. Similar to
ACT-R, it was written in LISP first, but its code was rewritten
entirely in C++ and was upgraded to a multi-agent, and service
oriented system. It is also enhanced with XML based message
passing. Therefore we chose Soar to be the first architecture
to be enhanced with UKML as explained later in this paper.

History — The root of the majority of researches tended to
provide a unifying approach to knowledge manipulation can
be traced back to DARPA Knowledge Sharing Effort (KSE)
initiated in 1990 [19]. This effort resulted into a few specifica-
tion including “Knowledge Interchange Format” (KIF) [6], [7]
and “Knowledge Query and Manipulation Language” (KQML)
[4] which later used as a basis for FIPA-ACL, an Agent Com-
munication Language proposed by Swiss based Foundation of
Intelligent Physical Agents (FIPA) established in 1996. FIPA
failed to archive noticeable support from industry and resolved
into IEEE in 2005. But the story went completely different with
World Wide Web Consortium (W3C). W3C adopted eXtensible
Markup Language (XML) and related specifications are now
ultimate knowledge representation solutions for a very large
number of computer applications being developed today. These
specifications not only provide everything that was desired
by KSE and FIPA, namely, knowledge incorporation and
agent inter-operation facilities, but also enjoy simple language
grammar and naturalness in the context of the Internet and
World Wide Web. Therefore, XML based specification provide
a very good basis to develop a unified language for factual
and procedural knowledge representation, agent inference, and
inter-agent communication.

A recent publication can hardly be found about inference
on knowledge represented based on XML technologies. [5],
[8], and [9] are among those, but their utilization of XML is
not as general as in UKML. Most XML oriented publications
concern with knowledge representation rather than inference,
as in Protégé [11], to name a successful one. In the other
hand, most solution in the context of machine inference —
like those named earlier — are not concerned with XML. The
reason seems to be that most cognitive architectures we have
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today are successors of projects initiated between 70s and 80s,
thus maintaining many traditions from old days; while, XML
wave is launched around 2000 and its main aim was to shift the
paradigm of knowledge sharing in enterprise software market,
rather than knowledge representation in intelligent cognitive
systems. Our effort is to enhance both cognitive an enterprise
technologies by joining them together.

Overview — After this introductory section, we will make a
review on our base technologies in section 2. Next, in section 3,
UKML is introduced and explained. In section 4, we show how
we have replaced the traditional Soar language with UKML.
In conclusion, a comparison is made and enhancements are
outlined in section 5, followed by a few lines of acknowledg-
ment.

II. BASE TECHNOLOGIES

An XML document or stream begins with an optional XML
deceleration followed by a root element which may contain
other nested elements. Each element can have a set of attributes
and parent other elements.
XPath — XPath is a query language used to find specified
information in an XML stream. In its simples form, it is like a
UNIX path string. The following XPath statement, addresses
all elements named “leaf” being a child of any “smallBranch”
element that is a child of a “bigBranch” element that is a direct
successor of the root element named “trunk”.

/trunk/bigBranch/smallBranch/leaf

Value constraints and conditions can be tested for each element
within braces after the name of that element. The following
selects all “leaf” elements as explained above, which the value
of the “name” attribute of its parent equals to “sb3”:

/trunk/bigBranch/smallBranch[@name = ’sb3’] /leaf

One can also navigate in other direction rather than from parent
to child, using axes, like:

/trunk/bigBranch/smallBranch[following-sibling::@name
!= null]/leaf

The usage of XPath can be expanded to any semantic web as
we will see in this paper.
XQuery — XQuery is a new developing standard that uses
XPath to collect information from XML data. It is semantically
similar to SQL. An XQuery consists of two main parts that
perform selection and action. The selection part begins with
for keyword and action part is marked with return keyword
as the following example shows:

for $b in doc("papers.xml")//book
let $c := $b//author[@name = "Lucas"]
where count($c) > 2
return $b/title

Our solution to represent logical productions in UKML is
very similar to XQuery in the sense that, first a selection
mechanism is used to extracts every instance of information
that matches our desired criteria and conditions. Meanwhile,
some information is being bounded to some variables. Then,
an action is being performed using value of the variables
assigned in the selection part. In other words, an XQuery
expression is identical to an if—then statement that is executed
per each instance of information that matches its criteria. Thus,

it can easily replace first-order-logic expressions used in most
cognitive architectures.

