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Abstract—To describe the encoding of continuous stimuli in
neural networks, continuous attractors have been recognized as
promising models. A continuous attractor is a set of connected
stable equilibrium points. It exhibits interesting dynamical prop-
erties in many recurrent neural networks. This paper studies the
continuous attractors of discrete-time Cellular Neural Networks
(DCNNs). The main contribution is that the representations
of continuous attractors for DCNNs are obtained under some
conditions. Such important results provide clear and complete
descriptions to the continuous attractors of DCNNs.

Index Terms—Continuous Attractors, Discrete-time Cellular
Neural Networks, Multistability.

I. INTRODUCTION

The model of Cellular Neural Networks (CNNs) was first
proposed in [1], [2]. It has been studied by many authors in
recent years. CNNs have been successfully applied to pattern
recognition, signal processing, associative memories [3], [4],
communication problems [5], Euclidean distance transforma-
tion [6], and especially in image processing, see for examples,
[7]–[11], etc.

The transfer function of CNNs is defined by piecewise
linear function. The piecewise linear function is essentially
nonlinear, many important dynamic properties and applications
of CNNs are crucially dependent on its properties. Many
interesting properties of the transfer functions of CNNs can
be found in [12]. Base on the properties of transfer functions,
many dynamical properties of CNNs are established, see for
examples [10], [11]. So far, most of the results on the dynamics
of CNNs are focused on global stability, complete stability,
chaotical properties, see for examples [13]–[20], etc.

Recently, dynamics of continuous attractors have been rec-
ognized as important properties of recurrent neural networks.
In biological neural networks, it is believed that external
inputs are encoded in neural activity patterns in the brain.
The brain can reliably retrieve the stored information even
when external stimuli are incomplete or noisy, achieving
the associative memory or invariant object recognition [28].
Recurrent neural networks are often used for invariant object
recognition as an associative memory. In most models of
associative memory, memories are stored as attractive fixed
points at discrete locations in state space. However, discrete
attractors may not be appropriate for patterns with continuous
variability, like the images of a three-dimensional object from

different viewpoints. So the other way of representing each
object by a continuous manifold of fixed points is natural [27].

Continuous attractor has been studied by many authors
[21]–[32]. In [22], it shows that the memory of eye position
is stored in a neural network with an approximate line at-
tractor dynamics. If synaptic strengths and other parameters
are precisely tuned by learning mechanisms, a linear network
can exactly realize a line attractor dynamics [23]. Because the
stable states are arranged in a continuous dynamical attractor,
the network can store a memory of eye position with analog
neural encoding. Moreover, it was given in [23] that the
condition for the existence of line attractors of linear networks
is that the largest eigenvalue of connection weight matrix is
precisely unit and the rest of the eigenvalues have real parts
that are less than unity. In [24], nonlinear network models of
the oculomotor integrator are discussed. The synaptic weight
matrix is tuned by minimizing the mean squared drift velocity
of the eyes over a range of eye positions, leading to an
approximate line attractor dynamics. In [28], two important
issues when applying continuous attractors in neural systems
are discussed. One is the computational robustness of con-
tinuous attractors with respect to input noises and the other
is the implementation of Bayesian online coding. In [29],
the dynamics and the computational properties of continuous
attractors are investigated.

In this paper, we study the continuous attractors of discrete-
time Cellular Neural Networks (DCNNs). DCNNs belong to
an important class of recurrent neural networks and have been
studied by many authors, see for examples [33]–[38]. We will
address the important problem of continuous attractors: the
explicit representations of continuous attractors. By explicit
representations of continuous attractors, clear and complete
descriptions of continuous attractors can be given. Using the
properties of the transfer function of the DCNNs and by
rigorous mathematical analysis, the explicit representations of
continuous attractors of DCNNs are obtained. In [27], [28],
one-dimensional continuous attractors are studied. However,
a continuous attractor could be in multidimensional. The
continuous attractors in this paper are not restricted to be in
one dimensional, they can be in multi-dimensional.

