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Abstract—In clustering analysis, many methods require the
designer to provide the number of clusters. Unfortunately, the de-
signer has no idea, in general, about this information beforehand.
In this paper, we propose a genetic algorithm based clustering
method called Automatic Genetic Clustering for Unknown K
(AGCUK). The AGCUK algorithm is able to automatically
provide the number of clusters and find the clustering partition.
The Davies-Bouldin index is employed to measure the validity
of the clusters. Experimental results on artificial and real-life
data sets are given to illustrate the effectiveness of the AGCUK
algorithm.

Index Terms—clustering, genetic algorithms, noising method,
Davies-Bouldin index.

I. INTRODUCTION

Clustering is a formal study of algorithms and methods
for classifying objects without category labels. A cluster is
a set of entities that are alike, and entities from different
clusters are not alike. Many clustering techniques have been
proposed [1], [2]. Among them, the K-means algorithm is an
important one. However, it often gets stuck at local minima
and its result is largely dependent on the choice of the
initial cluster centers [3]. Recently, researchers solved the
clustering problem by the metaheuristic algorithms. Liu et
al. [4] integrated a tabu list into the genetic algorithm based
clustering algorithm to prevent several fitter individuals from
occupying the population and to maintain population diversity.
In addition, an aspiration criterion is adopted to keep selection
pressure. Bandyopadhyay and Maulik [5] designed a genetic
clustering approach. They employed the K-means algorithm
to provide the domain knowledge and improve the search
capability of genetic algorithms. Liu et al. [6] combined the
K-means algorithm and the tabu search approach to accelerate
the convergence speed of the tabu search based clustering
algorithm. Ng and Wong [7] applied the tabu search approach
to the fuzzy clustering problem so as to deal with categorical
data sets. Bandyopadhyay et al. [8] integrated the K-means
algorithm into the simulated annealing based clustering method
to improve the cluster centroids. By redistributing objects
among clusters probabilistically, the presented method obtains
better results than the K-means algorithm. Liu et al. [9] adopted
the noising method, a metaheuristic technique proposed by
Charon and Hudry [10], to solve the clustering problem.
The proposed method requires less computational cost than

Bandyopadhyay et al.’s algorithm [8] but is still inferior to
the latter. The aforementioned methods [3]–[9] require the
designer to provide the number of clusters. Unfortunately, in
many real-life cases the number of clusters in a data set is
not known a priori. Under this condition, how to automatically
provide the number of clusters and find the clustering partition
becomes a challenge.

In this regard, some attempts have been made to use ge-
netic algorithms for automatically clustering data sets. Bandy-
opadhyay and Maulik [11] applied the variable string length
genetic algorithm with the real encoding of the coordinates
of the cluster centers in the chromosome to the clustering
problem. Experimental results show that their algorithm is
able to evolve the number of clusters as well as provide the
proper clustering. Tseng and Yang [12] proposed a genetic
algorithm based approach for the clustering problem. Their
method consists of two stages, nearest neighbor clustering and
genetic optimization. The proposed method can search for a
proper number of clusters and classify nonoverlapping objects
into these clusters. Bandyopadhyay and Maulik [13] exploited
the searching capability of genetic algorithms for providing the
number of clusters of a given data set. A string representation
composed of real numbers and the do not care symbol is
used to encode a variable number of clusters. Effectiveness
of their technique is demonstrated for experimental data sets.
Lin et al. [14] presented a genetic clustering algorithm based
on a binary chromosome representation. The proposed method
selects the cluster centers directly from the data set. With
the aid of a look-up table, the distances between all pairs
of objects are saved in advance and evaluated only once
throughout the evolution process. By experimental simulations,
the superiority of their algorithm over Bandyopadhyay and
Maulik’s method [13] is shown. Lai [15] adopted the hier-
archical genetic algorithm to solve the clustering problem. In
the proposed method, the chromosome consists of two types of
genes, control genes and parametric genes. The control genes
are coded as binary digits. The total number of “1” represents
the number of clusters. The parametric genes are coded as real
numbers to represent the coordinates of the cluster centers.
The relationship between the control genes and the parametric
genes is that the activation of the latter is governed by the
value of the former. If the value of a control gene is “1”, then
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the associated parametric genes due to that particular active
control gene are activated; otherwise the associated parametric
genes are disabled. Experimental results show Lai’s method
can search for the number of clusters.

