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Abstract—To improve the performance of view-based three-
dimensional object recognition system, we propose to extract 
multiple features from the 2D images of 3D objects, including 
texture characteristics, color moments, Hu’s moment invariants, 
and affine moment invariants. Texture characteristics and color 
moments are used to distinguish objects of similar shape and 
different appearance. Hu’s moment invariants have the 
invariance properties under rotation, scale and translation, and 
affine moment invariants have the invariance properties under 
affine transformation for the 3D objects in images. All these 
characteristics compose a 1-dimensional feature vector of 23 
components for each 2D image of 3D objects, and then they are 
presented to a BP neural network for training. The trained BP 
network can be used to recognize 3D objects when provided the 
feature vectors of unseen views. We assessed our method based 
on both the original and noise corrupted COIL-100 3D objects 
dataset and achieved 100% correct rate of recognition when 
training views were presented every 10 degrees. 

Keywords—3D Object Recognition; texture analysis; color 
moments; Hu’s moment invariants; Affine moment invariants; 
BP Neural Network 

I. INTRODUCTION 
To give computer humanlike visual abilities so that robots 

can sense the three-dimensional environments in their two-
dimensional views, the view-based (or appearance-based) 
three-dimensional object recognition has been widely and 
actively researched in recent years. In a two-dimensional image, 
the appearance of a three-dimensional object depends on its 
shape, reflectance properties, pose and the illumination 
conditions in the scene. View-based methods recognize objects 
by visual similarity, firstly learn or train a system with 
appearance of objects in two-dimensional images under 
different poses and illumination conditions. Then at recognition 
phase, presented a new two-dimensional image, this system is 
used to determine whether the target object exists in the new 
image. 

Among the view-based 3D object recognition approaches, 
Poggio and Edelman showed that 3D objects could be 
recognized from the raw intensity values in 2D images using a 
network of generalized radial basis functions [1]. They argued 
and demonstrated that the full 3D structure of an object can be 

estimated if enough 2D views of the object were provided. 
Murase et al., proposed a parametric eigenspace methods to 
recognize 3D object directly from their appearance [2]. They 
developed a near real-time recognition system to recognize 
complex objects, and got accurate recognition results with an 
average pose estimate error of about 1.0 degree. Pontil et al., 
have used Support Vector Machines(SVM) to recognize 3D 
objects[3]. Instead of extract object features, they regarded 
images as points of a high dimensional space and performed 
recognition on images. Roobaert et al.[4] compared the 
performance of SVMs with different pixel-based input 
representations. Yang and Roth [5, 6] proposed a view-based 
algorithm using a network of linear units, the Sparse Network 
of Winnows (SNoW) learning architecture, to learn the objects 
representations and was specifically tailored for learning in the 
presence of a very large number of features. After converted 
color images to gray-level images of 32 pixels, they tested 
their method using pixel-based and edge-based representation 
of the objects respectively in large scale object recognition 
experiments. Recently Kostin et al.[7] proposed an object 
recognition scheme using graph matching and discussed 
matching two graph-based representations becomes a 
complicated process. 
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To the author’s knowledge, although these methods have 
demonstrated excellent recognition performance, the 
computational cost involved in learning is extremely high, 
since these methods used pixel-based or edge-based 
representation of original objects images for system learning, 
the dimension of the input space was very high. In this paper, 
we propose a 3D object recognition method, which only use a 
few remarkable features extracted from each 2D image of 3D 
objects. Color moments[8] and texture characteristics[9] are 
used to distinguish 3D objects of similar shapes and different 
colors and texture. When 3D objects are projected to 2D 
images, the distortion of 3D objects is an inevitable problem. 
Hu’s moment invariants[10] have been proven invariable under 
translation, rotation and scale of objects in 2D images, and 
affine moment invariants[11] have the properties of invariance 
under affine deformation when views of objects vary. Then we 
compose these characteristics to a 1-dimensional feature vector 
of 23 components for each image of 3D objects, and present the 
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vectors to a Back Propagation neural network for learning. The 
proposed method has been tested with 40 complex 3D objects 
selected from the Columbia Object Image Library (COIL-100) 
dataset [2], and achieved 100% correct rate of recognition 
when training views of 3D objects are presented every 10 
degrees. 