The rest of the paper is organized as follows. Preliminaries
are presented in Section II. The main results on the represen-
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tation of continuous attractors of DCNNs are given in Section
III. Simulations are given in Section IV to illustrate the theory.
Finally, conclusions are drawn in Section V.

II. PRELIMINARIES

The discrete-time Cellular Neural Networks (DCNNs) will
be studied can be described by

x(k + 1) = f (Wx(k) + b) (1)

for k ≥ 0, where x = (x1, · · · , xn)T ∈ Rn is the state
vector, W = (Wij)n×n is the connection weight matrix which
is symmetric, b = (b1, · · · , bn)T denotes the external input.
For any x ∈ Rn, f(x) = (f(x1), f(x2), ·, f(xn))T , and the
function f is defined as follows:

f(s) =
|s + 1| − |s − 1|

2
, s ∈ R.

The transfer function f(·) is a piecewise linear function,
which is continuous but non-differentiable. Figure 1 shows
this function. The transfer function f(·) is an important char-
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Fig. 1. The transfer function of network (1).

acteristic of the DCNNS. In fact, many dynamic properties
and applications of DCNNS are crucially dependent on its
properties. The transfer function f is composed of three parts
with explicit boundaries, i.e.,

f(s) =




−1, s ≤ −1,
s, −1 < s < 1,
1, s ≥ 1.

Definition 1: A vector x∗ ∈ Rn is called an equilibrium
point of (1), if it satisfies

x∗ = f (Wx∗ + b) .

Lemma 1: The set

B = {x ||xi| ≤ 1, (i = 1, · · · , n)}
is an invariant set of the network (1), i.e., each trajectory
starting in B remains in B for ever.

Proof: Given any x(0) ∈ B, we have

xi(k + 1) = f (Wxi(k) + b) (2)

for k ≥ 0 and i = 1, · · · , n. Because

|f(·)| ≤ 1

then, from (2),

|xi(k)| ≤ 1, (i = 1, · · · , n)

for k ≥ 0. The result now follows and the proof is completed.
Let Ω be an nonempty set, denote the distant from a point

x ∈ Rn to the set Ω by

dist (x, Ω) = min
x†∈Ω

‖x − x†‖.
Definition 2: A set of equilibrium points C is said to be

stable, if given any constant ε > 0, there exists a constant
δ > 0 such that

dist (x(0), C) ≤ δ

implies that
dist (x(k), C) ≤ ε

for all k ≥ 0.
Definition 3: A set of equilibrium points C is called a

continuous attractor if it is connected and stable.
The problem of representation of continuous attractors

is to derive the representations of the continuous attractors
explicitly.

III. CONTINUOUS ATTRACTORS

In this section, we study the continuous attractors of the
DCNNs. We will derive explicit representations of continuous
attractors of DCNNs.

By assumption, the synaptic matrix W is a symmetric
matrix. Let λi(i = 1, · · · , n) be all the eigenvalues of W
ordered by λ1 ≥ λ2 · · · ≥ λn. Suppose that Si(i = 1, · · · , n) is
an orthonormal basis in Rn such that each Si is an eigenvector
of W corresponding to the eigenvalue λi. Let σ be the largest
eigenvalue of W with multiplicity m, clearly, σ = λ1.

Suppose that

b =
n∑

i=1

b̃i · Si. (3)

Theorem 1: Suppose that σ = 1, b⊥Vσ , and |λi| < 1(i =
m + 1, · · · , n). If

n∑
j=m+1

|b̃j|
1 − λj

< 1,

then, the network (1) has a continuous attractor and it can be
represented by

C =

{
x

∣∣∣∣∣x =
m∑

i=1

ciSi +
n∑

j=m+1

b̃j

1 − λj
Sj ,

√√√√ m∑
i=1

c2
i +

n∑
j=m+1

(
|b̃j|

1 − λj

)2

≤ 1, ci ∈ R

}
.

