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Abstract—In this paper, we firstly present optimal sensor
rules with fading channel for a given fusion rule, in which
sensor observations are not necessarily independent of each
other. Then as a preliminary result to solve the unified fusion
rule problem for multisensor multi-hypothesis network decision
systems with fading channels, we propose the unified fusion
rule for a specific l sensors parallel binary Bayesian decision
system under assumption that the ith sensor is required to
transmit a certain number ri of bits via fading channel while
the fusion center can receive its own observation. Since the
communication pattern at every node including the fusion center
in the multisensor multi-hypothesis decision network are the same
as the above parallel binary Bayesian decision system, the above
unified fusion rule results can be extended appropriately to more
general multisensor multi-hypothesis network decision systems
with fading channels, such as the tandem and tree network. More
precisely speaking, for these network decision systems, a unified
fusion rule is proposed. People only need to optimize sensor rules
under the proposed unified fusion rule to achieve global optimal
decision performance. More significantly, the unified fusion rule
does not depend distributions of sensor observations, decision
criterion, and the characteristics of fading channels. Finally,
several numerical examples support the above analytic results
and show a interesting phenomenon that the two points (0, 0)
and (1, 1) may not be the beginning and end points of ROCs
when all channels are fading channels, while in ideal channel
case they are the start and end.

Index Terms—Distributed decision, optimal sensor rule, global
optimization, unified fusion rule, fading channel.

I. INTRODUCTION

With the fast development of the networking, wireless com-
munications, microprocessors, wireless sensor network(WSN)
have become a significant area, therefore, the studies about
fading channels are becoming more and more attractive, as
evidenced by recent publication such as [1]-[10]. In [1],
Thomopoulos and Zhang applied Neyman-Pearson criterion to
design local decision rules in the presence of channel errors.
They considered the binary symmetric channels to model the
transmission of local decisions to a fusion center. Then, in
[2], the person by person optimization was used to determine
the likelihood ratio thresholds for both the local sensors and
the fusion center. Duman and Salehi extended the result in
[2] to multiple sensors model in [3]. After those works,

many investigations with regard to fading channels have been
made recently. For example, in [6], Chen et al. extended the
classical parallel fusion structure by incorporating the fading
channel layer that is omnipresent in wireless sensor network,
and derived the likelihood ratio based fusion rule given fixed
local decision devices. Under the conditional independence
assumption, under a given fusion rule, among multiple sensor
observations, Chen et al. presented that the optimal local de-
cisions that minimize the error probability at the fusion center
amount to a likelihood-ratio test given a particular constrain on
the fusion rule [7]. Then, Kashyap et al. significantly improved
the Chen’s result in [8]. Niu et al. proposed three other sub-
optimal fusion rules, which called a two-stage approach using
the Chair-Varshney fusion rule, a maximal ratio combiner
fusion statistic, and an equal gain combiner fusion statistic,
with only requirement of the knowledge of channel statistics
[9].

Although WSNs with fading channels have been researched
over the last few years, the unified fusion rules with fading
channel for multi-hypothesis multisensor network decision
systems remain hard tasks. The networks for parallel, tandem
and hybrid have been previously addressed in [11] and [13],
and have been more investigated in [14] and [15]. After that,
the multi-hypothesis multisensor network decision systems
attract much research interest. In ideal channel case, Zhu et
al. proposed the unified fusion rule in the distributed multi-
hypothesis multisensor parallel network decision systems, and
then extended them to the tandem network and hybrid network
decision systems [17]. Those unified fusion rules have most
general form and are independent of the statistical character-
istics of observations and decision criteria. However, above
results are proposed under the assumption that the transmission
channels are ideal. It may not be realistic for many WSNs
where the transmitted information has to endure both channel
fading and noise/interference.