The paper is organized as follows. In section 2, we review 
the related basic theories of texture analysis, color and invariant 
moments. Section 3 discusses the implementation of our 
recognition system, and the obtained experimental results are 
illustrated. Finally, the conclusions and future work from our 
researches are summarized in Section 4. 

II. THEORETICAL OVERVIEW 
We will provide in this section a brief review about the 

related theories used in our method, including Gray Level Co-
occurrence Matrix (GLCM) based texture analysis, color 
moments, Hu’s moment invariants, affine moment invariants, 
and neural network recognition. 

A. GLCM based Texture analysis 
Texture is an important feature of objects in an image. Tow 

images with different content can usually be distinguished by 
their texture features even when the images share similar colors. 
Texture analysis is used in a variety of applications, including 
remote sensing, automated inspection, and medical image 
processing. When traditional threshold technical can not be 
used effectively, texture analysis can be helpful when objects in 
an image are more characterized by their texture than by 
intensity.  

One of the most known texture analysis methods, Gray 
Level Co-occurrence Matrix (GLCM)[9], estimates image 
properties related second-order statistics. Gray level co-
occurrence matrix  is constructed with each entry ( ,  
corresponding to the number of occurrence of the pair of gray 
level i and

( , )dP i j )i j

j which are a distance d apart in original images. 
Haralick [9] proposed 14 statistical features extracted from 
GLCM to estimate the similarity of the gray level co-
occurrence matrices with different distance d and different 
occurrence of the pair of gray level i and j . To reduce the 
computational complexity, we selected only 4 of these texture 
characteristics as features of 3D object in a 2D image as 
following: 

1) Contrast: measure the local variations in the gray level 
co-occurrence matrix, i.e., a measure of the intensity contrast 
between a pixel and its neighbor over the whole image. 

 2 )d
 (1.1) 
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2) Correlation: measure the joint probability occurrence of 
the specified pixel pairs, i.e., a measure of how correlated a 
pixel to its neighbor over the whole image. 
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Where , , ,x y x yu u σ σ  are the average and standard variance 
of ,x yP P separately. xP is the sum of each row of , and 

is the sum of each column of . 
( , )dP i j

yP ( , )dP i j

3) Energy: also know as uniformity or the Angular Second 
Moment, provides the sum of squared elements in the GLCM. 
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4) Homogeneity: measure the closeness of the distribution 
of the elements in the GLCM to the GLCM diagonal. 
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B. Color moments 
Compared with geometric characteristics, the color of 

objects is quite robust, and insensitive to size and orientation of 
objects. Swain et al.[12] proposed histogram-based method for 
object representation. Their work is one of the earliest works 
which used color as object features for object recognition and 
image retrieval. They stored coarsely quantized color 
histograms of images. The histogram-based approach is simple, 
however changes in lighting and changes due to occlusion may 
cause relatively large change in their similar measures. Instead 
of storing the complete color distribution, Stricker et al.[8] 
proposed to store only the major features of images, i.e., to 
store the first three moments of each color channel of an image. 
For an image of RGB format or HSI format, only 9 numbers of 
moments are required.  

A probability distribution is uniquely characterized by its 
moments according to probability theory. Color distribution of 
an image also can be regarded as a probability distribution, so 
color distribution also can be determined by its moments. The 
first moment, the second and the third central moment of each 
color channel can be used. The first moment is the average 
color of an image. And the second central moment of an image 
is the variance; the third central moment of an image is the 
skewness of each color channel. To make the value of the 
moments somewhat comparable, the standard deviation and the 
third root of the skewness of each color channel of an image 
are used, in this way all the values have the same unit. 

