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Abstract—The paper outlines a novel method for visual 
detection of known objects in images of arbitrary contents. The 
major improvement over the existing techniques using keypoint 
detectors (e.g. Harris-Plessey, SIFT) is that the areas around pre-
detected keypoints are approximated by various geometric 
patterns. Matching can be, therefore, done by comparing local 
geometric and colour structures of keypoints and by testing the 
geometric consistency over sets of matched keypoint pairs. The 
method can be used primarily for vision-guided search in mobile 
autonomous devices. The paper presents the mathematical 
foundations of the method and illustrates its performances for 
exemplary problems. 

Keywords—keypoints, image matching, geometric patterns, 
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I.  INTRODUCTION 
Visual search for objects (for known objects, in particular) 

is one of the fundamental operations for intelligent agents 
acting in unknown environments (e.g. exploratory robotics, 
information retrieval in visual databases, surveillance and 
security systems, etc.). Even though the physical constraints of 
the applications might be different (e.g. identification of human 
faces in a crowded place versus search in a digitized database 
of video-clips) the underlying problems are similar from the 
perspective of machine vision algorithms. In typical problems, 
the informational content of visual data is deteriorated and/or 
distorted by partial occlusions, poor and/or diversified 
illumination, scale changes, perspective distortions and other 
similar effects. Under such conditions, the goal is almost 
always the same, i.e. to detect a rather small fragment from a 
large amount of irrelevant visual data and to verify whether the 
extracted fragment matches the visual characteristics of known 
objects. Usually, the distortions are present both in the analyzed 
data (e.g. images captured by system cameras) and in the 
database (i.e. exemplary photos of known objects). 

The local approach is a universally accepted machine vision 
technique for such tasks and this is strongly supported by the 
evidence (e.g. [1] and [2]) that human vision recognises known 
objects as collections of local features which are “interpolated” 
into the object if a sufficient number of those features appears 
in a consistent configuration. Although this mechanism may 
not work perfectly (e.g. optical illusions) but generally it allows 
detection of known objects which are poorly seen because of 
the degrading conditions listed above.  

In machine vision, local features (also referred to as corner 
points, keypoints, interest points, characteristic points, local 
visual saliencies, etc.) have been known since the 80’s (e.g. 
[3]). Gradually, they have been used in more sophisticated 
applications (e.g. motion tracking, image matching and 
detection of known objects in difficult conditions, e.g. [4]) and 
currently they are considered a reliable tool for visual 
information retrieval and vision-guided navigation. SIFT, 
Harris-Plessey and SUSAN (e.g. [5], [3] and [6]) are examples 
of the most popular and successful keypoint detectors of low-
level local features. 

In this paper, we discuss a novel mechanism that uses 
keypoints as a starting point for detection of known objects. As 
the numbers of keypoints can be large, image matching 
becomes a computation-intensive task even with efficient 
algorithms used, for example, in SIFT detector that produces 
only highly distinctive features. Generally, keypoints returned 
by existing detectors are based on differential (or quasi-
differential, e.g. SUSAN) properties of the image 
intensity/colour function. Even though keypoints can be further 
characterized by various descriptors (e.g. [5] or [7]) those 
characteristics do not provide any structural description of the 
corresponding fragments of images. Should such a structural 
description be available (both in database images of objects and 
in analyzed images) the search for known objects could be 
done more selectively and more effectively. 

In the proposed method, circular windows are extracted 
from an analyzed image around the detected keypoints. Each 
window is subsequently tested whether it contains any of 
predefined geometric structures. Since only structures present 
within the database objects are considered, the search 
immediately focuses on areas possibly containing those objects. 
Any image fragments of different local geometries are 
immediately ignored. Finally, the match between database 
keypoints and image keypoints is based on both structural and 
geometric consistencies so that presence of known objects can 
be quickly detected.  

The paper presents overview of the method, explains its 
principles and discusses exemplary results. This is an ongoing 
research so that the complete evaluation of performances is not 
available yet. Section 2 presents the algorithm for 
approximating circular windows by various geometric 
structures. Accuracy of the approximations is assessed using 
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the Radon transform (as explained in Section 3). Section 4 
illustrates (using selected examples) how the approximations 
can be used for a quick matching of analyzed images against 
database images of known objects. 