In this paper, our aim is to develop a new genetic algorithm
based clustering method to automatically provide the number
of clusters and find the clustering partition. We design two
operators, noising selection and division-absorption mutation.
The Davies-Bouldin index is employed as a measure of the
validity of the clusters. As a result, a new genetic clustering
method called Automatic Genetic Clustering for Unknown K
(AGCUK) is proposed. Experimental results on artificial and
real-life data sets are given to illustrate the superiority of the
AGCUK algorithm over some known genetic clustering meth-
ods. The remaining part of this paper is organized as follows:
In Section II, the AGCUK algorithm and its components are
described. Results of computer simulations are given in Section
III. Finally, some conclusions are drawn in Section IV.

II. THE PROPOSED APPROACH

In this section, we first briefly introduce genetic algorithms
and the noising method, and then describe the AGCUK algo-
rithm in detail.

A. Genetic Algorithms and Noising Method

Genetic algorithms are randomized search and optimization
techniques guided by the principles of evolution and natural
genetics [16]. They have a large amount of implicit parallelism
and provide the near optimal solution of the objective or
fitness function in complex, large and multi-modal landscapes.
In genetic algorithms, the parameters of the search space
are encoded in the form of strings (or chromosomes). The
fitness function that represents the goodness degree of the
solution encoded in the chromosome is associated with each
string. Biologically inspired operators like selection, crossover
and mutation are used over a number of generations for
generating potentially better solutions. After a satisfactory
individual is found or the specified number of generations is
over, the best individual obtained is viewed as the final result.
Genetic algorithms have applications in fields as diverse as
image processing, information security, information retrieval,
etc. [17]–[19].

The noising method guiding the heuristic search procedure
to explore the solution space is a metaheuristic technique
proposed by Charon and Hudry [10]. Instead of taking the
genuine data into account directly, the noising method consid-
ers the optimal result as the outcome of a series of fluctuating
data converging towards the genuine ones. Like some other
metaheuristics, the noising method is based on a descent. The
main difference with a descent is that, when the objective
function value for a given solution is considered, a perturbation
called a noise is added to this value. This noise is randomly
chosen in an interval of which the range decreases during
the iteration process. It means that the original value of the
noise rate rn should be chosen in such a way that, at the
beginning of the iteration process, a bad neighboring solution

may be accepted. As added noises are chosen in an interval
centered on zero, a good neighboring solution may be also
rejected. The final solution is the best solution obtained during
the iteration process. The noising method is described as Fig.
1. In Fig. 1, Ni denotes the current number of iterations,
Nt denotes the total number of iterations, Nf denotes the
number of iterations at a fixed noise rate, f(Xc), f(X ′) and
f(Xb) denote the function values of the current solution Xc,
the neighboring solution X ′ and the best known solution Xb,
respectively. The noising method has been applied to traveling
salesman problem [20], task allocation problem [21], and
clique partitioning problem [22], etc.

Begin
set parameters and create the current solution Xc

while Ni ≤ Nt do
Ni ← Ni + 1
find the neighboring solution X ′ of solution Xc

if f(X ′)− f(Xc) + noise < 0, then Xc ← X ′

if f(Xc) < f(Xb), then Xb ← Xc

if Ni = 0(modNf ), then decrease rn

end do
end

Fig. 1. The structure of the noising method.

B. The AGCUK Algorithm

The AGCUK algorithm is described as shown in Fig. 2.
Its most procedures are based on the architecture of genetic
algorithms. The following subsections consider the design
approaches in great detail.

Begin
initialize parameters
establish the initial population for clustering
while (not termination condition) do

fitness evaluation
noising selection
division-absorption mutation

end do
end

Fig. 2. The general description of the AGCUK algorithm.

1) Individual representation: In the AGCUK method, the
chromosomes are made up of real numbers to represent
the coordinates of the cluster centers. The length of the
chromosome is Ki ∗ m, where Ki denotes the number of
clusters of the ith individual and m denotes the number
of object attributes. The first m genes denote the m di-
mensions of the first cluster center, the next m genes rep-
resent those of the second cluster center, and so on. For
instance, let m = 2 and Ki = 3, then the individual
{25.2 18.6 5.3 10.8 65.3 7.0} represents the coordinates of
three cluster centers {(25.2 18.6)(5.3 10.8)(65.3 7.0)}.



