

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

A High Availability and Disaster Recovery System

Qin Zhang
The department of Computer Science
Chengdu University of Information Technology
Chengdu, China
acazhang@gmail.com

Hong Xu
The department of Computer Science
Chengdu University of Information Technology
Chengdu, China
xuhong@cuit.edu.cn

Abstract—In this paper, we present the design and
implementation of cluster structure and disaster recovered
system that can be used in the bank, industry and enterprise. It is
capable of storing great capacity data. This toolkit is targeted at
data security business which want to achieve high availability
and disaster recovered structure and to compare their structure
with others. The comparison functions can be used to find
structure differences between two performance level, especially
in data safeguard. The system is developed in Unix and the great
capacity data is stored in a relational database.

Keywords—high availability, recovery disaster, cluster,
performance comparison

I. INTRODUCTION
A cluster consists of two or more independent, but

interconnected, servers. Several hardware vendors provided
cluster capability over the years to meet a variety of
needs.Some clusters were only intended to provided high
availability by allowing work to be transferred to a secondary
node if the active node fails. Others were designed to provide
scalability by allowing user connections or work to be
distributed across the nodes.

Another common feature of a cluster is that it should
appear to an application as if it were a single server. Similarly,
management of several servers should be as similar to the
management of a single server as possible. The cluster
management software provides this transparency. [1]

For the nodes to act as if they were a single server,files
must be stored in such a way that they can be found by the
specific node that needs them.There are several different
cluster topologies that address the data access issue,each
dependent on the primary goals of the cluster designer. The
interconnect is physical network used as a means of
communication between each node of the cluster.

Our designed system is being tested with data from a
production environment. The system provides a safe disaster
recovery for the client. The structures of the system prevents
quantitative data from being lost.

The rest of the paper is organized as follows: Section 2
presents an overview of the system. Our database structure and
disaster recovery features of the system are described in
Section 3. Section 4 discusses some salient features of the
system. Conclusion will be presented in Section 5.

II. OVERVIEW OF RAC AND DISASTER
RECOVERY SYSTEM

Real Application Clusters (RAC) enables high utilization
of a cluster of standard, low-cost modular servers such as
blades. RAC offers automatic workload management for
services. Services are groups or classifications of applications
that comprise business components corresponding to
applications and provide support for multiple services on
multiple services on multiple services on multiple instances. If
a primary instance fails, the system moves the services from
the failed instance to a surviving alternate instance. Oracle also
load balances connections across instances hosting a service.
RAC, which is based on a shared-disk architecture, can grow
and shrink on demand without the need to artificially partition
data among the servers of the cluster. RAC also offers a
single-button addition and removal of servers to a cluster. Thus,
we can easily provide or remove a server to or from the
database.

Fig.1.1. Real Application Clusters Architecture

Data Guard ensures data protection, and disaster recovery
for enterprise data. Data Guard provides a comprehensive set
of services that create, maintain, manage, and monitor one or
more standby databases to enable production databases to
survive disasters and data corruptions. Data Guard maintains
these standby databases as transactionally consistent copies of
the production database. Then, if the production database
becomes unavailable because of a planned or an unplanned
outage, Data Guard can switch any standby database to the
production role, minimizing the downtime associated with the

outage. Data Guard can be used with traditional backup,
restoration, and cluster techniques to provide a high level of
data protection and data availability. With Data Guard,
administrators can optionally improve production database
performance by offloading resource-intensive backup and
reporting operations to standby systems.

 Fig.1.2. Data Guard Model

For our system, storage is a critical component of any grid
solution. Traditionally, storage has been directly attached to
each individual server(DAS). Over the past few years, more
flexible storage, which is accessible over storage area networks
or regular Ethernet networks, has become popular. These new
storage options enable multiple servers to access the set of
disks, simplifying provisioning of storage in any distributed
environment. [3] AS we already saw, the choice of file system
is critical for RAC deployment. Traditional file systems do not
support simultaneous mounting by more than one system, or
on a file system. Therefore, you must store files in either raw
volumes without any file system, or on a file system that
supports concurrent access by multiple systems. Thus, three
major approaches exist for providing the shared storage needed
by RAC:

 Raw volumes: These are directly attached raw devices
that require storage that operates in block mode such
as fiber channel or iSCSI.

