
3D Object Recognition
Using Multiple Features and Neural Network

XU Sheng, PENG Qi-cong
School of Communication and Information Engineering

University of Electronic Science and Technology of China
Chengdu, China

xs@uestc.edu.cn , qpeng@uestc.edu.cn

Abstract—To improve the performance of view-based three-
dimensional object recognition system, we propose to extract
multiple features from the 2D images of 3D objects, including
texture characteristics, color moments, Hu’s moment invariants,
and affine moment invariants. Texture characteristics and color
moments are used to distinguish objects of similar shape and
different appearance. Hu’s moment invariants have the
invariance properties under rotation, scale and translation, and
affine moment invariants have the invariance properties under
affine transformation for the 3D objects in images. All these
characteristics compose a 1-dimensional feature vector of 23
components for each 2D image of 3D objects, and then they are
presented to a BP neural network for training. The trained BP
network can be used to recognize 3D objects when provided the
feature vectors of unseen views. We assessed our method based
on both the original and noise corrupted COIL-100 3D objects
dataset and achieved 100% correct rate of recognition when
training views were presented every 10 degrees.

Keywords—3D Object Recognition; texture analysis; color
moments; Hu’s moment invariants; Affine moment invariants;
BP Neural Network

I. INTRODUCTION
To give computer humanlike visual abilities so that robots

can sense the three-dimensional environments in their two-
dimensional views, the view-based (or appearance-based)
three-dimensional object recognition has been widely and
actively researched in recent years. In a two-dimensional image,
the appearance of a three-dimensional object depends on its
shape, reflectance properties, pose and the illumination
conditions in the scene. View-based methods recognize objects
by visual similarity, firstly learn or train a system with
appearance of objects in two-dimensional images under
different poses and illumination conditions. Then at recognition
phase, presented a new two-dimensional image, this system is
used to determine whether the target object exists in the new
image.

Among the view-based 3D object recognition approaches,
Poggio and Edelman showed that 3D objects could be
recognized from the raw intensity values in 2D images using a
network of generalized radial basis functions [1]. They argued
and demonstrated that the full 3D structure of an object can be

estimated if enough 2D views of the object were provided.
Murase et al., proposed a parametric eigenspace methods to
recognize 3D object directly from their appearance [2]. They
developed a near real-time recognition system to recognize
complex objects, and got accurate recognition results with an
average pose estimate error of about 1.0 degree. Pontil et al.,
have used Support Vector Machines(SVM) to recognize 3D
objects[3]. Instead of extract object features, they regarded
images as points of a high dimensional space and performed
recognition on images. Roobaert et al.[4] compared the
performance of SVMs with different pixel-based input
representations. Yang and Roth [5, 6] proposed a view-based
algorithm using a network of linear units, the Sparse Network
of Winnows (SNoW) learning architecture, to learn the objects
representations and was specifically tailored for learning in the
presence of a very large number of features. After converted
color images to gray-level images of 32 pixels, they tested
their method using pixel-based and edge-based representation
of the objects respectively in large scale object recognition
experiments. Recently Kostin et al.[7] proposed an object
recognition scheme using graph matching and discussed
matching two graph-based representations becomes a
complicated process.

32×

To the author’s knowledge, although these methods have
demonstrated excellent recognition performance, the
computational cost involved in learning is extremely high,
since these methods used pixel-based or edge-based
representation of original objects images for system learning,
the dimension of the input space was very high. In this paper,
we propose a 3D object recognition method, which only use a
few remarkable features extracted from each 2D image of 3D
objects. Color moments[8] and texture characteristics[9] are
used to distinguish 3D objects of similar shapes and different
colors and texture. When 3D objects are projected to 2D
images, the distortion of 3D objects is an inevitable problem.
Hu’s moment invariants[10] have been proven invariable under
translation, rotation and scale of objects in 2D images, and
affine moment invariants[11] have the properties of invariance
under affine deformation when views of objects vary. Then we
compose these characteristics to a 1-dimensional feature vector
of 23 components for each image of 3D objects, and present the

978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

vectors to a Back Propagation neural network for learning. The
proposed method has been tested with 40 complex 3D objects
selected from the Columbia Object Image Library (COIL-100)
dataset [2], and achieved 100% correct rate of recognition
when training views of 3D objects are presented every 10
degrees.