Proof: Since b⊥Vσ , from (3), then b̃1 = · · · = b̃m = 0.
Firstly, we prove that C ⊂ B. Given any x∗ ∈ C, then

there exist constants c∗i ∈ R(i = 1, · · · , m) with√√√√ m∑
i=1

c∗i
2 +

n∑
j=m+1

(
|b̃j|

1 − λj

)2

≤ 1



such that

x∗ =
m∑

i=1

c∗i Si +
n∑

j=m+1

b̃j

1 − λj
Sj .

Then

‖x∗‖ =

√√√√ m∑
i=1

c∗i
2 +

n∑
j=m+1

(
|b̃j |

1 − λj

)2

≤ 1.

That is,
x∗ ∈ B.

This shows that C ⊂ B.
Next, we prove that each point of C is an equilibrium point.

Given any x∗ ∈ C, it follows that

f (Wx∗ + b)

= f


 m∑

i=1

c∗i WSi +
n∑

j=m+1

b̃j

1 − λj
WSj +

n∑
i=1

b̃i · Si




= f


 m∑

i=1

c∗i Si +
n∑

j=m+1

b̃j

1 − λj
λjSj +

n∑
j=m+1

b̃j · Sj




= f


 m∑

i=1

c∗i Si +
n∑

j=m+1

b̃j

1 − λj
Sj




= f (x∗)
= x∗.

This shows clearly that x∗ is an equilibrium point of (1).
Next, we prove that C is stable. Given any x(0) ∈ B,

let x(k) be the trajectory starting from x(0). Since Si(i =
1, · · · , n) compose an orthonormal basis of Rn, then x(k) can
be represented as

x(k) =
n∑

i=1

zi(k)Si (4)

for k ≥ 0, where zi(k) are some functions. By Lemma 1,

x(k) =
n∑

i=1

zi(k)Si ∈ B, k ≥ 0.

Then,

Wx(k) =
n∑

i=1

zi(k)WSi =
n∑

i=1

zi(k)λiSi,

for k ≥ 0.
Since

|λi| ≤ 1, (1 ≤ i ≤ n)

and
n∑

j=m+1

|b̃j |
1 − λj

< 1,

clearly, Wx(k) + b ∈ B for all k ≥ 0.

Then, it follows from (1) that

zi(k + 1) = zi(k), (i = 1, · · · , m) (5)

and

zi(k + 1) = λizi(k) + b̃i, (i = m + 1, · · · , n) (6)

for k ≥ 0. Solving equations (5) and (6), it gives that

zi(k) =




zi(0), 1 ≤ i ≤ m

λk
i zi(0) +

k∑
r=1

λr−1
i b̃i, m + 1 ≤ i ≤ n

for t ≥ 0. Then, from (4), it follows that

x(k) =
m∑

i=1

zi(0)Si

+
n∑

j=m+1

(
λk

j zj(0) +
k∑

r=1

λr−1
j b̃j

)
Sj (7)

for k ≥ 0.
Given any ε > 0, choose a constant δ = ε, we have

dist (x(0), C) = min
x∗∈C

{‖x(0) − x∗‖}

= min
ci∈R(1≤i≤m)

{∥∥∥∥∥
m∑

i=1

(
zi(0) − ci

)
· Si

+
n∑

j=m+1

(
zj(0) − b̃j

1 − λj

)
· Sj

∥∥∥∥∥
}

= min
ci∈R(1≤i≤m)

{
P
}

where

P =

√√√√ m∑
i=1

(zi(0) − ci)
2 +

n∑
j=m+1

(
zj(0) − b̃j

1 − λj

)2

.

Clearly,

min
ci∈R(1≤i≤m)

{
P
}

=

√√√√ n∑
j=m+1

(
zj(0) − b̃j

1 − λj

)2

.