II. APPROXIMATIONS OF CIRCULAR IMAGES 

A. Circular Patterns 
Our previous papers (e.g. [8], [9]) described a method that can 
be find the optimum approximation of an R-radius circular  
image (grey-level or colour) by a predefined pattern of the 
same radius. The patterns can be any geometric structure that 
can be characterized by several configuration and 
colour/intensity parameters. Although the method is generally 
applicable to any parameter-defined patterns, corners and 
corner-like structures (e.g. junctions) are the simplest 
examples.  

Fig. 1 presents several exemplary circular patterns of radius 
R. As shown in the figure, each instance of a pattern can be 
uniquely characterised by several geometric (configuration) 
parameters (represented by indexed β‘s in Fig. 1) and several 
colours/intensities. For example, a T-junction (see Fig.1D) can 
be unambiguously defined by three colours, the orientation 
angle β2 and the angular width β1. 

 
Figure 1.  Examplary circular patterns 

Various functions of the intensity/colour can be calculated 
over the pattern area and their analytic forms on the general 
structure of the pattern while and the function values depend on 
the parameters of a given instance of the pattern. Moments of 
the pattern area are examples of such function (they have been 
proposed as the functions of interest in [8]). 

For example, the selected moments of colour corners 
(Fig.1A) are as follows: 
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where 1A  and 2A  are colour vectors (e.g. in RGB space) of 
both parts of the corner while β1 and β2 are angles shown in 
Fig.1A. 

B. Pattern-based Approximations 
Given the values of a sufficient number of the area 

functions of a pattern instance, the configuration and 
colour/intensities parameters of that pattern can be 
reconstructed from the set of values. For example, the 
parameters of patterns shown in Fig.1 can be calculated from of 
a number of moments (using expressions similar to (1) and (2) 
to build the corresponding system of equations). As an 
illustration, selected solutions for configuration parameters for 
the patterns A, B, C and D of Fig.1 are given as follows: 
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It should be noted that some solutions are for colour images 
for which moments are 3D vectors in RGB space, and some for 
grey-level images where moments are scalars. Intensity/colour 
parameters of the pattern instances can be found using other 
moment-based formulae (also individually designed for each 
pattern). Examples can be found in [8] and [9]. 

If the number of parameter increases (i.e. if the patterns 
become more complex) a larger number of moments should be 
used. This is not recommended since only low orders are 
sufficiently insensitive to noise. Therefore, moments of the 
pattern halves and quarters can be used instead so that 54 
moment expressions exist using moments of order 0, 1 and 2 
only (six moments of the whole circle, six moments of the 
upper half, six moments of the first quarter, etc. – more details 
are given in [10]). 

Equations such as (3) – (6) can be actually applied to any 
circular image not necessarily containing the corresponding 
pattern. However, if the solutions exist for a circular image of 
arbitrary content, they define the optimum approximation of 
that image by the given pattern. In some cases solutions do not 
exist (e.g. a negative number in (3)) which means that the 
circular image cannot be approximated by a given pattern.  

Examples of circular images and their approximations by 
selected patterns are given in Fig. 2. It can be seen that for 
images containing actual patterns the corresponding 
approximations look very similar. However, there are also 
examples of approximations looking very different than the 
images. In some cases, the results are ambiguous. If the image 
content is inconclusive it may me approximated by various 

         



patterns with visually similar accuracy (e.g. the first row in the 
figure). 

 
Figure 2.  Circular images (colums 1 and 3) and their approximations 

(columns 2 and 4, respectively) by exemplary patterns. 

III. MATCHING PATTERN-BASED APPROXIMATIONS 
Pattern-base approximations are the proposed technique for 

matching processed images to the images of known objects. 
Given a set of pre-detected keypoints (using any sufficiently 
reliable keypoint detector) we can build for each keypoint 
approximations of the surrounding circular area for any 
available patterns. Since the same operation would be 
performed both for database keypoints and for keypoints 
extracted from analyzed images. If for a subset of database 
keypoint and image keypoint the approximations are consistent 
(both for individual pairs of matched keypoints and over the 
whole subset of keypoints) there is a strong indicator that the 
object is present within the image. However, as shown in Fig.2, 
the approximations may actually look very different than the 
approximated circular image. Obviously, the matches should be 
based only on those keypoints for which the approximations 
accurately correspond to the approximated circular areas 
around the keypoints.. Therefore, a measure is needed to 
compare a circular image and its pattern-based approximation.  

A. Similarity Measuress 
Several measures have been proposed in our previous paper 

(e.g. based on differences between the circular image and its 

computer-synthesized approximation, [8] or based on moment 
similarities, [9]). After extensive experimental verification it 
was found that the most reliable results are obtained using a 
well-known Radon transform (e.g. [11]) calculated for a few 
directions. Actually, sufficiently that satisfactory results can be 
achieved using the Radon transform computed just for the 
horizontal and vertical directions. 

