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Abstract—This paper presents a framework for multi-criteria
design optimization of parallel mechanisms. Pareto methods
characterizing the trade-off between multiple design criteria
are advocated for multi-criteria optimization over widely used
scalarization approaches and Normal Boundary Intersection
method is applied to efficiently obtain the Pareto-front hyper-
surface. The proposed framework is compared against sequen-
tial optimization and weighted sum approaches. Dimensional
synthesis of a sample parallel mechanism (five-bar mechanism)
is demonstrated through estimation of the relative weights of
performance indices that are implicit in the Pareto plot. The
framework is computational efficient, applicable to any set of
performance indices, and extendable to include any number of
design criteria that is required by the application.

Index Terms—Multi-criteria design optimization, dimensional
synthesis of parallel mechanisms, optimal design of parallel
robots.

I. INTRODUCTION

Robotic manipulators with parallel kinematic chains are
becoming increasingly common due to the inherent advantages
they offer with respect to their serial counterparts. Parallel
mechanisms possess compact designs with high stiffness and
have low effective inertia since their actuators can be grounded
in many cases. In terms of dynamic performance, high position
and force bandwidths are achievable with parallel mechanisms
thanks to their light but stiff structure. Besides, parallel mech-
anisms do not superimpose position errors at joints, hence can
achieve high precision.

Since the performance of parallel mechanisms is highly
sensitive to their dimensions, design optimization studies are
absolutely necessary for these types of mechanisms [1]. De-
sign optimization studies of such mechanisms with closed
kinematic chains are significantly more challenging than se-
rial ones. Parallel mechanisms have smaller workspace with
possible singularities within the workspace and their analysis
is considerably harder than the analysis of mechanisms with
serial kinematic chains. Due to the additional complexities
involved, the dimensional synthesis of parallel mechanisms is
still an active area of research.

While performing dimensional synthesis of parallel mech-
anisms, various performance criteria such as kinematic and
dynamic isotropy, stiffness, sensitivity, and transmission capa-
bility have to be considered simultaneously. The performance
with respect to many of these criteria cannot be improved with-
out deteriorating others; hence, design trade-offs are inevitable.

Determination of optimal dimensions with respect to many
design criteria is a difficult problem and should be handled
with multi-objective optimization methods so that trade-offs
can be assigned in a systematic manner.

There exists several studies in literature in which multiple
competing design criteria have been considered for design
of parallel robots. The studies that can be categorized under
scalarization methods address the multi-criteria optimization
problem in an indirect manner, by first transforming it into a (or
a series of) single objective (scalar) problem(s). Among these
approaches, Hayward et al. define the relationship between
multiple criteria and utilize sensitivities of these criteria to
conduct a hierarchical optimization study [2]. Multiple objec-
tives are considered sequentially in [3]–[6] by searching for
parameter sets resulting in near optimal kinematic performance
and then selecting the design exhibiting the best dynamic per-
formance from this reduced parameter space. Task-priority [7],
probabilistic weighting [8], composite index [9], and tabular
methods [10] are among the other scalarization approaches that
consider multiple criteria. Scalarization methods possess the
inherent disadvantage of their aggregate objective functions
requiring preferences or weights to be determined apriori,
ie. before the results of the optimization process are actually
known [11]. Since assigning proper weights or prioritizing
different criteria is a problem dependent, non-trivial task, these
techniques fall short of providing a general framework to the
design of the parallel mechanisms.

Pareto methods, on the other hand, incorporate all perfor-
mance criteria within the optimization process and address
them simultaneously to find a set of non-dominated designs
in the objective space. Once such a hyper-surface resolving
the design trade-offs is obtained, an appropriate design on this
hyper-surface can be selected taking into account other design
requirements of the particular application in consideration.
Pareto methods allow the designer to make an informed
decision by studying a wide range of options, since they
contain solutions that are optimum from an overall standpoint;
unlike scalarization techniques that may ignore this trade-off
viewpoint. Thanks to this feature, Pareto methods are better
suited as a general solution framework for design optimization
of parallel mechanisms, since they provide a better understand-
ing of optimization problem allowing all the consequences of
a decision with respect to all the objectives be explored.
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Due to its transparent interpretation even for non-expert
users, the most commonly used technique for generating points
on the Pareto-front hyper-surface is to solve for optimal
solutions of (convex) weighted sums of several objective
functions for various different settings of weights [12], [13].
This traditional approach is an extension of the scalarization
approaches and suffers from two major drawbacks: Weighted
sum approach does not guarantee a uniform spread of Pareto
points for an even spread of weights, and this approach cannot
solve for points on the non-convex portions of the Pareto-front
hyper-surface [14]. Without prior knowledge of the shape of
the Pareto-front hyper-surface, it is not possible to estimate
values of weights that map out a uniform spread of points on
the Pareto-front hyper-surface, while increasing the number of
weights does not result in points on the non-convex portions
of the Pareto set. Therefore, ill-behaved nature of the weighted
sum approach frequently results in under-represented regions
of the Pareto-front hyper-surface and cause selection of an
inferior design solution by failing to map important non-
dominated ones.