 Cluster File System: One or more cluster file systems
can be used to hold all RAC files. Cluster file systems
require block mode storage such as fiber channel or
iSCSI.

 Automatic Storage Management(ASM) is a portable,
dedicated, and optimized cluster file system for
database files.

III. THE SYSTEM STRUCTURE AND WORK
MECHANISM

RAC(Real Application Clusters) is the successor to Oracle
Parallel Server (OPS).RAC allows multiple instances to access
the same database (storage) simultaneously. RAC provides
fault tolerance, load balancing, and performance benefits by
allowing the system to scale out, and at the same time since all
nodes access the same database, the failure of one instance will
not cause the loss of access to the database.

At the heart of RAC is a shared disk subsystem. All nodes
in the cluster must be able to access all of the data, redo log
files, control files and parameter files for all nodes in the
cluster. The data disks must be globally available in order to
allow all nodes to access the database. Each node has its own
redo log files and UNDO tablespace, but the other nodes must
be able to access them (and the shared control file) in order to
recover that node in the event of a system failure.

The biggest difference between RAC and OPS is the
addition of Cache Fusion. With OPS a request for data from
one node to another required the data to be written to disk first,
then the requesting node can read that data. With cache fusion,
data is passed along a high-speed interconnect using a
sophisticated locking algorithm. [2]

Not all clustering solutions use shared storage. Some
vendors use an approach known as a Federated Cluster, in
which data is spread across several machines rather than
shared by all. With RAC, however, multiple nodes use the
same set of disks for storing data. With RAC, the data files,
redo log files, control files, and archived log files reside on
shared storage on raw-disk devices, a NAS, ASM, or on a
clustered file system. The database approach to clustering
leverages the collective processing power of all the nodes in
the cluster and at the same time provides failover security.

Fig.3.1. High Availability and Disaster Recovery System

When an instance fails and the failure is detected by
another instance, the second instance performs the following
recovery steps:

A. During the first phase of recovery, Global
Enqueue Service(GES) remasters the enqueues.

B. Then the Global Cache Service (GCS) remasters its
resources. The GCS processes remaster only those
resources that lose their masters. During this time, all
GCS resource requests and write requests are
temporarily suspended. However, transactions can
continue to modify data blocks as long as these
transactions have already acquired the necessary
resources.

C. After enqueues are reconfigured, one of the surviving
instances can grab the Instance Recovery enqueue.
Therefore, at the same time as GCS resources are
remastered, SMON determines the set of blocks that
need recovery. This set is called the recovery set.
Because, with Cache Fusion, an instance ships the
contents of its blocks to the requesting instance

without writing the blocks to the disk, the one-disk
version of the blocks may not contain the changes that
are made by either instance. This implies that SMON
needs to merge the content of all the online redo logs
of each failed instance to determine the recovery set.
This is because one failed thread might contain a hole
in the redo that needs to be applied to a particular
block. So, redo threads of failed instances cannot be
applied serially. Also, redo threads of surviving
instances are not corresponding buffer caches.

D. Buffer space for recovery is allocated and the
resources that were identified in the previous reading
of the redo logs are claimed as recovery resources.
This is done to avoid other instances to access those
resources.

E. All resources required for subsequent processing have
been acquired and the (Global Resource
Directory)GRD is now unfrozen. Any data blocks that
are not in recovery can now be accessed. Note that the
system is already partially available. [5]

Then, assuming that there are past images or current
images of blocks to be recovered in other caches in the cluster
database, the most recent is the starting point of recovery for
these particular blocks. If neither the past image buffers nor the
current buffer for a data block is in any of the surviving
instances’ caches, then SMON performs a log merge of the
failed instances. SMON recovers and writes each block
identified in step C, releasing the recovery resources
immediately after block recovery so that more blocks become
available as recovery proceeds.

After all blocks have been recovered database or the
recovered resources have been released, the system is again
fully available.

In summary, the recovered database or the recovered
portions of the database becomes available earlier, and before
the completion of the entire recovery sequence. This makes the
system available sooner and it makes recovery more scalable.

IV. SALIENT FEATURES OF THE SYSTEM
In this section, we describe some salient features of our

system including replaced instance and data management,
disaster recovery and extensibility.