The formulae for the horizontal and vertical Radon 
transforms can be derived analytically for any pattern of 
interest. For example, for a grey-level corner the Radon 
transform computed along horizontal lines can be expressed as  

2 2

2 2

1
2

1
1 2 2 1

2  if y sin
2( )

( ) ( ) if y sin
2 2

A R y R
F y

A A R y A A y ctg R

β

βα

− >

=

+ − + − ≤

⎧
⎪⎪
⎨
⎪
⎪⎩

 (7) 

where A1 and A2 are intensities of both parts of the corner. Note 
that the orientation angle β2 would be the offset value for 
calculating the Radon transform for the approximated circular 
image. 

Fig.3 shows examples of an accurate (Fig.3A), poor 
(Fig.3B) and average (Fig.3C) approximation of circular 
images by corners. Selected corresponding diagrams 
(illustrating differences between Radon transforms of images 
and their approximations) are presented in Figs.4-6. 

 
Figure 3.  Three circular images and their corner approximations of good (A), 

poor (B) and average (C) quality. 

 
Figure 4.  Vertical Radon transforms for Fig.3A (blue: circular image, pink: 

its corner approximation). 

         



 
Figure 5.  Vertical Radon transforms for Fig.3B (blue: circular image, pink: 

its corner approximation). 

 
Figure 6.  Horizontal Radon transforms for Fig.3C (blue: circular image, 

pink: its corner approximation). 

The integrated difference between horizontal and vertical 
Radon transforms is used as the measure of the approximation 
accuracy. Additionally, the measure is further normalized using 
the scaling factor depending on the intensity of approximations 
and contrasts between various part of the approximations. 
Without the normalization, dark and/or poorly contrasted 
images would be (incorrectly) too similar to their 
correspondingly dark and/or poorly contrasted approximations. 
Altogether, the similarity between I circular image and its App 
approximation (both of radius R) can be expressed as 
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B. Principles of matching 
In the proposed method, pattern-based approximations are 

computed for circular areas around pre-detected keypoints. 
Various keypoint detectors can be used, but within this paper 
we use only Harris-Plessey and SIFT examples. The important 
issue is the radius selection for the circular area around the 
keypoints. Generally, the radius size should correspond to the 
scale of detectors. In the Harris-Plessey detector the scale is 
uniform for all keypoints (determined by the standard deviation 
of the Gaussian convolution used) so that the same radius 
should be used for all keypoints. Alternatively, SIFT returns 
the optimum scale for each detected keypoint. In this case, the 
radius should be individually determined for each keypoint 
proportionally to its scale. 

Fig.7 shows an exemplary image (a smooth image has been 
deliberatly selected) with keypoints detected by both Harris-
Plessey or SIFT operators. Although the keypoints are not 
identical, their general distribution is very similar and, more 
importantly, numerous visually prominent keypoints are 
identical or almost identical. 

   A 

   B 

   C 
Figure 7.  Exemplary image (A) with keypoints detected by Harris-Plessey 

(B) and SIFT (C) operators. 

Fig.7 and many other similar examples convincingly 
indicate that a sufficient number of (almost) identical keypoints 
are available for pattern-based approximation no matter what 
keypoint detector is used. 

Using the proposed method, the database keypoints are 
matched to the keypoints extracted from analysed images by 
comparing their pattern-based approximations over circular 
areas. This approach has several significant advantages: 

• Keypoints can be categorized into several groups based 
on which approximations are the most accurate for 
each keypoint. 

• If the database keypoint are accurately approximated 
by a limited number of patterns, only those image 
keypoints that are accurately approximated by the same 
pattern should be considered.. 

         



• Parameters of the approximations can be very 
selectively used in the matching process. For example, 
the colour/intensity parameters may be used explicitly 
(matched keypoint should have similar values) may be 
used selectively (e.g. using “darker” or “lighter” 
relations only) or may be totally ignored (so that 
geometry of the patterns should be similar but any 
colours/intensities are accepted). 

IV. EXAMPLES 
To illustrate performances of approximation-based keypoint 

matching, two examples are presented in this section. Fig.8 
shows two different views of the same object with keypoints 
detected by Harris-Plessey operator. Selected keypoints 
representing the same parts of the object are (manually) 
matched as shown in the figure. 

 
Figure 8.  Exemplary pairs of matched keypoints for two views of the same 

object. 