Other methods exists in literature that directly attacks the
problem to solve for the Pareto set. As regards to employing
these Pareto methods for design of parallel mechanisms, Krefft
et al. recently applied a modified genetic algorithm (GA) to a
problem with multiple objective functions and solved for the
Patero-front hyper-surface [4], [15]. Similarly in [16], GA is
applied to multi criteria optimization of a 2-DoF parallel robot.
Despite their inherent advantage of resulting in multiple non-
dominated design solutions within a single optimization search,
GA approaches suffer from several disadvantages. Specifically,
the convergence performance of GA is highly dependent
on user-specified parameters such as sharing factor, and the
results are very sensitive to these user specified parameters.
Moreover, GA methods demand inferior computational cost
with increasing number of objective functions, hence cannot
be easily adopted or scaled for use of more than two objec-
tive functions [17]. More importantly, GA might prematurely
converge to sub-optimal solutions [18]. Finally, use of GAs to
obtain Pareto front hyper-surface has the disadvantages of large
computational expense as well as a tendency for clumping
of solutions in objective space resulting in under-represented
regions of the Pareto-front [11].

Finally, in [19] authors proposed a multi-objective design
framework for optimization of parallel mechanisms based on
Normal Boundary Intersection (NBI) method [20]. In [21] the
proposed framework is applied to design of a 3RPS-R type
robot for dual purpose application. The proposed framework
is computational efficient, applicable to any set of performance
indices, and extendable to include any number of design
criteria that is required by the application.

In this paper, the framework introduced in [19] is further
studied and extended results are presented. Global kinematic
and dynamic performance of parallel mechanisms over a pre-
defined singularity free workspace are maximized simulta-
neously and the Pareto-front curve for these two criteria is
obtained. The results are compared against sequential opti-

mization and weighted sum approaches. To facilitate the de-
termination of the “best” solution of the Pareto set, estimation
of the relative weights of performance indices that are implicit
in the Pareto plot is demonstrated.

The paper is organized as follows: Section 2 introduces the
sample mechanism used for the analysis, a 2-DoF parallel five-
bar linkage. Section 3 introduces the performance indices used
in this study and formulates the multi-criteria optimization
problem. Section 4 explains the optimization methods used to
address the multi-criteria optimization problem and is followed
by results and their discussion in Section 5. Section 6 presents
conclusions and future work.

II. FIVE-BAR LINKAGE

The optimization framework presented in this paper is ap-
plied to a 2-DoF five-bar parallel mechanism due its sufficient
richness with relative simplicity allowing better interpretation
of the optimization problem at hand. Moreover, scalariza-
tion/aggregrate methods have been applied to the multi-criteria
optimization of this mechanism in the literature, rendering
comparisons of different approaches possible. The methods
discussed in this paper constitute a general framework for
design optimization of parallel mechanisms and is by no means
limited to the sample mechanism studied.

A five-bar mechanism can be characterized by lengths l0,
l1 , l2, l3 and l4 of its five links and three variables r, γ
and ν defining the position and orientation of its workspace
as shown in Figure 1. To quantify the orientation of each
link, joint angles qi (i = 1..4) measured from the x-axis are
introduced. A five-bar mechanism with symmetric link lengths
(l1 = l4, l2 = l3) and a symmetric workspace that is located
parallel to the x and y-axes of the global coordinate system
(γ = π/2, ν = π/2) is selected in this study. Moreover, out
of four possible assembly configurations, only the elbow-out
posture, as depicted in Figure 1, is studied. Optimality of the
above listed decisions in terms of both kinematic and dynamic
performance have already been shown in the literature [6].
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Fig. 1. Five-bar mechanism in the elbow-out posture

Assuming that the dimension of the symmetric workspace w
is pre-determined, the optimization problem can be formulated
using four design variables: l0, l1, l2 and r. Table I presents the
design variables α and design parameters β (parameters that
do not change during the design process) for the symmetric
five-bar mechanism.