2) Population initialization: For individual i, its number of
clusters Ki is randomly generated in the range [Kmin,Kmax].
Here, Kmin is chosen to be 2 unless specified otherwise and
Kmax is chosen to be

√
N , where N denotes the number of

objects. For initializing individual i, Ki distinct objects are
chosen randomly from the data set and viewed as the initial
cluster centers.

3) Fitness evaluation: The aim of clustering analysis is to
divide a given data set into clusters. A resulting partition should
possess the following properties: (1) homogeneity within the
clusters, i.e. data that belong to the same cluster should be as
similar as possible, and (2) heterogeneity between the clusters,
i.e. data that belong to different clusters should be as different
as possible. In this paper, we use the Davies-Bouldin (DB)
index [23] to compute the fitness of the individual. The DB
index is also adopted in [11], [13]–[15] to measure the validity
of the clusters. The DB index is a function of the ratio of the
sum of within-cluster scatter to between-cluster separation. The
scatter within cluster Ci is defined as

Si,q =

(
1
|Ci|

∑
x∈Ci

‖x− ci‖q2
) 1

q

, (1)

where ci denotes the cluster center of cluster Ci and Si,q

denotes the qth root of the qth moment of the objects belonging
to cluster Ci with respect to their mean. Si,q is a measure
of the dispersion of the objects belonging to cluster Ci.
Specifically, Si,1, used in this article, denotes the average
Euclidean distance of the objects belonging to cluster Ci to
their cluster center ci. Cluster center ci is computed as

ci =
1
ni

∑
x∈Ci

x, (2)

where ni denotes the number of the objects belonging to
cluster Ci. The distance between clusters Ci and Cj is defined
as

dij,t = d(Ci, Cj) = ‖ci − cj‖t, (3)

where dij,t denotes the Minkowski distance of order t between
the centroids which characterize clusters Ci and Cj . Next, we
define a term Ri,qt for cluster Ci as

Ri,qt = max
j,j �=i

{
Si,q + Sj,q

dij,t

}
. (4)

Then the DB index is defined as

DB =
1
K

K∑
i=1

Ri,qt. (5)

A small value of this evaluation indicates a good clustering
result, and thus we set the fitness Fi of individual i to be
equal to 1/DBi, where DBi is the DB index computed for
individual i. Then the minimum problem is converted into a
maximum one suitable for genetic algorithms.

4) Noising selection: We adopt the noising method to
implement the selection operation so as to avoid the selected
population being occupied by several fitter individuals and to
maintain population diversity. We add noises to the variation
of the fitness value. The selection operation is implemented as
follows:

Step 1: Given population Qt, where t denotes the number
of generations, set i = 1 and choose the ith individual Xt

i .
Step 2: If t = 1, then individual Xt

i is selected and proceed
to Step 4.

Step 3: Individual Xt
i is compared with the ith individual

Xt−1
i in population Qt−1, if

F t
i − F t−1

i + noise > 0, (6)

then individual Xt
i is selected; otherwise individual Xt−1

i

is selected. Here, F t
i and F t−1

i denote the fitness values of
individuals Xt

i and Xt−1
i , respectively.

Step 4: View the selected individual as the ith individual
and let i = i + 1. If i ≤ P , then return to Step 2; otherwise
output the selected population. Here, P denotes the population
size.

5) Division-absorption mutation: There are three partition
states, under-partitioned state, optimal-partitioned state and
over-partitioned state, for a given data set as shown in Fig. 3.
In the under-partitioned state, two clusters C1 and C3 are im-
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Fig. 3. Partition of data sets.

properly grouped into cluster C
′
1. In the over-partitioned state,

cluster C1 is improperly divided into clusters C
′
1 and C

′
4. Only

in the optimal-partitioned one, all clusters are correctly divided.
So, partitioning the under-partitioned cluster and merging the
over-partitioned cluster are helpful for exploring the correct
clustering. In this paper, we design the division-absorption
mutation composed of two sub-operations, division operation
and absorption operation. In the AGCUK approach, there are
two kinds of individuals, the best individuals and the others.
The best individuals have the highest fitness. Here, we view
the best individuals as the solutions with the “correct” number
of clusters. But they may not represent the optimal partition



as shown in Fig. 3(c). For these individuals, we keep the
number of clusters constant and perform two sub-operations
in random order to improve the assignment of objects and find
the clustering partition. For the other individuals, we randomly
choose one sub-operation to redistribute objects among clusters
so as to explore the number of clusters. Two sub-operations
are stated as follow:

