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Abstract—Adaptive CUSUM (namely ACUSUM) charts have 
received much attention recently. It is found that, by adjusting 
the reference parameter k dynamically, an ACUSUM chart can 
achieve better performance over a range of mean shifts than the 
conventional CUSUM chart that is designed to have maximal 
detection effectiveness at a particular level of shift. This article 
studies a new feature of the ACUSUM chart regarding an 
additional charting parameter, w (the exponential of the sample 
mean shift in (xt – µ0)w), which is also adapted according to the 
on-line estimated value of the mean shift. The testing cases reveal 
that this new adaptive CUSUM chart outperforms the earlier 
ACUSUM chart to a substantial degree. 

Keywords—adaptive control chart, CUSUM chart, loss 
function, quality control, statistical process control 

I. INTRODUCTION 
The CUSUM control charts have been well recognized 

across industries owing to the fact that on-line measurement 
and distributed computing systems become a norm in today’s 
Statistical Process Control (SPC) applications [1]. Usually, two 
symmetrical CUSUM charts are used together for detecting 
two-sided mean shifts. In a high-sided CUSUM chart for 
detecting increasing mean shifts, the statistic Ct to be updated 
for the (t)th sample is 
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where xt is the (t)th sample value of a quality characteristic x 
following an independent and identical normal distribution, N 
(µ, σ2); µ0 is the in-control mean of x; and k is the reference 
parameter. The difference (xt - µ0) is a sample value of the 
mean shift δσ. In this article, it is assumed that the in-control 
mean µ0 and standard deviation σ0 of x are known a priori (for 
example they can be estimated from the field test records or 
historical data). Moreover, the standard deviation σ is assumed 
to be unchanged, i.e., σ ≡ σ0. 

The quality characteristic x can be converted to z that has a 
standard normal distribution when process is in control. 

 σµ /)( 0−= xz . (2) 

Correspondingly, Equation (1) becomes 
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and the mean shift is δ. 

A conventional CUSUM chart often determines the 
reference parameter k with reference to a special mean shift δs. 
As a result, it performs optimally when the mean shift δ is 
equal to sδ . However, since it is quite difficult to predict the 
actual magnitude of δ for most of the applications, there is no 
guarantee that the conventional CUSUM chart always performs 
well during the operation.  

Recently, Sparks (2000) proposed the concept of adaptive 
CUSUM (namely ACUSUM) chart which adjusts the reference 
parameter k according to the on-line estimated value δ̂  of the 
mean shift [2]. Compared with the conventional CUSUM 
charts, the adaptive feature makes the ACUSUM chart more 
efficient in signaling a range of future expected but unknown 
mean shifts from a holistic viewpoint. Shu and Jiang (2006) 
simplified the design and implementation of the ACUSUM 
chart [3].  

Recently, some researchers have found that an exponential 
w will influence the sensitivity of the CUSUM chart with 
respect to mean shifts δ if the variable zt in (3) is replaced 
by w

tz , or the term (xt - µ0) in (1) is replaced by (xt - µ0)w [4]. 
Usually, a larger w makes the CUSUM chart more effective for 
detecting larger δ; whilst a smaller w makes it more sensitive to 
smaller δ. 

In this article, we propose a new ACUSUM chart in which 
both k and w are adapted dynamically in accordance with the 
current estimated value δ̂  of the mean shift. For the purpose of 
detecting increasing mean shifts, the statistic Ct in the new 
ACUSUM chart will be updated by 
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where, the parameters k, w and q all depend on the current 
sample value zt. The statistic Ct may increase or decrease 
depending on whether the sample value zt (or xt – µ0) is larger 
or smaller than zero. However, Ct is always shrunk toward zero 
by the reference parameter k. When an increasing mean shift 
occurs, Ct is likely to become larger and larger. Sooner or later, 
a subsequent sample point will exceed the control limit H of 
the ACUSUM chart, and thereby produce an out-of-control 
signal. 

In order to differentiate the two versions of ACUSUM 
charts, the first ACUSUM chart studied by Sparks (2000) and 
Shu and Jiang (2006) is called as the ACUSUM I chart, whilst 
the one proposed in this article as the ACUSUM II chart. It is 
noted that, if w is equal to one, Equation (4) is exactly the same 
as (3). This means that the ACUSUM I chart is just a special 
case of the ACUSUM II chart per se. As revealed by the 
performance studies in the subsequent sections, the new 
adaptive feature of the ACUSUM II chart is able to increase the 
detection effectiveness by about 20%, on average, compared 
with the ACUSUM I chart in which only the reference 
parameter k is adapted.  