Table 1 contains geometric and intensity parameters for the 
pattern-based approximations of the matched pairs. In this 
example only four types of patterns have been used (namely: 
corners, orthogonal T-junctions, sectional cuts and X-
crossings). Although details of the image matching techniques 
are not discussed in this paper (more can be found in [7] and 
other publications) the results given in the table – in particular 
consistent orientation differences between approximations of 
matched pairs –strongly indicate that all keypoints may belong 
to the same object. Additionally, the relative transformation of 
the object between both images can be roughly estimated from 

the spatial distribution of the keypoints and from their 
geometric parameters. 

TABLE I.  APPROXIMATION PARAMETERS FOR FIG.8 KEYPOINTS  

Pair A Pattern: 90° T-junction 

lower image Intensities: 

A = 66 

B = 98 

C = 33 

Orientation: 

β = 65° 

 

upper image Intensities: 

A = 55 

B = 100 

C = 41 

Orientation: 

β = 59° 

 

Pair B Pattern: Corner 

lower image Intensities: 

A = 127 

B = 69 

Orientation: 

β = 3° 

Angular width: 

α = 141° 

upper image Intensities: 

A = 143 

B = 69 

Orientation: 

β = -5° 

Angular width: 

α = 150° 

Pair C Pattern: X-cross junction 

lower image Intensities: 

A = 92 

B = 129 

Orientation: 

β = 81° 

 

upper image Intensities: 

A = 88 

B = 127 

Orientation: 

β = 68° 

 

Pair D Pattern: Corner 

lower image Intensities: 

A = 115 

B = 70 

Orientation: 

β = 92° 

Angular width: 

α = 81° 

upper image Intensities: 

A = 95 

B = 56 

Orientation: 

β = 84° 

Angular width: 

α = 88° 

Pair E Pattern: Corner 

lower image Intensities: 

A = 78 

B = 168 

Orientation: 

β = -103° 

Angular width: 

α = 174° 

upper image Intensities: 

A = 77 

B = 162 

Orientation: 

β = -109° 

Angular width: 

α = 173° 

         



Fig. 9 shows a selected pair of SIFT-detected keypoints 
(with the approximated circular areas around) for two images 
of an animal. 

The content of Table 2 confirms that approximations are 
almost identical (for all four patterns). The only significant 
difference is the orientation angle but it consistently differs by 
approx. 15° for all patterns. 

   

V. CONCLUDING REMARKS 

The paper presents an overview and preliminary results of 
a novel technique of defining local features. The features are 
based on keypoints extracted by any typical detector but 
subsequently circular areas around the keypoints are 
approximated by selected patterns. Eventually, only those 
keypoints are used for image matching where the areas (i.e. 
the local image content) can be satisfactorily accurately 
approximated by at least some patterns. 

The method could be particularly useful for autonomous 
navigation where agents exploring unknown environments 
should locate known objects and/or should characterize the 
observed scene in terms of its similarity to already known 
environments. Visual information retrieval (VIR) where 
pictorial databases are searched for images containing 
fragments similar to known objects is the second intended 
application. 

The paper discusses only the fundamentals of the method, 
i.e. the problem formulation, basic definitions and the 
mathematical principles of pattern-based approximations. 
Examples are included to explain and illustrate those 
fundamentals. 

Figure 9.  Two images of an animal with a pair of matched keypoints. 

TABLE II.  APPROXIMATION PARAMETERS FOR FIG.9 KEYPOINTS  

 Pattern: 90° T-junction 

left image Intensities: 
A = 128 
B = 79 
C = 28 

Orientation: 
β = -21° 

 

rigth image Intensities: 
A = 125 
B = 80 
C = 25 

Orientation: 
β = -33° 

 

 Pattern: Corner 

left image Intensities: 
A = 36 
B = 128 

Orientation: 
β = -54° 

Angular width: 

α = 146° 

rigth image Intensities: 
A = 31 
B = 127 

Orientation: 
β = -70° 

Angular width: 

α = 145° 

 Pattern: X-cross junction 

left image Intensities: 
A = 78 
B = 103 

Orientation: 
β = -21° 

 

rigth image Intensities: 
A = 75 
B = 102 

Orientation: 
β = -33° 

 

 Pattern: Sectional cut 

left image Intensities: 
A = 30 
B = 125 

Orientation: 
β = -54° 

Cut ratio: 

t = 0.78 

rigth image Intensities: 
A = 25 
B = 124 

Orientation: 
β = -70° 

Cut ratio: 

t = 0.77 
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