Then,

dist (x(0), C) =

√√√√ n∑
j=m+1

(
zj(0) − b̃j

1 − λj

)2

.

If

dist (x(0), C) ≤ δ,



then, from (7) that

dist (x(k), C)
= min

x∗∈C
{‖x(k) − x∗‖}

= min
ci∈R(1≤i≤m)

{∥∥∥∥∥
m∑

i=1

(zi(0) − ci) · Si

+
n∑

j=m+1

λk
j zj(0) · Sj

+
n∑

j=m+1

(
k∑

t=1

λt−1
j b̃j − b̃j

1 − λj

)
· Sj

∥∥∥∥∥
}

= min
ci∈R(1≤i≤m)

{Q}

where

Q =

√√√√ m∑
i=1

(zi(0) − ci)
2 +

n∑
j=m+1

(
λk

j zj(0) − λk
j b̃j

1 − λj

)2

.

It is easy to check that

min
ci∈R(1≤i≤m)

{Q} ≤
√√√√ n∑

j=m+1

(
zj(0) − b̃j

1 − λj

)2

.

Then,

dist (x(k), C)

≤
√√√√ n∑

j=m+1

(
zj(0) − b̃j

1 − λj

)2

= dist (x(0), C)
≤ δ

= ε

for all k ≥ 0. By Definition 3, the set C is a continuous
attractor of the network (1). The proof is completed.

Theorem 1 gives a representation for the continuous at-
tractor of the network (1). By this representation, one can
completely master the properties of the continuous attractors.

IV. SIMULATIONS

In this section, we will give some simulations to illustrate
the continuous attractors theory established in last section. Let
us first consider a three dimensional DCNN network.

Consider the three dimensional DCNN

x(k + 1) = f




 0.5 0.5 0.5

0.5 0.5 −0.5
0.5 −0.5 0.5


x(k)


 (8)

for k ≥ 0. Clearly,

W =


 0.5 0.5 0.5

0.5 0.5 −0.5
0.5 −0.5 0.5




and
b = [0, 0, 0]T .
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Fig. 2. Two dimensional continuous attractor of the network (8). It divides
the three dimensional box into two parts. Trajectories are attracted to the
continuous attractor.

It can be checked that W has the largest eigenvalue σ = 1 with
multiplicity 2, and W has another eigenvalue −0.5. Moreover,
b⊥Vσ. By Theorem 1, the network exists a continuous attractor.
The continuous attractor is in two dimensional. Figure 2 shows
this two dimensional continuous attractor of the network (8).
The polygon in the figure represents the continuous attractor.
It divides the three dimensional box into two parts. The figure
shows that forty trajectories starting from randomly selected
initial point are attracted to the attractor.

Next, let us consider a two dimensional DCNN

x(k + 1) = f

([
0.5 0.5
0.5 0.5

]
x(k) +

[
0

0.2

])
(9)

for k ≥ 0. Clearly,

W =
[

0.5 0.5
0.5 0.5

]
, b =

[
0

0.2

]
.

It can be checked that W has the largest eigenvalue σ = 1
with multiplicity 1, and it has another eigenvalue 0. Moreover,
b⊥Vσ. By Theorem 1, the network (9) exists one dimensional
continuous attractor. Figure 3 shows the continuous attractor of
the network. The line in the figure is the continuous attractor. It
divides the two dimensional square into two parts. The figure
shows that fifty trajectories starting from randomly selected
initial point are attracted to the attractor.

V. CONCLUSIONS

There are two ways of representing objects as attractors
of a recurrent neural network dynamics: discrete attractors
and continuous attractors. In this paper, we have studied the
continuous attractor of DCNNs. Representations of continuous
attractors are obtained. Such important results provide clear
and complete descriptions for mastering continuous attractors.
The methods presented in this paper could be further developed
to study related problems of other class of neural networks.
More research on this direction are required.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Fig. 3. One dimensional continuous attractor of the network (9). It divides
the two dimensional square into two parts. Trajectories are attracted to the
continuous attractor.