The paper is organized as follows. In section 2, we review
the related basic theories of texture analysis, color and invariant
moments. Section 3 discusses the implementation of our
recognition system, and the obtained experimental results are
illustrated. Finally, the conclusions and future work from our
researches are summarized in Section 4.

II. THEORETICAL OVERVIEW
We will provide in this section a brief review about the

related theories used in our method, including Gray Level Co-
occurrence Matrix (GLCM) based texture analysis, color
moments, Hu’s moment invariants, affine moment invariants,
and neural network recognition.

A. GLCM based Texture analysis
Texture is an important feature of objects in an image. Tow

images with different content can usually be distinguished by
their texture features even when the images share similar colors.
Texture analysis is used in a variety of applications, including
remote sensing, automated inspection, and medical image
processing. When traditional threshold technical can not be
used effectively, texture analysis can be helpful when objects in
an image are more characterized by their texture than by
intensity.

One of the most known texture analysis methods, Gray
Level Co-occurrence Matrix (GLCM)[9], estimates image
properties related second-order statistics. Gray level co-
occurrence matrix is constructed with each entry (,
corresponding to the number of occurrence of the pair of gray
level i and

(,)dP i j)i j

j which are a distance d apart in original images.
Haralick [9] proposed 14 statistical features extracted from
GLCM to estimate the similarity of the gray level co-
occurrence matrices with different distance d and different
occurrence of the pair of gray level i and j . To reduce the
computational complexity, we selected only 4 of these texture
characteristics as features of 3D object in a 2D image as
following:

1) Contrast: measure the local variations in the gray level
co-occurrence matrix, i.e., a measure of the intensity contrast
between a pixel and its neighbor over the whole image.

 2)d
 (1.1)

,
() (,

i j
CON i j P i j= −∑

2) Correlation: measure the joint probability occurrence of
the specified pixel pairs, i.e., a measure of how correlated a
pixel to its neighbor over the whole image.

 ,

()() (,x y d
i j

x y

i u j u P i j
COR

σ σ

− −
=
∑)

 (1.2)

Where , , ,x y x yu u σ σ are the average and standard variance
of ,x yP P separately. xP is the sum of each row of , and

is the sum of each column of .
(,)dP i j

yP (,)dP i j

3) Energy: also know as uniformity or the Angular Second
Moment, provides the sum of squared elements in the GLCM.

 2

,

(,)d
i j

ASM P i j=∑ (1.3)

4) Homogeneity: measure the closeness of the distribution
of the elements in the GLCM to the GLCM diagonal.

,

(,)
1

d

i j

P i jHOM
i j

=
+ −∑ (1.4)

B. Color moments
Compared with geometric characteristics, the color of

objects is quite robust, and insensitive to size and orientation of
objects. Swain et al.[12] proposed histogram-based method for
object representation. Their work is one of the earliest works
which used color as object features for object recognition and
image retrieval. They stored coarsely quantized color
histograms of images. The histogram-based approach is simple,
however changes in lighting and changes due to occlusion may
cause relatively large change in their similar measures. Instead
of storing the complete color distribution, Stricker et al.[8]
proposed to store only the major features of images, i.e., to
store the first three moments of each color channel of an image.
For an image of RGB format or HSI format, only 9 numbers of
moments are required.

A probability distribution is uniquely characterized by its
moments according to probability theory. Color distribution of
an image also can be regarded as a probability distribution, so
color distribution also can be determined by its moments. The
first moment, the second and the third central moment of each
color channel can be used. The first moment is the average
color of an image. And the second central moment of an image
is the variance; the third central moment of an image is the
skewness of each color channel. To make the value of the
moments somewhat comparable, the standard deviation and the
third root of the skewness of each color channel of an image
are used, in this way all the values have the same unit.

To extract color features of objects, an appropriate color
space should be selected first. The RGB color space is the most
commonly used color model in computer image processing,
while we prefer to use HSI color space (stands for Hue,
Saturation, and Intensity) in our method. HSI color space is
better suite for color moments calculation, because the hue
component and saturation component are close to the manner
of color sense of human being, and intensity component is
independent with color information of images.