TABLE I
DESIGN VARIABLES α AND PARAMETERS β

Symbol Definition Unit
α1 l0 Distance between actuated joints mm
α2 l1, l4 Length of actuated links mm
α3 l2, l3 Length of free links mm
α4 r Workspace center position mm
β1 w = 100 Workspace side length mm
β2 γ = 90◦ Angle between r and x-axis ◦
β3 ν = 90◦ Angle between W and y-axis ◦

III. OPTIMIZATION PROBLEM

Two objective functions characterizing the kinematic and
dynamic performances of the mechanism are considered in
this paper. To quantify the kinematic/dynamic performance of
the parallel mechanism global isotropy index (GII) and global
dynamic index (GDI) [6], are chosen. Both of these indices
are conservative workspace inclusive worst-case performance
measures that are intolerant of poor performance over the entire
workspace. An optimal GII results in a uniform kinematic Ja-
cobian matrix, while optimizing GDI minimizes the effective
mass matrix of the system. Since the stiffness of the system is
dominated by the compliance of the transmission and actuators,
a Jacobian matrix with high isotropy not only results in the
uniform kinematic behavior but also maximizes the stiffness
of the device.

The objective of optimization is to maximize the worst
kinematic isotropy of the mechanism (GII) while simulta-
neously minimizing the effective mass (max singular value of
the effective mass matrix or GDI). The negative null form of
the multi-objective optimization problem can be stated as

max F(α, β, γ)
G(α, β) ≤ 0
αa < α < αu

(1)

where F represents the column matrix of objective functions
that depend on the design variables α, parameters β, and
workspace positions γ. Symbol G represents the inequality
constraint functions that also depend on design variables and
parameters. Finally, αl and αu correspond to the lower and
upper bounds of the design variables, respectively.

For the symmetric five-bar mechanism in elbow out posture,
the column matrices F and G can be explicitly derived as

F=
[

GII
GDI

]
, G=

[
(l0/2 + w/2)2 + (r + w/2)2 − (l1 + l2)

2

−q2

q2 − q1

]

In these expressions, the first element of the G matrix con-
strains the design space to ensure a closed kinematic chain
throughout the reachable workspace while last two elements
stand for the elbow-out posture.

IV. METHODS

When the multi-criteria optimization problem is treated as
multiple single objective problems where objective functions
are handled independently, optimal solution for one criteria
may result in an unacceptable design for the other. To achieve

a “best” solution with respect to multiple criteria, the trade-
off between objectives needs to be negotiated. Scalarization
approaches assumes apriori knowledge of this trade-off and
converts the multi-criteria problem into a single objective one
by assigning proper weights or priorities to each performance
index. On the other hand, Pareto methods do not require any
apriori knowledge about the design trade-offs and solve for the
locus of all dominant solutions with respect to multiple objec-
tive functions, constituting the so-called the Pareto-front hyper-
surface. Hence, designers can make a more realistic choice
between multiple “best” solutions and avoid the challenge of
synthetically ranking their preferences.

There exists several methods to obtain the Pareto-front
hyper-surface, among which Normal Boundary Intersection
(NBI) method is one of the most featured. As the Pareto-
front hyper-surface is a geometric entity in the objective space
forming the boundary of feasible region, NBI approach attacks
the geometric problem directly by solving for single-objective
constrained subproblems to obtain uniformly distributed points
on the hyper-surface. NBI solves for subproblems which only
depend on the defined optimization model, that is, chosen
objective functions and design constraints since these equations
map the feasible design space onto the attainable objective
space. NBI obtains the Pareto-front with reducing the problem
to many single-objective constrained geometric optimization
subproblems. Number of subproblems can be adjusted by
defining resolution of the grid that maps to the number of
points on the Pareto-front hyper-surface. As the number of
points increases, the computational time increases linearly, but
since the method assumes spatial coherence and uses solution
of a subproblem to initialize the next subproblem, convergence
time for each subproblem may decrease resulting in further
computational efficiency.