In this paper, we first present the optimal sensor rule with
fading channels for any given fusion rule, in which sensor
observations are not necessarily independent of each other,
the optimal sensor rules under the assumption of observation
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independence in [7] is a special example of our results. Then,
we aim to propose unified fusion rules with fading channels
for the multi-hypothesis multisensor network decision systems.
For this goal, as a preliminary result, we first propose a unified
fusion rule for a specific l sensors parallel binary Bayesian
decision system with fading channels under the assumption
that ith sensor is required to transmit ri bits via fading channel
while the fusion center can receive its own observation. The
unified fusion rule can achieve globally optimal decision per-
formance in the fading channel case similar to that in the ideal
channel case. Then, since the communication pattern at every
node including the fusion center in the multisensor decision
network are the same as the above parallel binary Bayesian
decision system, based on above results, we propose the unified
fusion rule for multisensor multi-hypothesis parallel network
decision systems with fading channels, and then extend the
result to the tandem network and hybrid network decision
systems. Finally, several numerical examples support the above
analytic results and show an interesting phenomenons that the
two points (0, 0) and (1, 1) may not be the beginning and
end points of ROCs anymore when all channels are fading
channels, while in ideal channel case they are the start and
end.

II. OPTIMAL SENSOR RULE WITH FADING CHANNELS FOR
GIVEN FUSION RULE

In this section, we consider multisensor multi-hypothesis
Bayesian decision system and aim to find the optimal sensor
rule for any given fusion rule with fading channels. Firstly, we
give some formulations about fading channels, and then we
present a necessary condition of the optimal local compression
rules for any fixed fusion rule with fading channels, finally,
we show that the optimal sensor rules under the assumption
of observation independence in [7] is a special example of our
results. In this section, some results can be seen in [18].

A. Some formulations in fading channel case

Let Ii = (Ii1, . . . Iiri) denotes the ri bits compressed by
the ith sensor based on its observation yi, I0i = (I0

i1, . . . I
0
iri

)
denotes the received ri bit by the fusion center/next sensor
from the ith sensor through fading channel, i = 1, 2, . . . , l.
The fading channels can be described as follows:

Assumption 1. The channels connecting the sensors to the
fusion center/senors are not totally reliable. The channel error
between the ith sensor and the fusion center/next sensor is
defined as follows:

P ce1
ij = P (I0

ij = 0|Iij = 1), (1)

P ce0
ij = P (I0

ij = 1|Iij = 0), i ≤ l, j ≤ ri, (2)

where P ce1
ij describes the probability of a transmission error

that the fusion center/next sensor receives 0 while the ith
sensor rule is Iij = 1, and P ce0

ij denotes the probability of
another transmission error.

Assumption 2. The link errors are statistically independent
of hypotheses. Thus, reliability of the sensor transmission as
received by the fusion center can be given by

P (I0
ij = 0|Hk) = P (Iij = 0|Hk)(1 − P ce0

ij )
+P (Iij = 1|Hk)P ce1

ij

P (I0
ij = 1|Hj) = P (Iij = 1|Hk)(1 − P ce1

i )
+P (Iij = 0|Hk)P ce0

i , k = 0, 1.

(3)

Assumption 3. The channels connect the sensors to fusion
center/sensors are independent, i.e.,

P (I0
1, I

0
2, . . . , I

0
l |I1, I2, . . . , Il) =

l∏
j=1

P (I0
j |Ij). (4)

B. Necessary condition for optimal sensor rules given a fusion
rule with fading channels

No matter for what sensor network decision systems (for
example, see [17], [18]), an m-ary l-sensor Bayesian cost with
fading channels finally can be written as the following form:

C(I01(y1), . . . , I0l−1(yl−1), I0l (yl); F 0)
=

∑m−1
i=0,j=0 CijPjP (F 0 = i|Hj),

(5)

where each Cij is some suitable cost coefficients, Pj is priori
probability for the hypothesis Hi, F 0 is a given fusion rule at
the fusion center, and each P (F 0 = i|Hj) denotes the condi-
tional probability of the event that the fusion center’s decision
F 0 = i when the actual hypothesis is Hj , i, j = 0, 1, . . .m−1.

