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Abstract—A new function approximation algorithm based on
Twin Support Vector Machines (TSVM) is presented in this
paper. Support Vector Regression (SVR) has been shown to have
good robust properties against noise in function approximation,
however, the overfitting phenomena cannot be eliminated if the
parameters used in SVR are improperly selected, and the selection
of various parameters is not straightforward. In this paper, we
use the properties of TSVM to solve this problem, that it will
generate two nonparallel planes such that each plane is closer to
one of the two classes and is as far as possible from the other.
The experiments show good performances without additional
computing time by using traditional test functions, data with
noise and ambiguous training data.

I. INTRODUCTION

The goal of the function approximation is to determine the
underlying function f(.) that can denote the relation between
the inputs and observations, when given a finite set of training
data points, X = (x1, y1), (x2, y2), ..., (xm, ym) with xi ∈ Rn

and yi ∈ R. The approximated function must be with high
generalization and low overfitting, as well as can predict the
outputs for inputs not contained in the training data set. The
interpolation and regression, such as linear interpolation, cubic
interpolation, cubic splines interpolation and neural networks
regression, are the common methods for solving this kind of
problem. The shortcoming of the interpolation methods are that
they have limited extrapolation abilities and they become more
difficult with increasing of the dimensionality of the problem.
The Artificial Neural Networks (ANN) approaches [1][11]
made progress on the high dimensional regression problem, but
the architecture of ANN is difficult to be determined and the
learning algorithms easily get into local minima while training.

Recently, an attractive method named Support Vector Ma-
chines (SVM) has been used in high-dimensional function
approximation. The SVM is based on the Structural Risk
Minimization (SRM) principles and statistical learning theories
[4], which has the advantages of global minima and well
generalization abilities. Large number of experiments showed
that it is easy to recognize high-dimension identities using
a small bases constructed from the selected support vectors

[2]. Normally, the Support Vector Regression (SVR) [3] is
often employed to solve the problem of function approximation
and regression estimation. The most important advantage for
using SVR in function approximation is that the number of
free parameters in the function approximation scheme is equal
to the number of support vectors which can be obtained by
defining the width of a tolerance band [6]. Thus, the function
approximation accuracy is only depended on the number of the
support vectors, not related to the dimensionality of the input
space or other factors as in the cases of multilayer feedforward
neural networks. With the application of kernels, the SVR can
solve any kinds of function approximation in theory. The Least
Squares Support Vector Machine (LSSVM), introduced in [5],
is a modification to the standard formulation of SVM[4]. Via
the Karush-Kuhn-Tucker conditions, the optimization problem
for the LSSVM reduces to the solution of a set of linear
equations. This gives us the opportunity to solve large problem
without applying iterative chunking. On the other hand, the
disadvantage is that the sparseness of the solution is lost. In
[7], the function approximation based on LSSVM has been
given and good performance were shown in the literature.

The function approximation based on SVM has been shown
to have good robust properties against noise. However, overfit-
ting phenomena may still occur when the parameters used in
SVM are improperly selected. At the same time, the selection
of various parameters is not straightforward [6]. How to control
the interference of the noise, outlier and ambiguous points are
the hot research topics [6][8][9][11]. This paper proposed a
new function approximation algorithm based on TSVM [12]
to overcome these shortcoming. The TSVM comes from the
generalized eigenvalue Multisurface Proximal Support Vector
Machine (MPSVM)[10]. TSVM aims at generating two non-
parallel planes such that each plane is closer to one of the
two classes and is as far as possible from the other [12].
This property makes TSVM is feasible to be used in function
approximation. By regarding the data samples as one class and
creating another class relative to the data samples, we can get
two planes, one is as close as the data samples according to
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the property of TSVM which can be regarded as the function
approximated from the given data samples. The proposed
algorithm gets high generalizations and low computational
complexities because of the training principles of TSVM.

The rest of the paper is organized as follows: Section II
briefly dwells on TSVM and also introduces the SVR for
the comparisons in the next sections. In the Section III, the
function approximation system based on TSVM is detailed.
Some experimental results are shown in Section IV and the
conclusions is included in Section V.