This article focuses on the study of the high-sided 
ACUSUM II chart. However, a symmetrical low-sided 
counterpart can be built straightforwardly. 
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The performance of a control chart can be measured by the 
Average Run Length (ARL), meaning the average number of 
samples required to signal an out-of-control case or produce a 
false alarm. The out-of-control ARL1 is commonly used as an 
indicator of the power (or effectiveness) of the control chart, 
whereas the in-control ARL0 for the false alarm rate. In this 
article, the out-of-control ARL1 will be computed under the 
steady-state mode. It assumes that the process has reached its 
stationary distribution at the time when the process shift occurs. 
Since production processes often operate in in-control 
condition for most or relatively long periods of time [5], the 
steady-state mode is therefore more realistic than the zero-state 
mode. 

II. DESIGN AND IMPLEMENTATION OF AN ACUSUM II CHART 
In this section, the idea of sub-cusum chart is first 

introduced and is used to discretize the ACUSUM II chart. 
Then an optimization model is presented for the design of this 
chart. It is followed by the selection of the objective function 
for the optimization design. The implementation of the 
ACUSUM II chart is outlined at last. 

A. Sub-cusum Charts 
It seems desirable to adjust the parameters k and w 

(Equation (4)) of an ACUSUM II chart continuously in 
accordance with the current estimated value tδ̂  of the mean 
shift. However, studies on VSSI (Variable Sample Sizes and 
Sampling Intervals) CUSUM charts discover that using n (n = 
2 or 3) individual cusum charts (called the sub-cusum charts) 
may gain most of the benefits that can be reached by a VSSI 
CUSUM chart [6], and are relatively easier to implement. It 
suggests that, in the implementation of an ACUSUM II chart, 
one may only use n sub-cusum charts, each of which has 
different values of ki and wi (i = 1, 2, …, n) and each is best for 
detecting a particular discrete value of δi (δmin < δ1 < …< δn < 
δmax). Jointly, the n sub-cusum charts will optimize the holistic 
performance of the ACUSUM II chart over the entire mean 
shift range. The ACUSUM II chart keeps on switching among 
the n sub-cusum charts depending on which δi is closest to the 
current estimated t̂δ . Any moment one, and only one, sub-
cusum chart that is best for detecting t̂δ  is in use (or active). 
Suppose, in a moment, if the (i)th sub-cusum chart is active, the 
parameters k and w in (4) will take the values of ki and wi, 
respectively. In this article, (n = 2) is always used because of its 
ease for design and implementation. The results of numerical 
studies show that, no matter (n = 2) or (n = 3) is employed, the 
performance of the ACUSUM II charts is nearly the same.  

Each of the n discrete δi is set at the center of one of the n 
equal intervals between δmin and δmax, that is, 
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where D is the distance between two discrete values δi and δi+1. 
Each of the n sub-cusum charts has different values of ki and 
wi. When the (i)th sub-cusum chart is active, Equation (4) is 
discretized to: 
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Like in an ACUSUM I chart, t̂δ  is updated by a EWMA 
procedure in an ACUSUM II chart. 
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The operator  makes t̂δ  equal to one of the n discrete δi 

whichever is closest to 1
ˆ((1 ) )t tzλ δ λ−− + . Then the 

corresponding sub-cusum chart is selected to update Ct using 



(7). When the smoothing parameter λ equals one, t̂δ is 
completely determined by zt; otherwise t̂δ  also depends on the 
information in the sequence of the sample points. 

For example, suppose n = 2, λ = 0.4, δmin = 1 and δmax = 3, 
then, Equation (6) gives D = 1, δ1 = 1.5 and δ2 =2.5. Now, 
suppose 1t̂δ −  = δ1 and zt =3.0,  
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Thus, the 2nd sub-cusum chart will be activated to update Ct, or 
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B. Design Model 
To design an ACUSUM II chart, three parameters need to 

be specified: (1) τ, the minimum allowable in-control ARL0 for 
a one-sided ACUSUM II chart; (2) δmin, the lower bound of 
mean shift; and (3) δmax, the upper bound of mean shift.  

Based on the specifications, the charting parameters of an 
ACUSUM II chart will be determined in an integrative and 
optimal manner using the following design model: 

 Objective function: U = minimum. (11) 

 Constraint function: ARL0 = τ. (12) 

 Design variables: ki, wi (i =1, 2, …, n), λ, H. (13) 

where H is the control limit of the ACUSUM II chart. When n 
= 2, there are in total six design variables, among which k1, w1, 
k2, w2 and λ are independent. The control limit H is adjusted to 
ensure that the ARL0 of the ACUSUM II chart is equal to τ. The 
optimization aims to find the optimal values of these design 
variables so that the objective function U is minimized or both 
small and large mean shifts can be detected quickly. The 
selection of U will be discussed shortly.  