Substituting the conditional probabilities given
H0, . . . ,Hm−1 into Eq. (5) and simplifying, we see
that

C(y;F 0) =
∑m−1

i=0 CiiPi +
∑m−1

i=0

∫
F 0=i

∑m−1
j=0,j 6=i ·

Pj(Cij − Cjj)p(y|Hj)dy1 · · · dyl,
(6)

where y = (y1, . . . , yl).
F 0 is actually a disjoint m-ary partition of the set of

all local messages (I01, . . . , I0l ). Each of those local mes-
sages corresponds uniquely to a polynomial. More pre-
cisely speaking, the local message (I0

11 = d11, . . . , I
0
1r1

=
d1r1 ; . . . ; I0

l1 = dl1, . . . , I
0
lrl

= dlrl
; dij = 0 or 1, j ≤

ri, i ≤ l) corresponds uniquely to a product polynomial
P11(I0

11)P12(I0
12) · · ·Plrl

(I0
lrl

), where for any j ≤ ri, i ≤ l

Pij(I0
ij) =

{
1 − I0

ij , if dij = 0
I0
ij , if dij = 1.

Obviously, P 0
Hi

(I01, . . . , I0l ) is the summation of all
P11(I0

11)P12(I0
12) · · ·Plrl

(I0
lrl

) where the local message
(I0

11 = d11, . . . , I
0
1r1

= d1r1 ; . . . ; I0
l1 = dl1, . . . , I

0
lrl

= dlrl
)

are in the ith subset (Hi decision subset) partitioned by the
fusion rule F 0. Thus,

{(I01, . . . , I0l ) : F 0(I01, . . . , I0l ) = i}
= {(I01, . . . , I0l ) : P 0

Hi
(I01, . . . , I0l ) = 1}, (7)

Based on Assumptions 1-3 and the total probability formula,
P 0

Hi
(I01, . . . , I0l ) can be rewritten as



P 0
Hi

(I01, . . . , I0l )
= PHi(I1, I2, . . . , Il; Pce0, Pce1),

(8)

where Pce0 = (P ce0
1 , . . . , P ce0

l ), Pce1 = (P ce1
1 , . . . , P ce1

l ),
and PHi

is a function of all local sensor rules and transmission
error probabilities yielded from P 0

Hi
, which may not be an

indicate function of Hi decision region in the observation
space.

Thus, using Eqs. (7), (8) and PHi(I1, I2, . . . , Il; Pce0, Pce1)
to be a linear function of Ii for any individual i, the integrand
of the right hand side of the Eq. (6) can be rewritten as
following various versions:

∑m−1
i=0 PHi

(I1, I2, . . . , Il; Pce0, Pce1)·∑m−1
j=0,j 6=i Pj(Cij − Cjj)p(y|Hj)

= (1 − I11)P 1
11(

I1
I11

, I2, . . . , Il; Pce0, Pce1; y)

+P 1
12(

I1
I11

, I2, . . . , Il; Pce0, Pce1; y)

. . .

= (1 − Ilrl
)P rl

l1 (I1, I2, . . . , Il

Ilrl

; Pce0, Pce1; y)

+P rl

l2 (I1, I2, . . . , Il

Ilrl

; Pce0, Pce1; y),

(9)

where Ii/Iij = (Ii1, . . . , Iij−1, Iij+1, . . . Iiri), P j
i1 and P j

i2 are
the functions independent of Iij , i = 1, . . . , l, j = 1, . . . , ri,
respectively . Based on above discussion, it is easy to see (for
details, cf. [16]) that the following necessary condition of the
optimal local compression rules holds.

Theorem 2.1. For distributed m-ary multisensor decision
system employing the fusion rule F 0. The set of optimal
sensor rules (I11, . . . , I1r1 ; . . . ; Il1, . . . , Ilrl

) which minimizes
the cost functional of Eq. (6) must satisfy following integral
equations

I11(y1) = I[
∫

P 1
11(

I1
I11

, . . . , Il; Pce0, Pce1; y)dy2 · · · dyl]

Il1(yl) = I[
∫

P 1
l1(I1, . . . ,

Il

Il1
; Pce0, Pce1; y)dy1 · · · dyl−1]

. . .