To extract color features of objects, an appropriate color 
space should be selected first. The RGB color space is the most 
commonly used color model in computer image processing, 
while we prefer to use HSI color space (stands for Hue, 
Saturation, and Intensity) in our method. HSI color space is 
better suite for color moments calculation, because the hue 
component and saturation component are close to the manner 
of color sense of human being, and intensity component is 
independent with color information of images. 

If ijp is the pixel of a digital image ( , )f x y of  M N×  
dimensional,  A is the area of the image, then the three 
moments for each color channel can be defined as follows: 
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Since the color distribution information mainly concentrates 
at lower moments, we choose only the first moment and the 
second central moment for 3D object recognition to reduce 
computational cost.  

C. Hu’s moment invariants[10] 
Given a density distribution function ( , )f x y , its two-

dimensional  order moments ( )p q th+ pqm are defined in 
terms of Riemann integrals as: 

( , ) ,     , 0,1, 2...p q
pqm x y f x y dxdy p q= ∫ ∫ =  (1.6) 

If it is assumed that ( , )f x y

)

 is piecewise continuous 
therefore bounded function, and that it can have nonzero values 
only in the finite part of the ( ,x y ; then its moments of all 

orders exist and the moments sequence { }pqm is uniquely 
determined by ( , )f x y ; and conversely ( , )f x y is uniquely 
determined by { }pqm 。 

For digital image ( , )f x y  of discrete M N×  dimensional, 
the order geometry moments and central moments 
are defined as: 

( )p q th+
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Where 10 00 01 00/ , /x m m y m m= = , is the center of gravity of 
an image. For an intensity image, is its quality; for a binary 
image, is its area. Both geometry moments and central 
moments can represent shapes of images, and central moments 
are invariants under translation.  

00m
00m

Using the central moment of zero order to normalize all the 
central moments of other order, normalized central moments 
can be obtained as follow:  
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Using the linear combination of the second order and the 
third order normalized central moments, Hu M. K. proved 7 
moment invariants under translation, rotation and scale of 
images. The 7 moments are called Hu’s moment invariants and 
widely used for the discrimination of object shape. 
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D. Affine moment invariants 
In realistic application, if we only extract Hu’s moment 

invariants of 3D objects from 2D images, these objects features 
can not provide enough information to identify separate 3D 
objects accurately due to the affection of distance, weather, 
camera and visual angles etc. Jan Flusser et al.[11], proposed 
the affine moment invariants for characters identification and 
scene matching. 

Given an arbitrary curve [ , ]x y  in two-dimensional space, 
after affine transformation, it will be the curve ' '[ , ]x y , 
accordingly the affine transformation is defined as follow: 
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The general formulation of affine moment invariants is 
00
rμ divided by polynomial of pqμ , where r is certain 

appropriate exponential. Jan Flusser et al.[11] proved following 
affine moment invariants of first three order: 
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E. Neural network recognition 
Because the 3D object recognition problem is actually a 

classification problem according to the pattern recognition 
theory, neural network methods can be used in 3D object 
recognition intuitively. Compared with the traditional methods, 
using neural network methods to classify input feature vectors 
is proven more robust under noise condition, and can be 
parallel computed in high speed. We suggest in this paper to 
use the well-known feedforward BP neural network to classify 
the feature vectors of 3D objects to recognize each object.  

Irie et al.[13] have proven three layer feedforward network 
are capable of approximating arbitrary functions, given that 
they have sufficient numbers of neurons in their hidden layers, 
so we choose BP neural network of three layers in our 
recognition system. To determine the initial threshold and 
weight of hidden-layer and output-layer, we suggest to use 

         



Nguyen-Widrow initial algorithm[14], which makes the active 
area of neurons of all layers be distributed equally in the input 
space approximately.  Compared with the traditional initial 
algorithms which randomly select values in , Nguyen-
Widrow initial algorithm wastes less neuron and reduces 
network training time since neurons exist in each area of input 
space approximately. 