XSLT — The purpose of XSLT is to generate an arbitrary
document based on the information in some XML documents.
Its job can be compared with XQuery in the sense that
XSLT outputs something per every instance of information
that matches the criteria defined in it. The difference is, XSLT
is not as well structured as XQuery is, but is has a very
considerable advantage. XSLT is a variant of XML itself. That
means, from the view of knowledge engineering, XSLT is not
only a procedural knowledge, but also can be considered and
manipulated as factual knowledge by itself and other XML
processing tools.

In summary, we would like to replace procedural knowledge
representation languages with something like XQuery. As in
XSLT, it is desired that our language be driven from XML,
so that agent become able to manipulate their procedural
knowledge at runtime, which is an ability that is not yet seen
in many cognitive architectures. And, like both XSLT and
XQuery, we use XPath to navigate within the knowledge base.

III. INTRODUCING UKML

Procedural knowledge in most architectures of our interest
is defined as productions in the first-order-logic. Every pro-
duction consists of two parts, namely, LHS and RHS. The
left-hand-side or LHS describes a condition that when holds,
the right-hand-side or RHS must be executed.

Like XSLT, UKML is a combination of XML and XPath. A
proposed data type definition (DTD) for UKML is presented
in the appendix. According to this DTD, the root element of
UKML is a <production-list> element that contains a
list of <production> elements. Just like XQuery, in which
any query consists of selection and action parts, in UKML,
each <production> element contains a <selection>
and an <action> element; plus a preceding <comment>
element for documentation. <selection> acts like for
section of XQuery and serves as LHS part of a production;
while <action> plays the role of return section of XQuery
and works as RHS of the production.

A. Selection

<selection> element can contain a combination of
<select> and <condition> elements. <select> ele-
ment performs two basic operations desired in LHS. First it test
for existence of a path with the desired conditions, then, if such
a path exists, it bounds a variable to the desired location. If the
desired path could not be found, LHS is failed and production
will not be executed. Comparing with XQuery, <select>
element is identical to let clause. The following is an example:

<select path="/operator[name = ’move-disk’
and disk = 1]/from" alias="$peg"/>

Just like XQuery, any identifier that begins with ‘$’ character is
considered as a variable name. As seen in the example, we have
made a small modification in XPath that does not harm. Since
only a single root exists, we do not actually have to know its



name. Therefore, in our version of XPath, we do not mention
the name of the root element, instead, the slash ‘/’ character
itself is considered as the name of the root. We have also added
a small but essential feature to XPath. That is the ability to test
the existence or absence of a link (element). When an identifier
is mentioned in condition without a comparison operator, it is a
test for existence. Absence is tested using hyphen ‘∼’ operator
before an identifier. The following shows an example:

<select path="/[superstate and ˜name]"
alias="$s" />

The above line tests the root element, if it has a superstate but
does not have a name, the condition is satisfied and variable
bounding takes place. When it is desired to test a condition
without making a variable bounding, <condition> element
can be used. This element serves like where clause in XQuery:

<condition negative
test="$s/holds[above = $disk]" />

The presence of negative attribute in the above example
makes the effect of the condition to be inversed.
<select> element can be nested inside each other to

make shorter, yet, more organized codes. Using XML as the
basis of UKML awards us with this new exiting feature that
cannot be seen in XQuery, Soar and other languages in this
way. Here is an example:

<select path="/holds[disk != 1]" alias="$h">
<select path="disk" alias="$m-disk" />
<select path="on" alias="$source-peg" />

</select>

In this case, the path of a child element is originated from
where the path of its parent points to.