Ilrl
(yl) = I[

∫
P rl

l1 (I1, . . . , Il

Ilrl

; Pce0, Pce1; y)dy1 · · · dyl−1],
(10)

where I[·] is defined by

I[x] =

{
1, if x > 0

0, if x ≤ 0.
(11)

Remark 2.2. In the ideal channel case, the final decision rule is
a deterministic decision rule for the observation space, PH0 is
actually the indicate function of the final H0 decision region in
the observation space, therefore, its values are either of 0 and
1 other than that in [18]. In this paper, the final decision rule
for the observation space is a randomized fusion rule, i.e., the
observation space cannot be partitioned into disjoint decision
regions, therefore, P 0

H0
is not the indicate function of the final

H0 decision region anymore, and it can be some value in the
interval [0, 1].

Now, since, using Theorem 2.1, the corresponding argu-
ments on the algorithm convergence in the ideal channel case
(see [16], [18]) can be used for the fading channel case without
essential difficulty.

C. A special case

In [7], Chen et al. proposed optimal sensor rules under
the assumption of conditional independence between sensor
observations, based on the results of above subsection, we find
out that optimal sensor rules in [7] is a particular instance of
our results, furthermore, we present a more general optimal
sensor rules, in which we remove the inequality assumption
therein.

For the parallel binary Bayesian decision system with fading
channels, under the assumption of conditionally independent
observations, Eq. (9) can be rewritten as follows:

Pi1L(y1, y2, . . . , yl)
= Pi1(a

∏l
n=1 p(yn|H1) − b

∏l
n=1 p(yn|H0))

= ap(yi|H1)Pi1

∏
n6=i p(yn|H1)

−bp(yi|H0)Pi1

∏
n6=i p(yn|H1)

(12)

Therefore, the Eq. (10) can be rewritten as follows:

Ii(yi) = I[Aip(yi|H1) − Bip(yi|H0)]

i = 1, 2, . . . , l,
(13)

where Ai and Bi defined as follows respectively:

Ai = a

∫
Pi1

∏
n6=i

p(yn|H1)dy1 · · · dyi−1dyi+1 · · · dyl (14)

Bi = b

∫
Pi1

∏
n6=i

p(yn|H0)dy1 · · · dyi−1dyi+1 · · · dyl. (15)

Using Theorem 2.1, one can easily derive the similar result
described in Theorem 1 [7] by Eq. (13), that is to say, under
a given fusion rule, optimal sensor rules for the conventional
LRT and the reverse LRT can be written as follows:

P (Uk = 1|xk) =

{
1, P (xk|H1)

P (xk|H0)
≥ ηk

0, otherwise
,

or

P (Uk = 1|xk) =

{
0, P (xk|H1)

P (xk|H0)
≥ ηk

1, otherwise
, (16)

where the optimal threshold ηk is a proper number one needs
to search for in interval [0, ∞).

Since one does not know Ak and Bk before finding optimal
sensor rules, the above two kinds of likelihood ratio tests are
both required to search for the optimal thresholds in practical
applications. Eq. (16) has the same formulation as the result in
[7], expect using “reverse” likelihood ration test and removing
the inequality assumption therein.



III. THE UNIFIED FUSION RULE IN PARALLEL BINARY
BAYESIAN DECISION SYSTEM WITH FADING CHANNELS

In this section, we propose the unified fusion rule for a
specific l-sensor parallel binary Bayesian decision system
under the assumption that the ith sensor is required to transmit
a certain number ri of bits via fading channel while the fusion
center can receive its own observation y0. It can be seen that
each node in sensor networks has this kind of information
compression patterns since we suppose the node can also
observe data.