In a Real Application Clusters environment, any standby
instance can receive redo data from the primary database; this
is a receiving instance. However, the archived redo log files
must ultimately reside on disk devices accessible by the
recovery instance. Transferring the standby database archived
redo log files from the receiving instance to the recovery
instance is achieved using the cross-instance archival
operation.

The standby database cross-instance archival operation
requires use of standby redo log files as the temporary repository
of primary database archived redo log files. Using standby redo
log files not only improves standby database performance and
reliability, but also allows the cross-instance archival operation to
be performed on clusters that do not have a cluster file system.

However, because standby redo log files are required for the
cross-instance archival operation, the primary database can use
either the log writer process (LGWR) or archive processes
(ARCn) to perform the archival operations on the primary
database.

When both the primary and standby databases are in a Real
Application Clusters configuration, then a single instance of
the standby database applies all sets of log files transmitted by
the primary instances. In this case, the standby instances that
are not applying redo data cannot be in read-only mode while
Redo Apply is in progress.

A.. Replaced Instance

Fig.4.1. When an Server failed

How to manage and utilize different instance is much more
difficult than the public database. In our system, when the
instance 2 fails, we can use the new instance (replaced
instance), in this way, the workload will be the same as the
former performance. Importantly, we separate the different
instance from public database, and apply the same schema but
different constraints to them.

B. Data Management
Data Management is one of the most important

considerations in any database. It is more important in our
system because Real Application Clusters will contain some
proprietary data that users normally do not want to share with
other people or groups. Keeping the privacy of data is one of
the major goals of our system. First, the whole system is
designed as a standalone system that will be used only in the
laboratory, to which there is no free access. Secondly, data are
stored separately from the publicly data, and have an
ownership property that allows only the owners to change their
values and status. Access to the proprietary data is also under
the control of the owners. Therefore, the proprietary data can
be managed in a safe and flexible fashion in RAC.

C. Disaster Recover and Performance Testing

Fig.4.2. RAC and Data guard Mode

If the storage for textile machinery fired, especially, the
diskarray which the database is stored will be failed. The
remote standby database will play the role of diskarray and the
system will not lose any data. Because the standby database
receives archive log files from the diskarray everyday.
Furthermore, if the instance 2 is failed, the new instance will
replace it.

SQL>ALTER DATABASE COMMIT TO

SWITCHOVER TO STANDBY;

SQL>SELECT INSTANCE_NAME , HOST_NAME

 FROM V$INSTANCE

WHERE INST_ID <>

(SELECT INSTANCE_NUMBER

FROM V$INSTANCE);

INSTANCE_NAME HOST_NAME

------------------------- ---------------------

INST2 standby2

SQL>CONNECT SYS/SYS@standby2 AS SYSDBA

CONNECT;

This provides for high availability and disaster recovery
principles, and protects the bank, industry and enterprise
production data.

Fig.4.3. Arrival process of instance requests to an online transaction in

one day. [4]
V. CONCLUSION

In this paper, we present an new high availability and
disaster recovery architecture system. The problem is proved
to protect data hard problem in general. We provide a
safeguard data platform and can be high performance to work
for database. The system is divided into two phases. The first
phase is the cluster of many instances as the destination node.
In the second phase, we detailed the data guard for the
recovery database. Our cluster and disaster recovery structure
is suitable for the great capacity data storage, management. In
the future, we will develop a monitor tool to forecast disaster,
and integrate more functions and tools to our system according
to the practical requirements.

REFERENCES
[1] D.A. Menascé, R. Dodge, and D. Barbará, “Preserving QoSofE

Commerce Sites through Self-Tuning: A Performance Model
Approach,” Proc. 2001 ACM Conf. E-Commerce, ACM Press, 2001,
pp. 224–234.

[2] Agrawal R, Gehrke J, Gunopulos D. Raghavan P. Automatic SubSpace
Clustering of High Dimensional Data for Data Mining Applications. In:
Proceedings of the ACM SIGMOD International Conference on
Knowledge Discovery in Database and Data Mining, Montreal,
Canada, 1998, 94-105

[3] Rockart, John Fand Dvid W.De Long. Executive Support System. Dow
Jones-Irwin, Homewood. IQ(1998)

[4] D.A. Menascé, “Load Testing of Web Sites,” IEEE Internet Computing,
vol. 6, no. 4, July/August 2002, pp. 70–74

[5] Rex Black, Managing the Testing Process, MA: Addison-Wesley,
2002:165-178.