If ijp is the pixel of a digital image (,)f x y of M N×
dimensional, A is the area of the image, then the three
moments for each color channel can be defined as follows:

()

()

1/ 2
2

1/ 3
3

1 1, ,

1

ij ij
i j i j

ij
i j

p p
A A

s p
A

μ σ μ

μ

⎡ ⎤
= = −⎢

⎣

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∑∑ ∑∑

∑∑

⎥
⎦ (1.5)

Since the color distribution information mainly concentrates
at lower moments, we choose only the first moment and the
second central moment for 3D object recognition to reduce
computational cost.

C. Hu’s moment invariants[10]
Given a density distribution function (,)f x y , its two-

dimensional order moments ()p q th+ pqm are defined in
terms of Riemann integrals as:

(,) , , 0,1, 2...p q
pqm x y f x y dxdy p q= ∫ ∫ = (1.6)

If it is assumed that (,)f x y

)

 is piecewise continuous
therefore bounded function, and that it can have nonzero values
only in the finite part of the (,x y ; then its moments of all

orders exist and the moments sequence { }pqm is uniquely
determined by (,)f x y ; and conversely (,)f x y is uniquely
determined by { }pqm 。

For digital image (,)f x y of discrete M N× dimensional,
the order geometry moments and central moments
are defined as:

()p q th+

(,) , , 0,1,2...

(,)() () , , 0,1,2..

p q
pq

x y
p q

pq
x y

m f x y x y p q

f x y x x y y p qμ

= =∑∑

= − − =∑∑
(1.7)

Where 10 00 01 00/ , /x m m y m m= = , is the center of gravity of
an image. For an intensity image, is its quality; for a binary
image, is its area. Both geometry moments and central
moments can represent shapes of images, and central moments
are invariants under translation.

00m
00m

Using the central moment of zero order to normalize all the
central moments of other order, normalized central moments
can be obtained as follow:

00

, (2) / 2, 2,3,4...pq
pq r r p q p q

μ
η

μ
= = + + + = (1.8)

Using the linear combination of the second order and the
third order normalized central moments, Hu M. K. proved 7
moment invariants under translation, rotation and scale of
images. The 7 moments are called Hu’s moment invariants and
widely used for the discrimination of object shape.

2 2
1 20 02 2 20 02 11

2 2
3 30 12 21 03

2 2
4 30 12 21 03

2 2
5 30 12 30 12 30 12 21 03

2 2
03 21 03 21 03 21 12 30

6 20 02 30

, () 4 ,

(3) (3) ,

() ()

(3)() () 3()

(3)() () 3()

() (

M M

M

M

M

M

η η η η η

η η η η

η η η η

η η η η η η η η

η η η η η η η η

η η η

= + = − +

= − + −

= + + +

⎡ ⎤= − + + − +⎣ ⎦
⎡ ⎤+ − + + − +⎣ ⎦

= − + 2 2
12 21 03

11 30 12 21 03

2 2
7 21 03 30 12 30 12 21 03

2 2
12 30 03 21 03 21 12 30

) ()

4 ()()

(3)() () 3()

(3)() () 3()

M

η η η

η η η η η

η η η η η η η η

η η η η η η η η

⎡ ⎤− +⎣ ⎦
+ + +

⎡ ⎤= − + + − +⎣ ⎦
⎡ ⎤− − + + − +⎣ ⎦

(1.9)

D. Affine moment invariants
In realistic application, if we only extract Hu’s moment

invariants of 3D objects from 2D images, these objects features
can not provide enough information to identify separate 3D
objects accurately due to the affection of distance, weather,
camera and visual angles etc. Jan Flusser et al.[11], proposed
the affine moment invariants for characters identification and
scene matching.

Given an arbitrary curve [,]x y in two-dimensional space,
after affine transformation, it will be the curve ' '[,]x y ,
accordingly the affine transformation is defined as follow:

[]
'

11 12 1
'

21 22 2

, Txx a a b
A x y B

yy a a b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (1.10)

The general formulation of affine moment invariants is
00
rμ divided by polynomial of pqμ , where r is certain

appropriate exponential. Jan Flusser et al.[11] proved following
affine moment invariants of first three order:

2 4
1 20 02 11 00

2 2 3
2 30 03 30 21 12 03 30 12

3 2 2 10
21 03 21 12 00

2
3 20 21 03 12 11 30 03 21 12

2 7
02 30 12 21 00

()

(6 4

4 3) /

(() ()