Theorem 3.1. The unified fusion rule for the above informa-
tion structure is F 0(I0

11, . . . , I
0
1r1

; . . . ; I0
l1, . . . , I

0
lrl

; y0), this
unified fusion rule can be equally written as following fusion
rule:

{I0
11, . . . , I

0
1r1

; . . . ; I0
l1, . . . , I

0
lrl

; y0 : F 0 = 0}

=


I0
11 = 0, . . . , I0

lrl
= 0; I01(y0) = 0

I0
11 = 1, . . . , I0

lrl
= 0; I02(y0) = 0

. . . ,
I0
11 = 1, . . . , I0

lrl
= 1; I02N (y0) = 0

 ,
(17)

where N =
∑l

i=1 ri.
Proof. Consider a set of sensor rules
I0
11, . . . , I

0
1r1

; . . . ; I0
l1, . . . , I

0
lrl

, observation y0, and a
general fusion rule :

{I0
11, . . . , I

0
1r1

; . . . ; I0
l1, . . . , I

0
lrl

; y0 : F 0 = 0}

=


{I0

11, . . . , I
0
1r1

; . . . ; I0
l1, . . . , I

0
lrl

; y0} :
F 0(I0

11 = d1
11, . . . , I

0
lrl

= d1
lrl

; y0) = 0
F 0(I0

11 = d2
11, . . . , I

0
lrl

= d2
lrl

; y0) = 0
. . . ,

F 0(I0
11 = dL

11, . . . , I
0rl

l = dL
lrl

; y0) = 0

 ,
(18)

where dk
ij , j ≤ ri, i ≤ l, k = 1, . . . , L equal 0 or 1. Therefore,

there are at most 2N different groups in Eq. (18). If L = 2N ,
we define a new set of binary compression rules as follows:

I0i(y0) = F 0(di
11, . . . , d

i
1ri

; . . . ; di
l1, . . . , dlrl

; y0). (19)

If L < N , for example, I0
11 = 0, . . . , I0

1r1
=

0; . . . ; I0
l1 = 0, . . . , I0

lrl
= 0; I02N (y0) = 0 does not

appear in the rewritten Eq. (18) via Eq.(19), we can add
F (I0

11 = 0, . . . , I0
1r1

= 0; . . . ; I0
l1 = 0, . . . , I0

lrl
= 0; y0) = 0

into Eq. (18), but let sensor rule I02N (y0) ≡ 1, in fact, I0
11 =

0, . . . , I0
1r1

= 0; . . . ; I0
l1 = 0, . . . , I0

lrl
= 0; I02N (y0) = 0 never

happen. Obviously, this modification does not change the
rewritten Eq. (18) at all. Thus, our fusion rule (17) with a
proper set of sensor rules allow us to represent any rule of
the form (18). Moreover, using I0i(y0) with other 2N bits
I0
ij , j ≤ ri, i ≤ l received by the fusion center and Eq. (17)

insures that the overall scheme produces the same output as
the original scheme using the rule from Eq. (18). Q.E.D.

By Eq. (17), we only consider the polynomial P 0
H0

of the
local sensor rules. The polynomial P 0

H0
of Eq. (17) can be

Fig. 1. The parallel Multisensor multi-hypothesis network decision system

written as

P 0
H0

(I0
11, . . . , I

0
lrl

; I01(y0), . . . , I02N (y0))

=
∑2N

k=1(
∑l

i=1

∏ri

j=1 fij(1 − I0k(y0))),
(20)

where fij is I0
ij or 1− I0

ij . Thus, the remaining problem is to
search for optimal sensor rules given a fusion rule which has
solved before in section 2.

IV. MULTISENSOR MULTI-HYPOTHESIS NETWORK
STRUCTURES WITH FADING CHANNELS

In this section, we consider more general multisensor multi-
hypothesis decision systems with fading channels: parallel and
tandem network with m hypotheses, H0,H1, . . . ,Hm−1, and
l sensors, S1, . . . , Sl with multiple observation data y1, . . . , yl

in space <n1×. . .×<nl . in addition, we assume that m known
conditional pdf p(y1, . . . , yl|H0), . . . , (y1, . . . , yl|Hm−1) are
of arbitrary forms.

A. Parallel network with fading channels

In this subsection, we consider modified parallel network,
which the fusion center can also observe data, i.e. the ith
sensors transmit ri bits to a fusion center F through fading
channels. Then, based on the received (I01, . . . , I0l−1) and
observation data yl, fusion center F makes a final decision
under a given fusion rule (see Fig. 1).