B. Action
Like RHS of a production, <action> element handles

calculation, semantic graph modification and function calls.
An <action> element can contain a combination of <set>
and <exec> elements. <set> is provided to add or remove,
or modify a peace of path to or from working memory, like:

<set path="/name" value="towers-of-hanoi" />

The above line causes a new node called “name” to be added
to the selected state if it is not already there, and value “towers-
of-hanoi” be assigned to it. To remove a peace of path from
memory, one can use the remove attribute:

<set path="$out/move-disk" value="$md"
remove />

Notice that, we modify paths rather than nodes in the semantic
web. When no more paths to a node exist, the node should be
removed automatically by the architecture.
<exec> element is provided to execute commands and

functions. The following is a Soar command without any
arguments that halts the execution of the inference loop:

<exec command="halt" />

In order to pass a single argument, one can use arg attribute
provided for <exec> element:

Fig. 1. Four-way UKML interpreter

<exec command="write" arg="Hello World!" />

Alternatively, for one or more arguments, nested <arg>
elements can be used:

<exec command="write">
<arg><exec command="crlf"/></arg>
<arg> Move disk </arg>
<arg>$size</arg>
<arg> to peg </arg>
<arg>$to_name</arg>

</exec>

The value of an <arg> element can be the execution result
of another command. In the above example crlf is a Soar
command that returns carriage-return and linefeed characters
consequently.

Both <set> and <exec> elements, support complex
arithmetical operations and function calls as their value and
arguments:

<set path="/result" value="sin($alpha) *
(12 + $d) / 45.6" />

IV. UKML AND SOAR

As our first experiment, we have “hacked” UKML into the
Soar kernel. Soar is a symbolic cognitive architecture that
uses semantic network for factual knowledge representation,
and Rete network for procedural knowledge representation. Its
learning mechanism, like many others, is chunking.

In our modified version, when kernel is provided with a file
to parse, it automatically distinguishes between Soar traditional
language and UKML. If the code is written using the former,
the parsing stage takes place like before; but, when UKML
source code is provided, our parser becomes operational.
Taking advantage of XML parser and other facilities previously
provided in Soar project, we have developed a four-way bi-
lingual interpreter as shown in figure 1.

The UKML source code is first parsed into the corre-
sponding document object model (DOM) with the help of an
XML parser. At the same time, XPath expressions are being
extracted and parsed into appropriate parse trees which serve
as a portion of DOM. Then this whole memory structure
is translated into traditional Soar memory representation of
production and inserted into the Rete network maintained
inside the kernel memory. Having production inserted into
Rete network structure, Soar kernel can begin its inference



procedure. Interestingly, when we have translated a traditional
Soar source code into UKML and fed it to the kernel, its
execution foot prints in the memory was as the same as the
source traditional code itself.

Our interpreter, not only reads UKML instructions into Soar
memory, but also works in other ways. For example, it can also
investigate the kernel memory and generate the corresponding
UKML DOM representation.

A traditional Soar source code is mentioned here followed
by its translation in UKML:

sp {towers-of-hanoi*propose*move-disk
"Upper disk on the target peg is larger."
(state <s> ˆname towers-of-hanoi)
(<s> ˆupper-disk <m-disk> { <> <m-disk> <o-disk> }

ˆholds <h> { <> <h> <i> }
ˆlast-disk-moved 1)

(<h> ˆdisk { <m-disk> <> 1 }
ˆon <source-peg>)

(<i> ˆdisk { <o-disk> > <m-disk> }
ˆon <target-peg>)

-->
(<s> ˆoperator <o>)
(<o> ˆname move-disk

ˆdisk <m-disk>
ˆfrom <source-peg>
ˆto <target-peg>)}

The above code is so hard to understand that in order to
become assure of an exact translation, we was forced to
investigate the changes in kernel memory after this production
was interpreted by Soar kernel. The big problem here is
ambiguity of comparison operators that are in-fixed sometimes
but sometimes they are pre-fixed. Also it is not obvious that
when and where variable bindings are taking place as they
are badly merged within ambiguous comparison operations.
Thanks to UKML, now we have a truly readable production:

<production name="towers-of-hanoi*propose*move-disk">
<comment>
Upper disk on the target peg is larger.