Division operation: Suppose cluster Ci is the one to be
divided, we use proportional selection to choose cluster Ci.
The selection probability is defined as

pi = Si,1/
∑

Si,1, (7)

where i = 1, . . . ,K. That is, the sparser cluster Ci, the
more possibly it is selected as the cluster to be divided,
and vice versa. Since the K-means algorithm is simple and
computationally attractive, we adopt it to partition cluster Ci.
After the division operation, cluster Ci is divided into two new
clusters and the number of clusters increases by one.

Absorption operation: Like the division operation, we adopt
proportional selection to determine which cluster is to be
absorbed. That is, the closer two clusters to each other, the
more possibly one of them is selected as the one to be
absorbed, and vice versa. The distance between cluster Ci and
its nearest neighbor is computed as

di = min
i�=j
‖ci − cj‖2, (8)

then the selection probability is defined as

pi =
∑

di/di. (9)

Suppose cluster pair (Ci, Cj) is selected, if Si,1 > Sj,1 then
cluster Ci is selected; otherwise cluster Cj is selected. That is,
in the cluster pair, the cluster with sparser structure is the one
to be merged. Suppose cluster Ci is to be absorbed, object x
belonging to cluster Ci is reassigned to cluster Ck, iff

‖x− ck‖2 < ‖x− cj‖2, (10)

where cj �= ck. After the absorption operation, cluster Ci dis-
appears and the number of clusters decreases by one. After the
division-absorption mutation, objects are redistributed among
clusters and a new individual is created.

6) Termination criterion: In general, two stopping criteria
are used in genetic algorithms. In the first, the evolution
process is executed for a fixed number of generations and the
best individual obtained is taken to be the optimal one. In the
other, the algorithm is terminated if no further improvement
in the fitness value of the best individual is observed for a
fixed number of generations, and the best individual obtained
is taken to be the optimal one. We adopt the first method in
the experiment. That is, the best individual having the highest
fitness seen up to the last generation provides the solution to
the clustering problem. In addition, the elitist model is used to
carry the best individual obtained from the previous population
into the child population, which assures the evolution process
to converge towards the optimal result [24].

III. EXPERIMENTAL RESULTS

We compare the AGCUK algorithm with four ge-
netic clustering techniques proposed by Bandyopadhyay and
Maulik [11], [13], Lin et al. [14] and Lai [15], respectively.
Performance comparisons are conducted in Matlab on an Intel
Pentium D processor running at 3.4GHz with 512MB real
memory. Each experiment includes 20 independent trials. The
settings of parameters are described as follows: The population
size P is equal to 20. The number of generations G is equal
to 50. In the noising selection operation of the AGCUK
algorithm, the original noise rate rmax is set to be 10, the
terminal noise rate rmin is set to be 0, and the number of
iterations at the fixed noise rate Nf is set to be 20.

In [14], Lin et al. used 100 artificial data sets with a
variety of numbers (in [Kmin,Kmax] = [2, 11]) of clusters
to compare the proposed method with Bandyopadhyay and
Maulik’s algorithm [13]. There are ten data sets for each
number of clusters. As a result, Lin et al.’s method is better
than the latter and finds the correct number of clusters and the
optimal partitions of the data sets with less than 7 clusters. But
Lin et al.’s method becomes bad with the further increase of
the number of clusters. In this paper, we use the latter 50 data
sets with a variety of numbers (in [Kmin,Kmax] = [7, 11]) of
clusters. Figure 4 shows the sizes of the artificial data sets.
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Fig. 4. Sizes of 50 artificial data sets.

Figure 5 shows the average number of clusters provided
by experimental algorithms for artificial data sets. It is seen
that Bandyopadhyay and Maulik’s method [11] is the worst.
In face of the data sets with seven clusters, Lai’s method is
better than the one given by Bandyopadhyay and Maulik [13].
But in face of the other data sets, they are comparable. The
number of clusters provided by Lin et al.’s method is more
accurate than that provided by above three methods. In face
of artificial data sets, the AGCUK algorithm is the best and
provides the correct number of clusters in most trials.