Thus, the above information structure can be expressed by

({y(r1)
1 ‖y(r2)

2 ‖ . . . ‖y(rl−1)
l−1 } ⇒

{I01‖I02‖ . . . ‖I0l−1} ⇒ (yl · F) → {m}),

where {·‖ · ‖ . . . ‖·} means that all sensors inside “{}” are
in parallel position without communications between sensors.
Besides, “y(ri)

i ” expresses the sensor Si observes its own
data yi and then compresses them to ri information bits,
i = 1. . . . , l − 1, and then the ri information bits are
sent over a fading channel, characterized by “I0i ”. More-
over, “{y(r1)

1 ‖y(r2)
2 ‖ . . . ‖y(rl−1)

l−1 } ⇒ {I01‖I02‖ . . . ‖I0l−1} ⇒
(yl · F) → {m}” implies that all sensor in “{}” transmit
their compressed data-information bits to the fusion center F
through fading channel, then the fusion center makes m-ary
decision together with observation data yl.



The fusion rule Fpara of fusion center for a parallel network
is given by an m-valued function

F 0
para(I01(y1), . . . , I0l−1(yl−1); yl) : (21)

{0, 1}N 7−→ {0, 1, . . . ,m − 1}, (22)

where N =
∑l−1

i=1 ri.

B. Tandem network with fading channels

In the tandem system, the sensor network is a team of
sensors in tandem, i.e., the first sensor S1 compresses its obser-
vation data yl to r1 information bits I1 = (I1

1 (y1), . . . , Ir1
1 (y1))

and transmits them to the second sensor S2 through fading
channel, then, due to communication bandwidth limits, the
second sensor S2 has to compress its observation y2 and the
received message T0

1 = (I01
1 (y1), . . . , I0r1

1 (y1)) to s2 bits
(T 1

2 (T0
1; y2), . . . , T s2

2 (T0
1; y2)) and transmits them to the next

sensor S3 through fading channel, and so on. This procedure
is repeated until the (l − 1)th sensor Sl−1. The last sensor Sl

also uses its observation yl together with the receive message
(T 01

l−1, . . . , T
0sl−1
l−1 ) to make a final m-ary decision under a

given final fusion rule Ftan, therefore, in this model, the sensor
Sl and decision center are built in the same station, (see Fig.
2).

Fig. 2. The tandem multisensor multi-hypothesis network decision system

Therefore, similarly to the notation of the information
structure in parallel networks, denote the information structure
for the tandem network simply by

(y(r1)
1

(s1)7−→ T0
1

(s1)7−→ y
(r2)
2

(s2)7−→ . . .
(sl−2)7−→ y

rl−1
l−1

(sl−1)7−→ T0
l−1

(sl−1)7−→ (yl · F) 7−→ {m}),

where r1 = s1, T0
i = (T 01

i , . . . , T 0si
i ) and “

(si−1)7−→ yri
i

(si)7−→ T0
i

(si)7−→” means that sensor Si compresses its own data yi together
with the received si−1 bits to si bits, and transmits these si

bits to the next sensor Si+1 through fading channel.
Combing the above two basic structures, an arbitrary hybrid

network can be constructed.

V. UNIFIED FUSION RULES FOR MULTISENSOR
MULTI-HYPOTHESIS NETWORK DECISION SYSTEMS WITH

FADING CHANNELS

We have the following two observations:

Observation 1. An m-ary decision can be expressed by n
binary decisions, where m − 1 < 2n ≤ m (for details, see

[17] and [18].

Observation 2. Obviously, at each intermediate node in the
tandem and hybrid networks, when we view the node as a
local fusion center, its information structure is actually a m-
ary parallel network, where m = 2n, n is the number of
bits transmitted to the next node by this node. Therefore, if
a unified fusion rule can be derived for the parallel network,
then, a unified fusion rule can be yielded for any tandem and
hybrid networks from the fusion center to the bottom node
iteratively.