Some notations about this paper: All vectors are column
vectors unless transposed to a row vector by a prime super-
script ’. The x’y or x·y denotes the scalar (inner) product of the
vectors x and y in the n-dimensional real space Rn. The ‖x‖
denotes the 2-norm of x. For a matrix B ∈ Rm×n, Bi is the
ith row of B and B.j is the jth column of B. A column vector
of ones of arbitrary dimension will be denoted by e and the
identity matrix of arbitrary order will be denoted by I. For the
matrices A ∈ Rm×n and B ∈ Rn×k, a kernel K(A,B) maps
Rm×n × Rn×k into Rm×k.

II. TWIN SUPPORT VECTOR MACHINES

A. Linear and Nonlinear TSVM

In this subsection, we give a brief outline of linear and
nonlinear TSVM [12]. First, some notations will be used in
this section are concluded in here. The data points belonging
to class 1 and −1 are represented by matrices Am1×n and
Bm2×n, respectively. The m1 is the number of data samples
belonging to the class 1 and the m2 is the number of the data
samples belonging to the class 2. The n is the dimension of
the data points.

The TSVM is similar to MPSVM [10] in spirit that they
all obtain nonparallel planes around which the data points of
the corresponding class get clustered. However, the TSVM has
the formulation of a typical SVM, except that only opposite
patterns appear in the constraints of the optimization problem.
These properties imply that we have many advantages on
carrying out the TSVM and saving computing time.

The linear TSVM classifier is to solve the following pair of
quadratic programming problems.




min
(w1,b1,q2)

1
2
‖A · w1 + e1 · b1‖2 + c1e2 · q2

s.t. − (B · w1 + e2 · b1) + q2 ≥ e2, q2 ≥ 0

(1)




min
(w2,b2,q1)

1
2
‖B · w2 + e2 · b2‖2 + c2e1 · q1

s.t. (A · w2 + e1 · b2) + q1 ≥ e1, q1 ≥ 0

(2)

where c1, c2>0 are parameters and e1 and e2 are vectors of
ones of appropriate dimensions.

The algorithm finds two hyperplanes, TSVM1 for class 1
as xT w1 + b1 = 0 and TSVM2 for class 2 as xT w2 + b2 = 0
in (1) and (2). And the data points are classified according to
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Fig. 1. TSVM for the linear distribution data points with the linear kernel.
The data points with circle is support vectors. Two nonparallel planes are close
to the respective data samples.

which hyperplane the given point is closest to. A simulation
for linear TSVM is as Fig. 1.

When the kernel tricks are applied in the formulation of
TSVM, we can get the algorithm of nonlinear TSVM named
KTSVM. According to the [12], the KTSVM is to solve the
following pair of quadratic programming problems.




min
(w1,b1,q2)

1
2
‖K(A,CT )w1 + e1 · b1‖2 + c1e2 · q2

s.t. − (K(B,CT )w1 + e2 · b1) + q2 ≥ e2, q2 ≥ 0

(3)




min
(w2,b2,q1)

1
2
‖K(B,CT )w2 + e2 · b2‖2 + c2e1 · q1

s.t. (K(A,CT )w2 + e1 · b2) + q1 ≥ e1, q1 ≥ 0

(4)

where c1, c2>0 are parameters and e1 and e2 are vectors of
ones of appropriate dimensions. K(, ) is the selected kernel
and C = [A;B] which dimension is (m1 + m2) × n.

The algorithm finds two hyperplanes, KTSVM1 for class
1 as K(xT , CT )w1 + b1 = 0 and KTSVM2 for class 2 as
K(xT , CT )w2 + b2 = 0 in (3) and (4). And the data points
are classified according to which hyperplane the given point
is closest to. A simulation for nonlinear TSVM is as Fig. 2.

B. Support Vector Regression

In this subsection, we will describe the Support Vector
Regression (SVR) [3] in order to compare it with our work.
The SVR is a very good tool for function approximation.
However, as say it in the previous section, the SVR has many
shortcoming in the application of function approximation. The
most serious is the overfitting problem when the parameters
are not properly selected. Some literatures are focus on this
topic and get many developments in this field [6][9][11].