( 1, 1)− +

Generally, gradient descent algorithm is chosen for network 
training. This algorithm decreases fast in the first few steps, 
however the mean square error function decreases slowly when 
moving to the optimum value since the gradient tends to zero. 
Because Newton algorithm can generate a perfect searching 
direction near the optimum value, we suggest choosing 
Levenberg-Marquardt algorithm which consist gradient descent 
algorithm and Newton algorithm to improve network training. 
It does not need to calculate the Hessian matrix  in Levenberg-
Marquardt algorithm, so the computational cost is reduced, and 
the training time is also reduced 1~2 order of magnitude 
compared with the general gradient descent algorithm[15]. 

III. EXPERIMENTAL RESULTS  
In this section, we extracted the features of each 3D object 

from its 2D images according to above theories and then use 
BP neural network for classification. We assessed our method 
based on both original and noise corrupted COIL-100 dataset. 

A.  COIL-100 dataset 
The Columbia Object Image Library (COIL-100) is a 

public dataset and widely used to evaluate the performance of 
3D object recognition algorithms. This dataset contains 7,200 
true color images with 12  resolution of 100 objects (72 
images per object). The objects have a wide variety of 
geometric and reflectance characteristics. Each object was 
placed on a motorized turntable against a black background. 
The turntable was rotated through 360 degrees to vary object 
pose in condition of a fixed color camera. Images of objects 
were taken at pose intervals of 5 degrees, i.e., 72 poses per 
object. Each of the 7200 images in COIL-100 was size 
normalized, and available online via 
http://www1.cs.columbia.edu/CAVE/. 
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B.  Experiments based Original images 
In this paper, given the use of COIL-100 3D objects dataset, 

it is assumed that the illumination conditions remains constant, 
thus we only consider object pose as variable. We selected first 
forty 3D objects in COIL-100 dataset to test the recognition 
rate of our method, totaled 2,880 images. The images of each 
object with view angel at 30o are shown in Fig. 1. In the first 
experiment, we chose 36 views per object (10o intervals) to 
consist the training set, amounted to 1440 training images (36 
images per object). Our experimental steps are as follows: 

1) To fully use the spatial information of images, we 
specified distance of 4, 8, and 12 pixels each with 4 directions 
of 0o, 45 o, 90o and 135o (horizontal, vertical, and two diagonal) 
to calculate gray level co-occurrence matrices, then the values 
of contrast, correlation, energy and homogeneity were 
averaged from the gray level co-occurrence matrices with 
different distances and directions according Eq.(1.1)-(1.4), and 
were saved as texture feature vector of 12 elements. 

2) To calculate the color moments, we need to convert 
the original COIL-100 training images of RGB format into 
HSI format. Then we could calculate color moments according 
to Eq.(1.5). We only used the first and second order moments 
of each H/S/I color channel, totaled 6 color moments for each 
training image.  

3) The calculation of Hu’s moment invariants and affine 
moment invariants are based on binary images, so the training 
images need binary conversion before calculation according to 
the appropriate threshold. We chose the approach of maximum 
square variance threshold to convert the original true color 
training images to binary images. The binary images of the 
selected objects with view angel at 30o are shown in Fig. 2. 

4) According to Eq. (1.7) we can get the central 
moments of the training images, and then Hu’s moment 
invariants can be calculated from Eq.(1.8) and(1.9), affine 
moment invariants  can be calculated from Eq.(1.11). Though 
Hu’s moment invariants contains 7 components, we only used 
first 4 lower order invariants to reduce computational cost, and 
from our experimental results, this simplified selection did not 
affect the recognition performance at all. Also, we select the 
first order affine moment invariants. 

5) At this step we could combine the 12 texture features, 
6 color moments, 4 Hu’s moment invariants and 1 affine 
moment invariant, totaled 23 components to a one-

Figure 1. First 40 objects in COIL-100 dataset with 
view angle=30o  

Figure 2. The binary images of the first 40 objects in 
COIL-100 dataset with view angle=30o

         



dimensional feature vector for each 2D image of 3D objects. 
These one-dimensional feature vectors of 23 components 
would be the input of the BP neural network, so the number of 
neurons of input layer of this BP network was set to 23. We 
required this BP network to recognize 40 objects, so the 
number of neurons of output layer was set to 40. 