ACKNOWLEDGMENT

This work was supported by Chinese 863 High-Tech Pro-
gram under Grant 2007AA01Z321.

REFERENCES

[1] L. O. Chua and L. Yang, ”Cellular neural networks: theory”, IEEE Trans.
Circuits Syst. I, vol. 35, pp.1257-1272, 1988.

[2] L. O. Chua and L. Yang, ”Cellular neural networks: application”, IEEE
Trans. Circuits Syst. I, vol. 35, pp.1273-1290, 1988.

[3] G. Grassi, ”A new approach to design cellular neural networks for
associative memories”, IEEE Trans. Circuits Syst. I, vol. 44, no. 9, pp.835-
838, 1998.

[4] G. Grassi, On discrete-time cellular neural networks for associative
memories, IEEE Trans. Circuits Syst. I, vol. 48, no. 1, pp.107-111, 2001.

[5] R. Fantacci, M. Forti, M. Marini and L. Pancani, ”Cellular neural networks
approach to a class of comunication problems,” IEEE Trans. Circuits Syst.
I, vol. 46, no. 12, pp. 1457-1467, 1999.

[6] H. Yang and L. B. Yang, ”Application of fuzzy cellular neural networks
to Euclidean distance transformation,” IEEE Trans. Circuits Syst. I, vol.
44, no. 3, pp. 242-246, 1997.

[7] P. Julian, R. Dogaru and L. O. Chua, ”A piecewise-linear simplicial
coupling cell for CNN gray-level image processing,” IEEE Trans. Circuits
Syst. I, vol. 49, no. 7, pp. 904-913, 2002.

[8] A. Zarandy, L. Orzo, E. Grawes and F. Werblin, ”CNN-based models for
color vision and visual illusions” IEEE Trans. Circuits Syst. I, vol. 46,
no. 2, pp. 229-238, 1999.

[9] T. Sziranyi and J. Zerubia, ”Markov random field image segmentation
using cellular neural networks,” IEEE Trans. Circuits Syst. I, vol. 44, no.
1, pp. 86-89, 1997.

[10] L. O. Chua and T. Roska, ”The CNN paradigm,” IEEE Trans. Circuits
Syst. I, vol. 40, no. 3, pp. 147-156, 1993.

[11] K. R. Crounse and L. O. Chua, ”Methods for image processing and
pattern formation in Cellular Neural Networks: a tutorial,” IEEE Trans.
Circuits Syst. I, vol. 42, no. 10, pp. 583-601, 1995.

[12] Z. Yi and K. K. Tan, Convergence analysis of recurrent neural networks,
Kluwer Academic Publishers, Boston, 2004.

[13] C. W. Wu and L. O. Chua, ”Amore rigorous proof of complete stability
of cellular neural networks,” IEEE Trans. Circuits Syst. I, vol. 44, pp.
370-371, 1998.

[14] N. Takahashi and L. O. Chua, ”On the complete stability of nonsym-
metric cellular neural networks,” IEEE Trans. Circuits Syst. I, vol. 45, pp.
754-758, 1998.

[15] S. Lin and C. Shih, ”Complete stability for standard cellular neural
networks,” Int. J. Bifurcation and Choas, vol. 9, pp. 909-918, 1999.

[16] G. D. Sandre, ”Stability of 1-D-CNNs with Dirichlet boundary condi-
tions and global propagation dynamics,” IEEE Tran. Circuits Syst. I, vol.
47, pp. 785-792, 2000.

[17] M. Forti and A. Tesi, ”A new method to analyze complete stability of
PWL cellular neural networks,” Int. J. Bifurcation and Choas, vol. 11, pp.
655-676, 2001.

[18] M. Forti, ”Some extensions of a new method to analyze complete
stability of neural networks,” IEEE Trans. Neural Networks, vol. 13, pp.
1230-1238, 2002.