()) /

I

I

I

μ μ μ μ

μ μ μ μ μ μ μ μ

μ μ μ μ μ

μ μ μ μ μ μ μ μ μ

μ μ μ μ μ

⎧ = −
⎪

= − +⎪
⎪ + −⎨
⎪ = − − −⎪
⎪ + −⎩

(1.11)

E. Neural network recognition
Because the 3D object recognition problem is actually a

classification problem according to the pattern recognition
theory, neural network methods can be used in 3D object
recognition intuitively. Compared with the traditional methods,
using neural network methods to classify input feature vectors
is proven more robust under noise condition, and can be
parallel computed in high speed. We suggest in this paper to
use the well-known feedforward BP neural network to classify
the feature vectors of 3D objects to recognize each object.

Irie et al.[13] have proven three layer feedforward network
are capable of approximating arbitrary functions, given that
they have sufficient numbers of neurons in their hidden layers,
so we choose BP neural network of three layers in our
recognition system. To determine the initial threshold and
weight of hidden-layer and output-layer, we suggest to use

Nguyen-Widrow initial algorithm[14], which makes the active
area of neurons of all layers be distributed equally in the input
space approximately. Compared with the traditional initial
algorithms which randomly select values in , Nguyen-
Widrow initial algorithm wastes less neuron and reduces
network training time since neurons exist in each area of input
space approximately.

(1, 1)− +

Generally, gradient descent algorithm is chosen for network
training. This algorithm decreases fast in the first few steps,
however the mean square error function decreases slowly when
moving to the optimum value since the gradient tends to zero.
Because Newton algorithm can generate a perfect searching
direction near the optimum value, we suggest choosing
Levenberg-Marquardt algorithm which consist gradient descent
algorithm and Newton algorithm to improve network training.
It does not need to calculate the Hessian matrix in Levenberg-
Marquardt algorithm, so the computational cost is reduced, and
the training time is also reduced 1~2 order of magnitude
compared with the general gradient descent algorithm[15].

III. EXPERIMENTAL RESULTS
In this section, we extracted the features of each 3D object

from its 2D images according to above theories and then use
BP neural network for classification. We assessed our method
based on both original and noise corrupted COIL-100 dataset.

A. COIL-100 dataset
The Columbia Object Image Library (COIL-100) is a

public dataset and widely used to evaluate the performance of
3D object recognition algorithms. This dataset contains 7,200
true color images with 12 resolution of 100 objects (72
images per object). The objects have a wide variety of
geometric and reflectance characteristics. Each object was
placed on a motorized turntable against a black background.
The turntable was rotated through 360 degrees to vary object
pose in condition of a fixed color camera. Images of objects
were taken at pose intervals of 5 degrees, i.e., 72 poses per
object. Each of the 7200 images in COIL-100 was size
normalized, and available online via
http://www1.cs.columbia.edu/CAVE/.

8 128×

B. Experiments based Original images
In this paper, given the use of COIL-100 3D objects dataset,

it is assumed that the illumination conditions remains constant,
thus we only consider object pose as variable. We selected first
forty 3D objects in COIL-100 dataset to test the recognition
rate of our method, totaled 2,880 images. The images of each
object with view angel at 30o are shown in Fig. 1. In the first
experiment, we chose 36 views per object (10o intervals) to
consist the training set, amounted to 1440 training images (36
images per object). Our experimental steps are as follows:

1) To fully use the spatial information of images, we
specified distance of 4, 8, and 12 pixels each with 4 directions
of 0o, 45 o, 90o and 135o (horizontal, vertical, and two diagonal)
to calculate gray level co-occurrence matrices, then the values
of contrast, correlation, energy and homogeneity were
averaged from the gray level co-occurrence matrices with
different distances and directions according Eq.(1.1)-(1.4), and
were saved as texture feature vector of 12 elements.

2) To calculate the color moments, we need to convert
the original COIL-100 training images of RGB format into
HSI format. Then we could calculate color moments according
to Eq.(1.5). We only used the first and second order moments
of each H/S/I color channel, totaled 6 color moments for each
training image.

3) The calculation of Hu’s moment invariants and affine
moment invariants are based on binary images, so the training
images need binary conversion before calculation according to
the appropriate threshold. We chose the approach of maximum
square variance threshold to convert the original true color
training images to binary images. The binary images of the
selected objects with view angel at 30o are shown in Fig. 2.