Any nonlinear optimization program may be used to search 
the optimal solution. In our study, the simple, yet reliable, 
Hooke-Jeeves procedure is employed [7]. It can complete the 
design of an ACUSUM II chart in a few CPU seconds with a 
personal computer.  

C. Design Objective 
Since our goal is to make control charts efficient at 

signalling a range of mean shifts, the objective function should 
measure the holistic performance of the charts across the range 
rather than the effectiveness at a particular point.  

Furthermore, since it is assumed that all mean shifts within 
a range are equally important [2], a uniform distribution for δ is 
implied. The comparison of the overall performance of two 
charts may be formulated as follows: 
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where, ARL(δ) is produced by a particular chart at δ and 
ARLbenchmark(δ) is generated by a chart that acts as the 
benchmark. Obviously, if the RARL value of a chart is larger 
than one, this chart is generally less effective than the 
benchmark, and vice versa.  

An alternative is to use the Extra Quadratic Loss (EQL) to 
measure and compare the performance of the charts. When σ  
is a constant, the quadratic loss incurred by a mean shift δ is 
simply equal to ( )2

0δσ  [4,  ( Wu et al. 2004), because 
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Moreover, since the quality cost is proportional to ARL(δ), the 
overall EQL can be calculated as follows: 
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Both EQL and RARL are acquired by integration across the 
whole shift range. The integration can be computed by a 
numerical method and the ARL(δ) of the ACUSUM II chart is 
calculated by the formulae derived in Appendix A. The index 
EQL based on loss function has two advantages compared with 
RARL. Firstly, the loss function is a more comprehensive 
measure of the charting performance than ARL, because it 
considers all the contributors to the quality cost including the 
time to signal and the magnitude of δ. Secondly, the evaluation 
of EQL does not require a predetermined benchmark chart. In 
view of this, EQL will be used as the objective function U in 
(11) for the design of the ACUSUM II charts. The 
minimization of EQL will reduce the loss in quality (or the 
cost, or the damage) incurred in the out-of-control cases. Like 
RARL, the ratio between the EQL values of two control charts 
serves as a measure of the relative effectiveness of the two 
charts. 

D. Implementation 
After an ACUSUM II chart has been designed, it can be 

implemented as follows: 

1) Initialize 0̂δ as δ1 (note, 0̂δ  means the estimated mean 
shift at the beginning when t = 0, and δ1 is the designated 
value of the shift for the first sub-cusum chart), and the 
statistic C0 in (7) as zero. 

2) Take a sample value xt of the quality characteristic. 
3) Covert xt to zt using (2). 
4) Update t̂δ  by (8). 

5) If t̂δ = δi, use the charting parameters ki, wi of the (i)th 
sub-cusum chart to update Ct, that is, 
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6) If Ct ≤ H, the process is thought in control, and go back 
to step 2) for the next sample. 

7) Otherwise (i.e., Ct > H), the ACUSUM II chart 
produces an out-of-control signal, and the process is stopped 
immediately for investigation. 

III. COMPARATIVE STUDIES 
In this section, the performance of four control charts is 

compared. For the convenience, all charts are studied as one-
sided charts with an upper control limit for detecting increasing 
mean shifts. Furthermore, in-control 0µ and 0σ  are assumed as 
zero and one, respectively. 

1) The conventional CUSUM chart: The design of a 
conventional CUSUM chart aims at minimizing the out-of-
control ARL1 at a specified mean shift level of δs. Usually, δs is 
set as δmin, because δs should be the smallest shift such that any 
shift δ larger than δs is considered important enough to be 
detected quickly [8]. Consequently, the reference parameter k 
is set as 0.5 δmin.  

2) The optimal CUSUM chart:  This chart is very similar 
to a conventional CUSUM chart in aspects of the updating of 
the cumulative statistic Ct (as in (1)), the fixed parameter k, 
and the operational rules. However, the optimal CUSUM chart 
is designed by a new optimization algorithm in which the 
parameters k and H are optimized by using EQL (i.e., the 
performance over the whole shift range) as the objective 
function and (ARL0 = τ) as the constraint function.  

3) The ACUSUM I chart: This is the adaptive CUSUM 
chart with k being adjusted during the operation. Here, the 
model developed by Shu and Jiang (2006) is adopted, because 
this model is easier to be designed than the model proposed by 
Sparks (2000). However the performance of both models is 
almost the same. In this article, the two charting parameters λ  
and Q0 of an ACUSUM I chart are optimized so that EQL is 
minimized subject to (ARL0 = τ).  