</comment>
<selection>
<select path="/[name = ’towers-of-hanoi’

and last-disk-moved = 1]"
alias="$s" />

<select path="/upper-disk[value != 1
and value < $o-disk]"

alias="$m-disk" />
<select path="/upper-disk[value != $m-disk]"

alias="$o-disk" />
<select path="/holds" alias="$h" />
<select path="/holds[value != $h]"

alias="$i" />
<select path="$h[disk = $m-disk]/on"

alias="$source-peg" />
<select path="$i[disk = $o-disk]/on"

alias="$target-peg" />
</selection>
<action>
<set path="/operator" value="$o" />
<set path="$o/name" value="move-disk" />
<set path="$o/disk" value="$m-disk" />
<set path="$o/from" value="$source-peg" />
<set path="$o/to" value="$target-peg" />

</action>
</production>

It is obvious that the above code is significantly enhanced in
the sense of readability. Plus, it can be now be parsed by any
agent or program that is equipped with XML parser, and, can
be understood by the other agents and systems that support

UKML.
Any “sate” node in Soar working memory is considered as

a root element and can be addressed by ‘/’ in the beginning of
an XPath expression. We should mention a few points about
this mapping mechanism here. First, Soar architecture forces a
state node to be tested as the very beginning of a production as
happened in the above example; but as it may not be necessary
in other architectures; this action is optional in UKML. If
programmer omits to test a state, we automatically insert one
in the interspersion process. Second, there cannot be more than
one root when we use XPath to navigate in a semantic web, but
in Soar often more than one state node exist. It actually does
not make any problem because in each production, we begin
from a single state. In other words, one initial state hence a
unique root per production exits.

V. CONCLUSIONS

Introducing UKML, we have introduced a new usage for
the ever spreading XML and related technologies. This new
language adds a new and more general application to XPath.
Here, XPath is used to navigate within a semantic network
rather than an XML document. The ability to test presence or
absence of a node is also a new feature added to XPath.

In comparison with XQuery, as UKML is represented in
XML itself, it can also be manipulated and modified as
factual knowledge. This provides us with a reflective facility to
generate and modify UKML codes at runtime. Nested selection
is also a feature of UKML that cannot be seen in XQuery in
this way.

Having replaced the Soar traditional language with UKML,
we have seen a great improvement in code readability and
organization in that architecture. Also we have showed that
UMKL is completely practical and applicable.

We hope UKML becomes developed into a unified platform
for any cognitive architecture that is concerned with Boolean
logic. As the result, the world model of many types of intelli-
gent agents can be shared, and a problem can be solved more
effectively in a society of agents with different capabilities,
rather than by a single one.
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APPENDIX

APPENDIX — UKML DTD
<?xml version="1.0" encoding="UTF-8" ?>

<!ELEMENT production-list ( production | import )* >

<!ELEMENT production ( comment?, selection, action ) >
<!ATTLIST production name CDATA #REQUIRED >

<!ELEMENT comment ( #PCDATA ) >

<!ELEMENT selection ( select | condition )* >

<!ELEMENT select ( select | condition )* >
<!ATTLIST select alias CDATA #REQUIRED >
<!ATTLIST select path CDATA #REQUIRED >

<!ELEMENT condition EMPTY >
<!ATTLIST condition test CDATA #REQUIRED >
<!ATTLIST condition negative CDATA #IMPLIED >

<!ELEMENT action ( set | exec )* >

<!ELEMENT exec ( arg* ) >
<!ATTLIST exec command NMTOKEN #REQUIRED >
<!ATTLIST exec arg CDATA #IMPLIED >
<!ELEMENT arg ( #PCDATA | exec )* >

<!ELEMENT set ( pref* ) >
<!ATTLIST set value CDATA #REQUIRED >
<!ATTLIST set path CDATA #REQUIRED >
<!ATTLIST set preference CDATA #IMPLIED >
<!ATTLIST set remove CDATA #IMPLIED >

<!ELEMENT preference EMPTY >
<!ATTLIST preference type CDATA #REQUIRED >
<!ATTLIST preference referent CDATA #IMPLIED >
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