Given the training data set T = (x1, y1), ..., (xm, ym) ∈
(X×Y )m, xi ∈ X = Rn, yi ∈ Y = R, i = 1, ...,m, selecting
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Fig. 2. TSVM for the nonlinear distribution data points with the Exponential
RBF kernel K(u, v) = exp(

√
((u − v) ∗ (u − v)′)/(2 ∗ σ2)). Here the

σ = 4. Two nonparallel supper planes are close to the respective data samples.

the suitable ε, C and the kernel K(x, x′), the SVR algorithm
is to solve the following optimization problem.




min
α∗∈R2m

1
2

m∑
i,j=1

(α∗
i − αi)(α∗

j − αj)K(xi, xj)+

ε
∑m

i=1(α
∗
i + αi) −

∑m
i=1 yi(α∗

i − αi)

s.t.

m∑
i=1

(α∗
i − αi) = 0,

0 ≤ α∗
i , αi ≤ C

m , i = 1, 2, ...,m.

(5)

And we can get the optimization results from the (5): ᾱ =
(ᾱ1, ᾱ

∗
1, ..., ᾱm, ᾱ∗

m)T . Then, the decision-function is as (6).

f(x) =
m∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄ (6)

and

b̄ = yi −
m∑

i=1

(ᾱ∗
i − ᾱi)(xi · xj) ± ε. (7)

III. FUNCTION APPROXIMATION BASED ON TWIN

SUPPORT VECTOR MACHINES

In this section, the steps of function approximation system
based on TSVM are proposed. And some details in the
programming are depicted. The framework of the system is
as Fig. 3.

The main idea is based on the properties of TSVM that
is, when we get two planes with TSVM, each data point will
be as close as to one plane and as far as to another plane.
Then when the TSVM is used in function approximation, the
data samples are regarded as one class and another class is
generated from the data samples. The plane which is closer to
the data samples is the function underlying the data samples.

Step1: input the data samples as Class 1 for TSVM 

Step3: change one of the axis value for the data 

sample get in the step 2 as Class 2 for TSVM 

Step2: select one data sample every two neighbor 

points for next step. 

Step4: input the two class data samples into the 

algorithm TSVM and get two planes. 

Step5: the plane for Class 1 is the function 

approximated based on TSVM. 

Step6: validate the approximating function with 

noise data samples, ambiguous data samples and 

out-set data samples. 

Fig. 3. The function approximation system based on TSVM.

How to generate the data points of class 2th for TSVM
according to the given data samples is a very pivotal problem
in the proposed system. In order to depress the interference
of the noise data points, we obtain one point in every two
neighbor data samples. This also increases the speed of TSVM.
And after changing one of the axis value of fetching out data
samples, it will be the data sample of class 2th in TSVM. The
method of changing axis value is also important for the system
to get more accurate estimation results. In this paper, we adopt
the method of changing the axis value along one direction,
such as y axis direction. For example, in the experiment of
multi-value function approximation, the method is along the
direction of the gradient decreasing to get the class 2th data
points.

The kernel used in this work is Exponential RBF, K(u, v) =
exp(

√
((u − v) ∗ (u − v)′)/(2 ∗ σ2)). A large of experiments

show that this kernel is very suitable to the function approx-
imation system based on TSVM. However, the kernel is also
sensitive to the isolated data points.

To the noise data points and ambiguous data points, if they
are close to the supper plane in a given threshold, we can get
the function value of them using the supper plane. To the data
points not included in the training set, we call them out-set
data points, the function values are get from the supper plane
directly.



IV. EXPERIMENTAL RESULTS

In this section, some experiments are proposed to validate
our system. The main function used to be approximated is
sinc(x) = sin(x)

x , x ∈ [−10, 10] which are called in-set
data samples and the others x are called out-set data points.
The kernel used in TSVM is Exponential RBF, K(u, v) =
exp(

√
((u − v) ∗ (u − v)′)/(2 ∗ σ2)) with σ = 4 or σ = 1.