VI. NUMERICAL RESULTS

In this section, we consider parallel Bayesian decision
system with fading channels including 3-sensor, 2-ary and 3-
ary detection system for Gaussian signals in additive Gaussian
noises. All the examples presented have symmetric channel er-
rors and cij = 1 as i 6= j, cii = 0, P0 = 1/2, P1 = P2 = 1/4
for 3-ary detection system. In this case, the Bayesian cost
function is actually decision error probability Pe; In all figures
and tables below, the “PN”, “TN”, denote parallel network,
tandem network respectively, “IC”, “FC” denote ideal channel
and fading channel respectively, “UFR” denotes unified fusion
rule.

A. Parallel Bayesian binary decision system with fading chan-
nels

In the following example, we consider binary decision
system with two sensors, the observations consist of a signal s
plus noises vi, i = 1, 2 or noises only. Hence, the observations
can be modeled as follows.

H1 : y1 = s + v1, y2 = s + v2,

H0 : y1 = v1, y2 = v2,

wheres, v1 and v2 are all mutually independent ,and

s ∼ N(2, 1), v1 ∼ N(0, 2), v2 ∼ N(0, 1)

Example 6.1.1. In this example, we consider two sensor
parallel binary Bayesian decision system under the assumption
that every sensor is required to transmit a bit through fading
channel with P ce0

1 = P ce1
1 = P ce0

2 = P ce1
2 = p. The Receiver

Operating Characteristic curves (ROC) for AND, OR, and
XOR rules with p = 0.15, 0.3 are provided respectively in
Fig. 3 below.
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Fig. 3. The ROCs for different fusion rules with fading channels



An interesting phenomenon is found in Fig. 3 that the ROCs
for different fusion rules may not reach the two points (0, 0)
and (1, 1) when all the channels are fading channels.

B. Three sensors decision system

The three sensor 3-ary decision model is

H0 : y1 = ν1, y2 = ν2, y3 = ν3;
H1 : y1 = s1 + ν1, y2 = s1 + ν2, y3 = s1 + ν3;
H2 : y1 = s2 + ν1, y2 = s2 + ν2, y3 = s2 + ν3;

where the signals s1 and s2 and the noise ν1, ν2 and ν3 are
all mutually independent, and

s1 ∼ N(2, 3), s2 ∼ N(−2, 3), ν1 ∼ N(0, 3),
ν2 ∼ N(0, 2), ν3 ∼ N(0, 1)

Example 6.2.1(a): The parallel and tandem binary decision
information structures are(

{y(1)
1 ‖y(1)

2 } ⇒ {I0(1)1 ‖I0(1)2 } ⇒ (y(4)
3 · F) → {2})

)
(y(1)

1

(1)7−→ T0
1

(1)7−→ y
(2)
2

(1)7−→ T0
2

(1)7−→ (y(2)
3 · F) 7−→ {2})
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Fig. 4. The ROCs of the unified fusion rules for the parallel network and
tandem network binary decision system with ideal channels or fading channels

The ROCs for unified fusion rule of the above information
structure are provide in Fig. 4 below, which shows that the
performance decreases with the increase of the channel error
and the performance of the unified fusion rule for ideal
channels is always better than that of the unified fusion rule
for fading channels.

Example 6.2.1(b): The parallel and tandem 3-ary informa-
tion structures are(

{y(1)
1 ‖y(1)

2 } ⇒ {I01‖I02} ⇒ (y3 · F) → {3})
)

(y(1)
1

(1)7−→ T0(1)
1

(1)7−→ y2
2

(1)7−→ T0
2

(1)7−→ (y3 · F) 7−→ {3})

Based on the result of the unified fusion rules for 3-ary
parallel and tandem network decision system with ideal chan-
nels in [17], those unified fusion rules with fading channels
can be easily written. In Table 1 below, their probabilities of
decision error Pes are given. We can see that they for both the
parallel network and tandem network increase with increase
of the channel error, and the performance of the unified fusion
rule for parallel network is better than that of tandem network.

TABLE I
DECISION COSTS FOR UNIFIED FUSION RULES WITH DIFFERENT CHANNEL

ERRORS

UFR Channel error
P=0 P=0.1 P=0.3 P=0.5

Pe for PN (three sensors) 0.2392 0.2429 0.2575 0.2620
Pe for TN (three sensors) 0.2487 0.2578 0.2647 0.2665

ACKNOWLEDGMENT

This work was supported in part by the NNSF
of China (#60374025 and 60574032) and Project 863
(#2006AA12A104).