4) According to Eq. (1.7) we can get the central
moments of the training images, and then Hu’s moment
invariants can be calculated from Eq.(1.8) and(1.9), affine
moment invariants can be calculated from Eq.(1.11). Though
Hu’s moment invariants contains 7 components, we only used
first 4 lower order invariants to reduce computational cost, and
from our experimental results, this simplified selection did not
affect the recognition performance at all. Also, we select the
first order affine moment invariants.

5) At this step we could combine the 12 texture features,
6 color moments, 4 Hu’s moment invariants and 1 affine
moment invariant, totaled 23 components to a one-

Figure 1. First 40 objects in COIL-100 dataset with
view angle=30o

Figure 2. The binary images of the first 40 objects in
COIL-100 dataset with view angle=30o

dimensional feature vector for each 2D image of 3D objects.
These one-dimensional feature vectors of 23 components
would be the input of the BP neural network, so the number of
neurons of input layer of this BP network was set to 23. We
required this BP network to recognize 40 objects, so the
number of neurons of output layer was set to 40.

6) The transfer functions of hidden layers were set to

1
1()

1 xTF x
e−=

+
 for Levenberg-Marquardt training algorithm

working better and since the outputs of BP network were
judgments of 0 or 1, the transfer functions of output layers

were set to 2 2

2() 1
1 xTF x

e−= −
+

.

7) After the values of weights and thresholds of the BP
network were initialized using Nguyen-Widrow algorithm, the
training for the BP network began. During training,
Levenberg-Marquardt was used to update the values of weight
and threshold. The network iterated 300 epochs in each
training.

8) After training, at this step we could present all the
2880 images of the 40 objects to the trained BP network to test
its recognition performance.

In the first experiment, half of the 2880 images of the 40
3D objects were utilized as training set, the correct rate of
recognition of this trained BP network achieved 100%, shown
in the first column of Table 1.

In order to study our method in more realistic situation, we
compared the performance of our method when fewer numbers
of views of the 3D objects were presented during training. We
reduced images in the training set from 36 views per object
(10o intervals) to 2 views per object (180o intervals). The case
of 4 training views of one object is demonstrated in Fig. 3. We
repeated our experiments from step1 to step8 for 4 times, each
time with fewer training views, and reported the recognition
results in other columns of Table 1.

Under these more challenging experimental setups,
although it is not surprising to see from Table 1 that the correct
rate of recognition decreased as the number of available views
decreased during training, it is worth noticing that when the
number of training views per object were reduced to 18 (20o
interval), the BP network achieved 99.86% correct rate of
recognition, i.e., only 4 poses were not recognized in the total
2880 testing images. At the most hardness setup, we reduced
the number of training view to 2, only 0o and 180o view angles
were used, the correct rate of recognition of the BP network
also achieved 72.92%.

C. Experiments based noise corrupted images
In order to assess the robustness of our method under noise

environment, we added Gaussian white noise of zero-mean and
variance 0.05 and 0.1 respectively, to the original COIL-100
object images, showing in Fig. 4 and Fig. 5. Under each noise
variance condition, also we changed the number of views in the
training set from 36 views per object (10o intervals) to 2 views
per object (180o intervals). Again we repeated our experiments

from step1 to step8 for 5 times, each time with fewer training
views.

From the obtained experimental results in Table 2, when
noise corrupted training views were presented at 10o intervals
in the case images are corrupted by Gaussian white noise of
zero-mean and variance 0.05, our method also achieved 100%
correct rate of recognition. In the case images were more
seriously corrupted by Gaussian white noise of zero-mean and
variance 0.1, the BP network achieved 99.97% correct rate of
recognition, i.e., only 1 poses was not recognized in the total
2880 testing images. Other results of different number of
training views were similar with the results reported in Table 1.

TABLE I. CORRECT RATE OF RECOGNITION
WITH VARYING VIEW ANGLES

Number of
views/object 36 18 9 4 2

Original
images 100% 99.86% 99.69% 86.32% 72.92%

Figure 3. The views that making up the training set for
an object, in the case of 4 training views per object

Figure 4. First 40 noise corrupted objects with view angle=30o,
Gaussian white noise of mean=0 and variance=0.05

Figure 5. First 40 noise corrupted objects with view angle=30o,
Gaussian white noise of mean=0 and variance=0.1

ACKNOWLEDGMENT

It can easily be inferred that our method is very robustness even
in the presence of large number of image noise.