The first experiment is to see the relationship between the
approximating correctness and the number of training data
samples. At first, we use about 34 data samples obtained
from the function sinc(x) with x ∈ [−10, 10] to train the
TSVM, and we get the supper plane as that are shown in Fig.
4(a). Then, we use about 68 data samples obtained from the
function sinc(x) with x ∈ [−10, 10] to train the TSVM, and
we get the supper plane as that are shown in Fig. 4(b). In
the validating phase, we use 20 data points in [−10, 10] as
in-set testing data, 10 data points in [−15,−10) and 10 data
points in (10, 15] as out-set testing data. The testing results
are shown in the TABLE I. From the Fig. 4 and TABLE I,
we can see that, without the noise data disturbance, the more
correct approximation will be obtained with more training data
samples.

The second experiment is to see the interference of the
noise data samples. In training phase, we use about 68 data
samples obtained from the function sinc(x) and about 50 noise
data points distributed around the normal data samples. The
kernel and its parameters used in TSVM and SVR are same.
The Fig. 5(a) shows the results of the TSVM and Fig. 5(b)
shows the results of the SVR. From the Fig. 5, we can see
the approximation based on TSVM is better than SVR on
overfitting problem.

The third experiment is to test the representation of TSVM
and SVR on the multi-value function approximation. This kind
of function approximations are usually used in controlling
fields. Because of the principle of the SVR, multi-value
function approximation can’t be completed with SVR. But in
the practical applications, this kind of function approximation
is usually used to track the objective. The result based on
TSVM is shown in Fig. 6(a) and the result based on SVR is
shown in Fig. 6(b). From the Fig. 6, the multi-value function
approximation can be realized using TSVM.

The last experiment focus on the high dimension func-
tion approximations based on TSVM. In this test, the z =
sin(

√
x2 + y2) function is be approximated. The kernel of

TSVM in this experiment is Exponential RBF, and the pa-
rameter σ=1. There are 4489 data samples used to train the
TSVM, every which is represented as (x, y, z), x ∈ [−10, 10],
y ∈ [−10, 10] and z ∈ [−10, 10]. And 1000 in-set data points
are used to test the supper plane, 932 data points get right
function value. When the 1000 out-set data points are input
into the system, about 754 data points get right function value.
The Fig. 7 shows the supper plane which is the approximating
function based on TSVM. From the results we have get, the
function approximation based on TSVM in high dimension
case is feasible.

TABLE I
IN-SET AND OUT-SET TESTING FOR FUNCTION APPROXIMATED BASED

ON TSVM WITH DIFFERENT TRAINING DATA SAMPLES

accuracy (points) 34 points training 68 points raining

In − set testing

20 points in [−10, 10]
17 20

out − set testing

10 points in [−15,−10)
6 8

out − set testing

10 points in (10, 15]
6 8
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Fig. 7. The function approximation of z = sin(
√

x2 + y2) based on TSVM
is shown. Here the kernel is Exponential RBF with σ = 1.

V. CONCLUSION

In this paper, a new function approximation based on TSVM
was proposed to solve the overfitting problem in SVR. The
basic idea of the approach is to utlize the property of TSVM
of generating two nonparallel planes such that each plane is
closer to one of the two classes and is as far as possible from
the other. In our contribution, only the intuitionistic results
were shown. Some theory analysis will be given in our future
work.
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(b) TSVM for sinc function approximation in more samples.

Fig. 4. TSVM with Exponential RBF kernel for sinc(x) =
sin(x)

x
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(a) TSVM for sinc(x) function approximation with noise sam-
ples disturbances.
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(b) SVR for sinc(x) function approximation with noise samples
disturbances.

Fig. 5. Comparison between TSVM and SVR in sinc(x) =
sin(x)

x
function approximation with noise data samples disturbances. The left figure shows the

results using TSVM and the SVR results is shown in right figure. Here the kernel is Exponential RBF with σ = 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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(b) SVR for multi-value function approximation.

Fig. 6. Comparison between TSVM and SVR in multi-value function approximation. The left figure shows the results using TSVM and the SVR results is
shown in right figure. Here the kernel is Exponential RBF with σ = 4.
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