4) The ACUSUM II chart proposed in this article. 
The first comparison is carried out under a general 

condition with (τ = 740, δmin = 0.5, δmax = 4). The specification 
of (τ = 740) ensures that the resultant false alarm rate is 
identical to that of a typical 3-sigma X  chart when two 
symmetrical CUSUM charts are used simultaneously to detect 
the two-sided mean shifts.  

With these specifications, the four control charts are 
designed and the resultant charting parameters and the ARL 
values, are summarized in Table I. There are several interesting 
findings. 

 

 

TABLE I.  ARL COMPARISON AMONG CUSUM AND ACUSUM CHARTS 

( minδ = 0.5, maxδ = 4.0) 

 con 
CUSUM 

opt 
CUSUM 

ACUSUM 
I 

ACUSUM 
II 

k =0.250 k =0.825 H =1.706 H =6.898 
  λ =0.400 λ =0.456 

H =8.009 H =3.048 Q0 =3.417 k1 =0.594 
  L =4.000 k2 =1.154 
   w1 =1.435 

δ 

   w2 =1.750 
0.00 739.39 739.48 743.18 739.16 
0.50 25.51 54.59 26.48 40.15 
1.00 9.79 11.13 10.55 10.14 
1.50 6.08 4.98 6.09 5.22 
2.00 4.46 3.17 4.09 3.38 
2.50 3.56 2.36 3.03 2.42 
3.00 2.99 1.92 2.37 1.85 
3.50 2.60 1.62 1.97 1.48 
4.00 2.31 1.40 1.68 1.24 
EQL 20.709 15.375 17.343 14.398 

ACUSUM II

EQL
EQL

 1.438 1.068 1.205 1.000 

RARL 1.349 1.074 1.164 1.000 

1) Both the ACUSUM I and II charts are more effective 
than the conventional CUSUM chart almost across the entire 
shift range except for 1δ ≤ . The ACUSUM II chart 
outperforms the conventional CUSUM chart to a more 
significant degree than the ACUSUM I chart does. 

2) The ACUSUM II chart also outperforms the ACUSUM 
I chart for most of the cases. It is only less sensitive than the 
latter to very small δ (i.e., when δ ≤ 0.5). It is noted that, δmin 
is specified as 0.5 in this case. Then, a low ARL value for (δ ≤ 
δmin) will be considered as a drawback, because it may result 
in over-correction and introduce extra variability [8]. 

3) The optimal CUSUM chart has achieved significant 
improvement in detection effectiveness compared with the 
conventional CUSUM chart. The optimal CUSUM chart has a 
larger ARL1 only for minor mean shifts. As long as δ > 1, it 
becomes much more effective than the conventional CUSUM 
chart. The optimal CUSUM chart may even outperforms the 
ACUSUM I chart. But it is generally less effective than the 
ACUSUM II chart. 

As aforementioned, for most of the cases, no chart will give 
better performance than other charts for all shifts [9]. 
Consequently, in order to make an accurate and objective 
decision about the relative effectiveness of the charts, it is 
necessary to evaluate the values of the following three holistic 
measures of the charts. 

1) EQL (Equation (16)); 
2) EQL / EQLACUSUM II, the ratio between the EQL of a 

chart and the EQL of the ACUSUM II chart; and 
3) RARL (Equation (14)), the ratio between the ARL of a 

chart and the ARL of the ACUSUM II chart, i.e., using the 
ACUSUM II chart as the benchmark.  

The results are enumerated at the bottom of Table I. It is 
interesting to find that the values of EQL / EQLACUSUM II and 
RARL of a chart are often fairly close to each other. They reveal 
that: 



1) When considering the whole shift range, both the 
ACUSUM I and ACUSUM II charts obviously outperform the 
conventional CUSUM chart. If measured by EQL, the 
ACUSUM I and ACUSUM II charts are more effective than 
the conventional CUSUM chart by 19.4% and 43.8%, 
respectively. 

2) Between the ACUSUM I and ACUSUM II charts, the 
latter outperforms the former by more than 20%, on average, 
across the entire shift range.  

3) The optimal CUSUM chart uses a fixed k as the 
conventional CUSUM chart, but its overall performance has 
been significantly improved. However, the optimal CUSUM 
chart is less effective than the ACUSUM II chart by about 7% 
measured by either EQL or RARL. The optimal CUSUM chart 
seems simpler than the ACUSUM II chart. But in a 
computerized environment, the operation of both charts is 
equally easy.  