In order to compare the ability of experimental methods to
find the optimal clustering, we give the average misclassified
rates of five clustering methods as shown in Fig. 6. The
misclassified rates of the methods reported in [11], [13], [15]
are larger than 0 in all runs. Lin et al.’s method and the
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Fig. 5. Number of clusters provided by five methods for artificial data sets.

AGCUK algorithm seem to be comparable. After removing the
other three methods, we find that our approach outperforms Lin
et al.’s method as shown in Fig. 7. Lin et al.’s method finds the
optimal partitions of two data sets (Data 3 and Data 9) in all
runs. The AGCUK algorithm provides the optimal partitions
of fifteen data sets including Data 3 and Data 9 in each trial.
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Fig. 6. Misclassified rates of five methods.
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Fig. 7. Misclassified rates of Lin et al.’s method and the AGCUK algorithm.

In addition, we use the Wisconsin Breast Cancer data
set [25] to compare experimental algorithms. In Breast Cancer
data set, each pattern has nine features corresponding to clump
thickness, cell size uniformity, cell shape uniformity, marginal
adhesion, single epithelial cell size, bare nuclei, bland chro-
matin, normal nucleoli and mitoses. There are two categories
in the data set, malignant and benign, which are known to
be linearly inseparable. The total number of patterns are 699
(458 benign, and 241 malignant), of which 16 patterns contain
single missing feature. These 16 patterns have been removed
and the remaining 683 patterns are used for clustering.

Experimental results for Breast Cancer are shown as Table
I. Bandyopadhyay and Maulik’s methods [11], [13] and the
AGCUK algorithm provide the correct number of clusters.
The misclassified rate of our approach is the lowest. But all
experimental algorithms do not provide the optimal partition
within the specified number of generations. We find it difficult
for one validity index to deal with different data sets. Other
validity indices such as PBM-index [26] may be used to find
the clustering partition in future research.

TABLE I
RESULTS OF EXPERIMENTAL METHODS FOR BREAST CANCER

Number of clusters Misclassified rate (%)
Bandyopadhyay (2001) 2 34.8
Bandyopadhyay (2002) 2 9.0

Lin (2005) 6.2 33.4
Lai (2005) 2.8 15.2
AGCUK 2 3.5

In the following, we analyze the time complexities of
experimental methods. The time complexities of the cluster-
ing methods reported in [11], [13]–[15] are O(GPKmN),
O(GPKmN), O(GPKN + mN2) and O(GPKmN), re-
spectively. The time complexity of the AGCUK algorithm is
given as follows: In each generation, the time complexity of
the fitness evaluation is O(PKmN). The time complexity of
the selection operation is O(P ). The time complexity of the
division-absorption mutation is discribed as follows: The time
complexity of the division operation is O(mN), and the time
complexity of the absorption operation is O(KmN). The time
complexity of the division-absorption mutation is dominated
by the absorption operation. Therefore, the time complexity of
the AGCUK algorithm is O(GPKmN) the same as those of
the methods reported in [11], [13], [15].

IV. CONCLUSIONS

As a fundamental problem and technique for data analysis,
clustering has become increasingly important. Many clustering
methods usually require the designer to provide the number of
clusters as input. Unfortunately, this information in general is
unknown a priori. In this paper, we propose a genetic algorithm
based clustering method call Automatic Genetic Clustering for
Unknown K (AGCUK). We design two new operations, noising
selection and division-absorption mutation. The reciprocal of
the Davis-Bouldin index is used for computing the fitness of
individuals.



We adopt the noising selection operation to prevent the
selected population being occupied by several fitter individuals
and to maintain population diversity. Noises are added to the
variation of the fitness value so as to avoid the clustering prob-
lem being trapped by local minima. According to the clustering
partition, we design the division-absorption mutation. Three
combinations of division operation and absorption operation
are performed on individuals to evolve the number of clusters
and find the clustering partition. The AGCUK algorithm and
four known genetic clustering techniques are compared. As a
result, the AGCUK algorithm can provide the correct number
of clusters for artificial and real-life data sets. It obtains lower
misclassified rates than the other experimental methods. In
addition, the time complexity of the AGCUK method is the
same as those of the methods reported in [11], [13], [15].

In this paper, the Davies-Bouldin index is used for com-
puting the fitness of individuals. But we find it difficult to use
one validity index to deal with different data sets. Combining
other indices such as PBM-index with our method to solve the
clustering problem will be an important area of future research.
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