For a Pareto-front generation method can be classified as
an effective one, the following criteria are to be satisfied [22]:
minimum distance of the Pareto-front hyper-surface produced
by the algorithm should be low with respect to the true Pareto-
front hyper-surface and the maximum spread of solutions as
well as maximum number of elements on the Pareto optimal
set should be high.

NBI method results in exceptionally uniform distributed
points on the Pareto-front hyper-surface without requiring any
tuning of the core algorithm. Moreover, once shadow points
are obtained, NBI solves for the geometric problem directly
utilizing a fast converging gradient-based method, evading the
computationally demanding aggregate optimization problems
required in for most of the scalarization methods. Therefore,
NBI method promises to be much faster and efficient than
other methods to obtain a well represented Pareto-front hyper-
surface including aggregate methods such as weighted sums
and evolutionary optimization approaches such as GAs.

NBI method can solve for points on the non-convex regions
of Pareto-front hyper-surfaces, a feature that is missing from
the weighted sum methods. Existence of such non-convex
Pareto sets for parallel mechanism is demonstrated in [21].
Compared to weighted sum techniques, NBI achieves higher



solution efficiency as it does not suffer from clumping of
solution in the objective space. NBI is also advantageous over
other methods as it trivially extends to handle any number
of objective functions. Compared to Multi-Objective Genetic
Algorithm (MOGA) [23] that requires problem dependent
fitness and search related tuning and several steps to reach
convergence, a standard NBI approach can map the Pareto-
front hyper-surface with higher accuracy and uniformity, while
also inheriting the efficiency of gradient-based methods.

Resulting in a uniform spread of points on the Pareto-front,
NBI method provides sufficient information about the nature of
trade-off between the objective functions in question. Once a
such Pareto set is found, the next challenge is to determine the
“best” solution out of this set. At this point, the relative weights
that are implicit in the Pareto plot may help the designer. For
the convex portions of the Pareto-front curve, there exists an
explicit relationship between the slope of the Pareto curve at
a Pareto point and the weighting coefficient λ [12], [14]. The
weights possess an intuitive meaning and reflect the relative
importance (preference) among the objective functions under
consideration. If the Pareto set is representatively populated, a
sufficiently high order polynomial curve fit can be performed
in order to approximate the Pareto set. The polynomial fit to
the Pareto set needs to be sufficiently high order to accurately
represent the shape of the Pareto set. Once such a curve fit
is obtained, the weight of every point on the convex parts of
the curve can be estimated and these weights serve as helpful
guides while negotiating the decision trade-offs within the
Pareto set. The designer can choose from this set of solutions
according to the relative satisfaction and preference of each
objective.

Relying on gradient techniques, NBI assumes sufficient
smoothness of the geometric problem at hand, but it has
also been demonstrated that the method performs remarkably
well even for non-smooth geometries [24]. In the presence
of non-continuous regions, multiple initializations of the NBI
method may be required for efficiently generating the Pareto-
front hyper-surface. For the case of strongly discontinuous
geometries, hybridization with MOGA-II to supply feasible
initialization points at each continuous sub-region can be
employed, as proposed in [24]. It is noted that since NBI relies
on equality constraints, it is possible for NBI not to find a
solution on the true Pareto-front hyper-surface, converging to
a local optima. In such a case, post processing on the solutions
of NBI subproblems can be employed to filter out undesired
dominated solutions.

V. RESULTS AND DISCUSSION

To allow for comparisons of the proposed approach with
other scalarization methods in the literature, sequential op-
timizations are implemented for the sample problem. In the
first sequential approach (SA1), parameter sets resulting in
the best GII values for each discrete value of the parameter
r are calculated. The change in GII values and the link
lengths are plotted in Figure 2 with respect to the independent
parameter r. In this plot, one can observe that GII value

increases monotonically with increasing r until the link length
l1 reaches its allowable upper limit (300mm) while link lengths
l0 and l2 also increase with increasing r until l2 reaches its
allowable upper limit (300mm). Once l2 reaches its upper
limit, monotonic decrease in l0 values can be observed until
l1 reaches its upper limit.
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Fig. 2. Parameter sets with best GII values for each discrete value of r.