REFERENCES

[1] S. C. A.Thomopoulos and L. Zhang, “Networking delay and channel
errors in distributed decision fusion ,” in Abstracts of Papers, IEEE Int.
Symp. Information Theory, Kobe, Japan, Jun. , p. 196, 1988.

[2] S. C. A. Thomopoulos and L. Zhang, “Distributed decision fusion with
networking delays and channel errors,” Inform. Sci, vol. 66, pp. 91-118,
Dec. 1992.

[3] T. M. Duman and M. Salehi, “Decentralized detection over multiple-
access channels,” IEEE Trans. Aerosp. Electron. Syst, vol. 34, pp. 469-
476, Apr. 1998.

[4] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “ Fusion of
decisions transmitted over fading channels in wireless sensor networks,”
in Proc. 36th Asilomar Conf. Signals, Systems, and Computers, Pacific
Grove, CA, Nov. 2002, pp. 1184C1188.

[5] R. Niu, B. Chen, and P. K. Varshney, “Decision fusion rules in wireless
sensor networks using fading statistics,” in Proc. 37th Annu. Conf.
Information Sciences and Systems, Baltimore, MD, Mar. 2003.

[6] B. Chen, R. Jiang, T. Kasetkesam and P. K. Varshney, “Channel Aware
Decision Fusion in Wireless Sensor Networks,” IEEE Transactions on
Signal Processing, Vol. 52, no. 12,pp.3454-3458, 2004.

[7] B. Chen and P.K. Willett, “On the optimality of the likelihood-ratio test
for local sensor decision rules in the presence of nonideal channels,” in
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 693C699, 2005.

[8] A. Kashyap, “Comments on “On the optimally of the likelihood-ratio test
for local sensor decision rules in the presence of nonideal channel”,” in
IEEE Trans. Info Theor, Vol. 52, no. 2, pp.67-72, 2006.

[9] R. Niu, B. Chen, and P.K. Varshney, “Fusion of decisions transmitted
over Rayleigh fading channels in wireless sensor networks,” IEEE Trans.
Signal Processing, vol. 54, pp. 1018-1027, 2006.

[10] Q. Cheng, B. Chen, and P. K. Varshney, “Detection performance limits
for distributed sensor networks in the presence of nonideal channels,”
IEEE Trans. Wireless Commun, vol. 5, pp. 3034-3038, 2006.

[11] J. D. Papastavron and M. Athans, “Distributed detection by large learn of
sensors in tandem,” IEEE Trans. Aerosp. Electron Syst, vol.28 pp.639-652,
1992.

[12] J. N . Tsitsiklis, DEcentralized detection, in Advances in Statistical
Signal Processing, H. V. Poor and J. B. Thoms, Eds. Greenwich, CT;
JAI, 1993,2.

[13] J. N . Tsitsiklis, “Decentralized detection,” in Advances in Statistical
Signal Processing, H. V. Poor and J. B. Thoms, Eds. Greenwich, CT; JAI,
1993.

[14] R. Vismanathan and P. K. Varshney, “Distributed detection with multiple
sensors: Part I-Fundamentals,” Proc. IEEE, vol. 85, PP.54-63, Jan, 1997.

[15] P. K. Varshney, “Distributed detection and data fusion,” New York:
Springer-Verlag, 1997.

[16] Y. M. Zhu, R.S. Blum, Z.Q . Luo and K. M. Wong, “Unexpected prop-
erties and optimum distributed sensor detectors for dependent observation
cases,” IEEE Trans. Automat. Contr, Vol. 45,pp.67-72, jan.2000. Boston:
Kluwer Academic Publishers, 2003.

[17] Y. M. Zhu, X. R. Li, “Unified fusion rules for multisensor multi-
hypothesis network decision systems,” IEEE Trans.on Systems,Man and
CyberneticsPartA, 33(4):502-513, 2003.

[18] Y.M. Zhu, Multisensor decision and estimation eusion, Boston: Kluwer
Academic Publishers, 2003.