The authors thank the creators of COIL-100 3D object
dataset for giving the permission to use this dataset in research
works.

TABLE II. CORRECT RATE OF RECOGNITION WITH
VARYING VIEW ANGLES FOR CORRUPTED IMAGES WITH

GAUSSIAN WHITE NOISE OF ZERO-MEAN

Number of
views/object 36 18 9 4 2

variance=0.05 100% 99.76% 99.44%
REFERENCES

91.04% 75.9%
variance=0.1 99.97% 99.27% 98.12%

[1] T. Poggio and S. Edelman, “A network that learns to recognize three-
dimensional objects,” Nature, vol. 343, no. 6255, 1990, pp. 263-266. 88.09% 75.69%

[2] H. Murase and S.K. Nayar, “Visual learning and recognition of 3-d objects
from appearance,” International Journal of Computer Vision, vol. 14, no. 1,
1995, pp. 5-24.

[3] M. Pontil and A. Verri, “Support vector machines for 3D object
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 6, 1998, pp. 637-646.

IV. CONCLUSIONS
In this paper, we proposed to extract multiple features of

3D objects from its 2D images to consist 1-dimensional feature
vectors, each containing 12 texture characteristics, 6 color
moments, 4 Hu’s moment invariants and 1 affine moment
invariants. Then these feature vectors are used for BP neural
network training and recognition. The experiments which are
based on both original and noise corrupted COIL-100 dataset
were performed with different number of view angles as
training set. The 100% correct rate of recognition could be
achieved when the training set were presented with view angle
of every 10o. And when the number of training views were
reduced, the correct rate of recognition was also good. The
theoretical analysis and the remarkable good experimental
results indicate our method can be used for view-based 3D
object recognition.

Based on our work, one can further research a) looking for
other feature extracting methods to extract local characteristic
of 3D objects to correct the disadvantage of moment methods
which only can detect global characteristic of objects; b) to
recognize more 3D objects, beside above mentioned moment
invariants, color and texture as object features, more features
having other physical or mathematical properties, can be added
into the feature vectors for BP neural network training.

[4] D. Roobaert and M.M. Van Hulle, “View-based 3D object recognition with
support vector machines,” IEEE International Workshop on Neural
Networks for Signal Processing, 1999, pp. 77-84.

[5] M.H. Yang, D. Roth and N. Ahuja, “Learning to Recognize 3D Objects
with SNoW,” Proceedings of the Sixth European Conference on Computer
Vision, 2000, pp. 439-454.

[6] D. Roth, M.H. Yang and N. Ahuja, “Learning to Recognize Three-
Dimensional Objects,” Neural Computation, vol. 14, no. 5, 2002, pp. 1071-
1103.

[7] A. Kostin, J. Kittler and W. Christmas, “Object recognition by symmetrised
graph matching using relaxation labelling with an inhibitory mechanism,”
Pattern Recognition Letters, vol. 26, no. 3, 2005, pp. 381-393.

[8] M.A. Stricker and M. Orengo, “Similarity of Color Images,” Storage and
Retrieval for Image and Video Databases (SPIE), 1995, pp. 381-392.

[9] R.M. Haralick, K. Shanmugam and I.h. Dinstein, “Textural features for
image classification,” IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-3, no. 6, 1973, pp. 610-621.

[10] H. Ming-Kuei, “Visual pattern recognition by moment invariants,” IEEE
Transactions on Information Theory, vol. 8, no. 2, 1962, pp. 179-187.

[11] J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,”
Pattern Recognition, vol. 26, no. 1, 1993, pp. 167-174.

[12] M.J. Swain and D.H. Ballard, “Color indexing,” International Journal of
Computer Vision, vol. 7, no. 1, 1991, pp. 11-32.

[13] B. Irie and S. Miyake, “Capabilities of three-layered perceptrons,”
Proceedings of the IEEE International Conference on Neural Networks,
1988, pp. 641-648.

[14] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,”
International Joint Conference on Neural Networks, 1990, pp. 21-26.

[15] M.T. Hagan and M.B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no.
6, 1994, pp. 989-993.