Next, the effectiveness of the four charts is further 
compared in a factorial experimental design with four different 
cases (combinations) of δmin and δmax: (1) δmin = 0.25, δmax = 
3.0; (2) δmin = 0.25, δmax = 5.0; (3) δmin = 0.75, δmax = 3.0; (4) 
δmin = 0.75, δmax = 5.0. 

In all four cases, the values of ARL, EQL and RARL reveal 
the performance characteristics similar to those shown in Table 
I. 

IV. CONCLUSIONS AND DISCUSSIONS 
This article has proposed an improved adaptive CUSUM 

chart, the ACUSUM II chart, for detecting process shifts in 
mean. This chart further enhance the performance of the earlier 
ACUSUM I chart to a promising extent. The improvement is 
attributable to the on-line adaption of an additional charting 
parameter, w, which is the exponential of the sample mean 
shifts. The ACUSUM II chart is also much easier to design in 
terms of the required CPU time as its ARL can be evaluated by 
a Markov procedure. 
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APPENDIX  
CALCULATION OF THE ARL OF THE ACUSUM II CHART 
The ACUSUM II chart can be described by a two-

dimensional Markov chain. Suppose that the statistic Ct in (7) 
experiences m different transitional states before being 
absorbed into the out-of-control state. States 0 to (m–1) are in-
control states and state m is an out-of-control state. The width 
of the interval of each state is given as 

 d = H / (m – 0.5). (Α.1) 

The center, Oj, of state j is given as 

 Oj = j⋅d       j = 0, 1, …, m. (A.2) 

Meanwhile, n sub-cusum charts are employed 
corresponding to n discrete mean shifts δ1, δ2, …, δn.  

 δi = δmin + (i –0.5) D  i =1, 2, …, n (A.3) 

where, 

 D = (δmax – δmin) / n (A.4) 

is the distance between these discrete mean shift values.  

In a two-dimensional Markov chain, a point (i, j) represents 
a status in which the (i)th sub-cusum chart is in use and the 
statistic Ct is equal to Oj. Let pij-uv be the transition probability 
from point (i, j) to point (u, v). 
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where, f (zt) is the density function of zt, and Ω is the 
intersection of the following two domains Ω1 and Ω2: 

1) Domain Ω1 

  Ω1:  LB ≤ zt ≤ UB. (A.6) 

It is the region for which the ACUSUM II chart will use the 
(u)th sub-cusum chart for the (t)th sample, given that the (i)th 
cub-cusum chart is employed for the (t-1)th sample; or the 
estimated δ̂  is closest to δu for the (t)th sample, given that it is 
equal to δi for the (t-1)th sample. Referring to (A.3), the lower 
bound LB and upper bound UB of the region Ω1 can be 
determined as follows: 
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2) Domain Ω2 

 Ω2:  lb ≤ zt ≤ ub. (A.9) 

It is the region for which the statistic Ct will be closest to 
Ov, given that Ct-1 is equal to Oj. To make this transition (see 
(7)), 

 , 0,L UQ q Q if v< < >  (Α.10) 

or 

 , 0,Uq Q if v−∞ < < =  (Α.11) 
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Then, since (from (7)) 
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therefore the lower bound lb and upper bound ub of zt in the 
region Ω2 are determined as follows: 
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and 
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The transition probability pij-uv in (A.5) can be actually 
computed by 

 (min( , ) ) (max( , ) ),ij uvp ub UB u lb LB u− = Φ − − Φ − (Α.16) 

if min(ub,UB)>max(lb,LB); otherwise, 0ij uvp − = . And Ф() is 
the cumulative probability function of the standard normal 
distribution. 

When computing the in-control ARL0, the transition 
probability pij-uv is calculated with µ = 0. Based on pij-uv, the in-
control transition matrix R0 can be established. It is a (n m) × (n 
m) matrix excluding the elements associated with the absorbing 
(or out-of-control) state. The zero-state ARL0 is equal to the 
first element of the vector V given by the following expression: 

 V = (I – R0)-1 1, (A.17) 

where I is an identity matrix and 1 is a vector with all elements 
equal to one. 

The transition matrix R1 for calculating the out-of-control 
ARL1 can be established similarly to R0 except that the 
transition probability pij-uv in R1 must be evaluated using the 
out-of-control µ (= δ). The out-of-control ARL1 under the 
steady-state mode is calculated as the following: 

 ARL1 = BT (I – R1)-1 1, (A.18) 

where, B is the steady-state probability vector with (µ = 0). It is 
obtained by first normalizing R0 and then solving the following 
equation: 

 0
TB R B= , (Α.19) 

subject to  

 1Τ Β = 1. (Α.20) 
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