[19] M. Di Marco, M. Forti and A. Tesi, ”Complex dynamics in nearly
symmetric three-cell cellular neural networks,” Int. J. Bifurcation and
Choas, vol. 12, pp. 1357-1362, 2002.

[20] X. Li, C. Ma and L. Huang, ”Invariance principle and complete stability
for cellular neural networks,” IEEE Trans. Circuits Syst. II, vol. 53, pp.
202-206, 2006.

[21] D. J. Amit, ”Modeling Brain Function: The World of Attractor Neural
Networks,” Cambridge UP, New York, 1989.

[22] H. Sebastian Seung, ”How the brain keeps the eyes still,” Proc. Natl.
Acad. Sci. USA, vol. 93, pp.13339-13344, 1996.

[23] H. Sebastian Seung, ”Continouous attractors and oculomotor control,”
Neural Networks, vol. 11, pp.1253-1258, 1998.

[24] D. D. Lee, B. Y. Reis, H. S. Seung, and D. W. Tank. ”Nonlinear network
models of the oculomotor integrator,” In Computational Neuroscience:
Trends in Research. New York, Plenum Press. 1997.

[25] H. Sebastian Seung, ”Pattern analysis and synthesis in attractor neural
networks,” IEEE Trans. Syst, Man, Cybern., vol. 15, no. 1, pp.116-132,
1985.

[26] H. Sebastian Seung and D. D. Lee, ”The manifold ways of perception,”
Science, vol. 290, pp.2268-2269, 2000.

[27] H. Sebastian Seung, ”Learning continuous attractors in recurrent net-
works,” Adv. Neural Info. Proc. Syst., vol. 10, pp.654-660, 1998.

[28] S. Wu and S. Amari, ”Computing with continuous attractors: stability
and online aspects,” Neural Computation, vol. 17, pp.2215-2239, 2005.

[29] S. Wu and S. Amari, ”Dynamics and Computation of continuous
attractors,” Neural Computation, in press.

[30] Paul Miller, ”Analysis of Spike Statistics in Neuronal Systems with
Continuous Attractors or Multiple, Discrete Attractor States,” Neural
Computation, vol. 18, pp.1268-1317, 2006.

[31] F.P. Battaglia and A. Treves, ”Attractor neural networks storing multiple
space representations: A model for hippocampal place fields,” Physical
Review E vol.58, pp. 7738-7753,1998.

[32] A. Samsonovich, B.L. McNaughton, ”Path integration and cognitive
mapping in a continuous attractor neural network model,” J. Neurosci,
vol.17, pp. 5900-5920,1997.

[33] V. M. Brea, D. L. Vilarino, A. Paasio and D. Cobello, ”Design of the
processing core of a mixed-signal CMOS DTCNN chip for pixellevel
snakes,” IEEE Trans. Circuits Syst. I, vol. 51, pp.997-1013, 2004.

[34] M. Brucoli, L. Carnimeo and G. Grassi, ”A global approach to the design
of discrete-time cellular neural networks for associative memories,” Int.
J. Circuit Theory Appl., vol. 24, pp.489-510, 1996.

[35] M. Brucoli, L. Carnimeo and G. Grassi, ”Discrete-time cellular neural
networks for associative memories with learning and forgetting capabili-
ties,” IEEE Trans. Circuits Syst. I, vol. 42, pp.396-399, 1995.

[36] S. Chen and C. Shih, ”Dynamics for discrete-time cellular neural
networks,” Int. J. Bifurcation and Chaos vol. 14, pp.2667-2687, 2004.

[37] H. Harrer and J. A. Nossek, ”Discrete-time cellular neural networks,”
Int. J. Circuit Theory Appl. vol. 20, pp.453-467, 1992.

[38] N. Takahashi, T. Otake and M. Tanaka, ”The template optimization of
discrete-time CNN for image compression and reconstruction,” IEEE Int.
Symposium Circuits and Syst. vol. 1, pp.237-240, 2002.