Similarly for the second sequential approach (SA2), pa-
rameter sets resulting in the best GDI values for each dis-
crete value of the parameter r are calculated. The change
in GDI values and the link lengths are plotted in Figure 3
with respect to the independent parameter r. In this plot,
one can observe that GDI value increases for a while as the
link lengths increase and after attaining its maximum value
GDI decreases monotonically. The increase in GDI with the
increasing link lengths take place due to the fact that GDI is
a measure of effective mass of the system, over which the
kinematic Jacobian of the mechanism has high influence. At
the low values of r, effects of kinematic Jacobian (hence the
link lengths) dominate over the effects of link inertias and
GDI increases with the link lengths. At around r = 80mm,
the effects of link inertias become more dominant and the
expected trend of decrease of GDI with increasing link lengths
is observed. The optimal link lengths of the mechanism are
highly affected by the upper limits. When link length l2 reaches
its allowable upper limit (300mm), l1 starts a rapid increase
until it encounters its own upper limit (300mm). Similarly,
link lengths l0 which stays very low up until l2 reach its limit,
starts increasing until l1 reaches its upper limit, at which point
l0 experiences a sharp decrease.

Assigning r as the independent variable, the SA1 (SA2)
uses the set of “optimal” solutions with respect to GII (GDI)
as the feasible search domain to conduct another single criteria
optimization, this time with respect to GDI (GII). In other
words, the parameter set resulting in the best GDI (GII)
value is selected from the Figure 2 (Figure 3). The results of
the sequential optimization approaches are plotted in Figure 4
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Fig. 3. Parameter sets with best GDI values for each discrete value of r.

with respect to a dense Pareto-curve obtained using the NBI
approach. Inspecting the plot, one can conclude that the
“best” solutions obtained using the sequential optimization
approaches are both dominated – are points not lying on
the Pareto front, meaning there exists solutions for which
one can improve GII (GDI) while keeping GDI (GII)
constant or vice versa. In fact, regrading to the solution of SA1
improvements up to 20% in the GII value and up to 3% in the
GDI value are possible by choosing one of the designs that
lies on the Pareto-front boundary found by the intersection of
the Pareto curve and vertical and horizontal line, respectively,
passing through that point. Similarly, improvements up to 20%
in the GII value and up to 16% in the GDI value are possible
for solution calculated by SA2.
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Fig. 4. Comparison of sequential approach with the Pareto-front curve.

To characterize the trade-off between the single objective
solutions, Pareto-front curve for the bi-objective optimization
problem is constructed in Figure 5 employing two different

techniques, namely NBI method and aggregated performance
index method. For the NBI method, a grid size of ten points
are selected. In Figure 5 the distribution of points on the
Pareto-front curve is marked by dots. For the second method,
an aggregated performance index (API) is defined as the
weighted linear combination of GII and GDI . In particular,
API = λ GII + (1 − λ) GDI , where 0 ≤ λ ≤ 1 denotes
the weighting factor. Ten aggregated optimization problems
are solved for ten equally spaced weighting factors utilizing
the modified culling algorithm with discretization step sizes
of 5mm for the parameter space and 1mm for the workspace.
Circles in the Figure 5 denote the distribution of aggregate
solutions on the Pareto-front curve and are marked with their
corresponding weighting factor.
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Fig. 5. Comparison of NBI and aggregated performance index methods.
Symbol λ is the weighting factor.

As expected, NBI method generates a very uniform distri-
bution of points on the Pareto-front curve while the solutions
of the aggregate problem are clumped at certain locations of
the curve. To obtain a uniform distribution using the aggre-
gated index approach, proper weights should be assigned to
ensure uniform distribution. However, the characteristics of the
weight distribution is not known before the problem is solved.
Moreover, since the aggregate performance index relies on the
relatively costly culling algorithm to solve for each point on the
Pareto-front curve, its accuracy is limited by the discretization
step size chosen. In the Figure 5, the same solutions are ob-
tained for different weighting factors, particulary for weighting
factors λ = 0.4 to λ = 0.5, λ = 0.6 to λ = 0.7, and λ = 0.8
to λ = 0.9, respectively, due to the course discretization used.
Unfortunately, solving for each aggregate performance index at
each weighting is a computationally demanding task, limiting
the density of feasible discretization. NBI method possesses
an inherent advantage in terms of computational cost, as it
attacks the direct geometric problem to obtain the Pareto-
front curve and utilizes continuous, computationally efficient
gradient methods for the solution.