6) The transfer functions of hidden layers were set to 

1
1( )

1 xTF x
e−=

+
 for Levenberg-Marquardt training algorithm 

working better and since the outputs of BP network were 
judgments of 0 or 1, the transfer functions of output layers 

were set to 2 2

2( ) 1
1 xTF x

e−= −
+

.  

7) After the values of weights and thresholds of the BP 
network were initialized using Nguyen-Widrow algorithm, the 
training for the BP network began. During training, 
Levenberg-Marquardt was used to update the values of weight 
and threshold. The network iterated 300 epochs in each 
training. 

8) After training, at this step we could present all the 
2880 images of the 40 objects to the trained BP network to test 
its recognition performance.  

In the first experiment, half of the 2880 images of the 40 
3D objects were utilized as training set, the correct rate of 
recognition of this trained BP network achieved 100%, shown 
in the first column of Table 1. 

In order to study our method in more realistic situation, we 
compared the performance of our method when fewer numbers 
of views of the 3D objects were presented during training. We 
reduced images in the training set from 36 views per object 
(10o intervals) to 2 views per object (180o intervals). The case 
of 4 training views of one object is demonstrated in Fig. 3. We 
repeated our experiments from step1 to step8 for 4 times, each 
time with fewer training views, and reported the recognition 
results in other columns of Table 1. 

Under these more challenging experimental setups, 
although it is not surprising to see from Table 1 that the correct 
rate of recognition decreased as the number of available views 
decreased during training, it is worth noticing that when the 
number of training views per object were reduced to 18 (20o 
interval), the BP network achieved 99.86% correct rate of 
recognition, i.e., only 4 poses were not recognized in the total 
2880 testing images. At the most hardness setup, we reduced 
the number of training view to 2, only 0o and 180o view angles 
were used, the correct rate of recognition of the BP network 
also achieved 72.92%. 

C. Experiments based noise corrupted images 
In order to assess the robustness of our method under noise 

environment, we added Gaussian white noise of zero-mean and 
variance 0.05 and 0.1 respectively, to the original COIL-100 
object images, showing in Fig. 4 and Fig. 5. Under each noise 
variance condition, also we changed the number of views in the 
training set from 36 views per object (10o intervals) to 2 views 
per object (180o intervals). Again we repeated our experiments 

from step1 to step8 for 5 times, each time with fewer training 
views.  

From the obtained experimental results in Table 2, when 
noise corrupted training views were presented at 10o intervals 
in the case images are corrupted by Gaussian white noise of 
zero-mean and variance 0.05, our method also achieved 100% 
correct rate of recognition. In the case images were more 
seriously corrupted by Gaussian white noise of zero-mean and 
variance 0.1, the BP network achieved 99.97% correct rate of 
recognition, i.e., only 1 poses was not recognized in the total 
2880 testing images. Other results of different number of 
training views were similar with the results reported in Table 1. 

TABLE I.  CORRECT RATE OF RECOGNITION 
WITH VARYING VIEW ANGLES 

Number of 
views/object 36 18 9 4 2 

Original 
images 100% 99.86% 99.69% 86.32% 72.92%

Figure 3. The views that making up the training set for 
an object, in the case of 4 training views per object  

Figure 4. First 40 noise corrupted objects with view angle=30o, 
Gaussian white noise of mean=0 and variance=0.05 

Figure 5. First 40 noise corrupted objects with view angle=30o, 
Gaussian white noise of mean=0 and variance=0.1 
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TABLE II.  CORRECT RATE OF RECOGNITION WITH 
VARYING VIEW ANGLES FOR CORRUPTED IMAGES WITH 

GAUSSIAN WHITE NOISE OF ZERO-MEAN 

Number of 
views/object 36 18 9 4 2 

variance=0.05 100% 99.76% 99.44% 
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