In addition to the efficiency offered via the uniform dis-
tribution of solutions on the Pareto-front curve, NBI approach
results in orders of magnitude improvement in the computation
time, especially for the design problem at hand, as depicted
in Figure 6. All of the simulations presented in Figure 6 are
performed using a 32 bit Windows XP workstation that is
equipped with a 3.40GHz Intel Xeon processor with 1MB L2
cache and 4GB DDR-2 400MHz SDRAM.
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Fig. 6. Computational effort of NBI method and weighted sum method with
respect to different discretizations.

As can be observed from Figure 6, the aggregate problem
scales geometrically with the discretization step size, rendering
an accurate solution of even ten points on the Pareto-curve
almost impossible for the simple sample problem at hand. On
the other hand, NBI method solves for points on the Pareto-
front curve very effectively, in about 1/14 time of the weighted-
sum approach with 5mm step size.

As emphasized earlier, any point on the Pareto-front curve
is a non-dominated solution. Hence it is up to the designer to
chose the “best” design for the application at hand, considering
the characteristic of the trade-off mapped out by the Pareto-
front boundary. This decision may be challenging since the
relative weights are not transplant, but implicit in the Pareto
plot. For the convex portions of the Pareto-front curve, it
is always possible to estimate the relative weight λ of the
objective functions since there exists an explicit relationship
between the slope of the Pareto curve at a Pareto point
and λ [14]. Reflecting the relative importance (preference)
among the objective functions under consideration, weights
help negotiating the decision trade-offs within the Pareto set.
Note that, in contrast to the weighting sum approach, within
the proposed framework the weights are obtained after the
points representing the Pareto set are solved for. With such
an approach the weights of points that are uniformly spread
on the Pareto-front curve can trivially be constructed, a task
that is not feasible with weighted sum approaches.

To estimate the weights of points on the Pareto set, a
polynomial of 5th order is fitted with R2 = 0.9985 on the
points obtained using NBI method as shown in Figure 7. Given
the slope (θ) of this curve at any point, relative weight λ of
the objective functions can be estimated as λ = 1/(1 − θ).

The Pareto methods not only allow additional constraints be
considered for the final decision but also let the designer adjust
these constraints while simultaneously monitoring their effect
on the set of non-dominated solutions. For the sample problem
analyzed, a design is selected by imposing two additional
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Fig. 7. Comparison of NBI and aggregated performance index methods.
Symbol λ is the weighting factor.

physical constraints on the Pareto-front curve: a limit on the
allowable workspace and a limit on the actuator size. Assuming
that motors with 40mm diameter will be used as the actuators,
a new lower limit can be imposed on the link lengths as
l0 > 40mm, rendering the last 11 points on the Pareto-front
curve as infeasible designs. As for the second constraint, the
footprint of the mechanism is to be restricted. The designer can
impose constraints of different footprint areas to observe their
effect on the non-dominated solution set. In Figure 8 infeasible
solutions for footprint area of 400mm x 400mm are marked.
Noticing that there are still many feasible solutions on the
current Pareto-front curve, one can calculate the weights of the
limit points of the feasible set using the curve fit. The limiting
points have weights of λ ≈ 0.1 and λ ≈ 0.2, respectively.
A final decision can be done considering the final use of the
device in question. In this paper, the device is aimed to be
used as a high fidelity haptic interface and more emphasis is
given on the GDI value since this metric highly affects the
closed loop control performance of the final design. Therefore,
the point λ ≈ 0.1, labeled as a star in Figure 8, is selected as
the final design. The link lengths corresponding to this design
choice are also represented in Figure 8.

VI. CONCLUSIONS AND FUTURE WORK

The framework introduced in [19] for optimization of
mechanisms with closed kinematic chains, with respect to
the multiple design criteria, is further studied and extended
results are presented. Global kinematic and dynamic perfor-
mance of parallel mechanisms over a pre-defined singularity
free workspace are maximized simultaneously and the Pareto-
front curve for these two criteria is obtained. The results
are compared against sequential optimization and weighted
sum approaches. The superiority of the design using Pareto
methods is shown over prioritization approaches. To facilitate
the determination of the “best” solution of the Pareto set,
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estimation of the relative weights of performance indices that
are implicit in the Pareto plot is demonstrated. Dimensional
synthesis of a high performance parallel robot utilizing the
fitted Pareto-front curve and extra constraints is demonstrated.
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