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 Abstract—The One class classification problem aims to 

distinguish a target class from outliers. Two popular algorithms, 
One-Class SVM (OCSVM) and Single-Class MPM (SCMPM), 
solve this problem by finding a hyperplane with the maximum 
distance to the origin. Their essential difference is that OCSVM 
focuses on the Support Vectors (SV) in a local manner while 
SCMPM emphasizes the whole data’s distribution using global 
information. In fact, these two seemingly different yet 
complementary characteristics are all important prior knowledge 
for the One-Class-Classifier (OCC) design. In this paper, we 
propose a novel OCC called Global & Local (GLocal) OCC, 
which incorporates the global and local information in a unified 
framework. Through embedding the samples’ distribution 
information into the original OCSVM, the GLocal OCC provides 
a general way to extend the present SVM algorithm to consider 
global information. Moreover, the optimization problem of the 
GLocal OCC can be solved using the standard SVM approach 
similar to OCSVM, and preserves all the advantages of SVM. 
Experiment results on benchmark data sets show that the GLocal 
OCC really has better generalization compared with OCSVM 
and SCMPM. 
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I.  INTRODUCTION (HEADING 1) 
In One-Class classification problems, usually, only one 

class of data is available, but others are too expensive to 
acquire or too difficult to characterize. The available class is 
called the target class or normal patterns, while all others not in 
this class are defined as outliers or abnormal patterns. These 
classification tasks can be found in many real-world scenarios 
like machine faulty diagnosis, network intrusion detection and 
document classification etc. Originating from various 
applications, one-class classification is also referred to as 
domain description, novelty detection, or concept learning [1]. 

To solve the one-class classification problem, an extreme 
approach is to estimate the probability density function (pdf) of 
the data in the target class [2]. But since Vapnik et al. proposed 
a principle [3] that “never to solve a problem that is more 
general than the one we actually need to solve”,an alternative 
solution, the domain-based approach [1,4], has become the 
main method to solve one-class classification problem. 
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Through finding a boundary to enclose the target class 
appropriately, the domain based method minimizes the volume 
of the target class domain by geometric shapes such as 
hyperplane or hypersphere. 

As the state-of- the-art SVM introduced in one class, One-
Class SVM (OCSVM) [5] uses a hyperplane to separate the 
target samples from the origin with maximal margin. In 
nonlinear case, the kernel trick can be used by first implicitly 
mapping the training data into a higher dimensional feature 
space and then using the linear method. Moreover, when 
Gaussian kernels are used, the OCSVM is equivalent to that of 
Support Vector Data Description (SVDD) [6], which describes 
the target data domain by finding the minimum hyperspere. 
Computationally, the above two methods both lead to quadratic 
programming (QP). For further reducing the computational 
cost, a linear programming algorithm is proposed on the basis 
of OCSVM [7]. 

Using the dual formulation to solve the convex 
optimization as SVM usually does, OCSVM has the 
advantages including the sparse solution, the global optimum 
and the large margin [8]. However, it only employs the Support 
Vectors（SV） but neglects the contribution of the whole 
samples’ distribution to the margin. Such a local learning 
characteristic is more likely to lose the global information of 
the whole data so that it has the dangerous to make its 
boundary sub-optimal. More recently, some algorithms such as 
Single-Class Mini-Max Probability Machine (SCMPM) [9], 
Mahalanobis One-Class SVM (MOCSVM) [10], Minimum 
Volume Enclosing Ellipsoidal (MVEE) [4] and Minimum 
Volume Covering Ellipsoid (MVCE) [11], have, in fact, given 
justice that the utility of the global information in data is vital 
for designing a classifier since it can lead to more powerful 
generalization. 

For the sake of simplicity, here we only focus on the above 
two algorithms which use the hyperplanes model, i.e, SCMPM 
and MOCSVM. SCMPM maximizes the Mahalanobis Distance 
(MD) of the hyperplane to the origin instead of the Euclidean 
Distance (ED) in OCSVM. Given only the mean and 
covariance matrix as the global information of the data 
distribution, this model exploits the worst-case probability of 
the target data falling inside the positive half space. Inspired by 
SCMPM, Tsang et al. proposed MOCSVM which also utilizes 
MD to improve the OCSVM’s performance. To alleviate the 



         

estimation error for the global issues of the first and second 
order moments, the above models both adopted a uncertainty 
model named robust estimation. Unfortunately, this robust 
estimation may be inaccurate but seems to need the local 
characteristic of the specific data points. Furthermore, without 
using the dual theory but solving the primal problem directly, 
SCMPM loses the sparsity derived from the KKT conditions. 
In addition, the Second Order Cone Programming (SOCP) 
optimization is computationally time-consuming compared to 
the QP optimization used in OCSVM. 

Inspired by the above analyses on the existing One-Class-
Classifier (OCC) algorithms, we propose a Global & Local 
(GLocal) OCC by incorporating the global and local 
information in an integrative framework. Through embedding 
the samples’ distribution information into the original OCSVM, 
the GLocal OCC provides a general way to extend the classical 
SVM algorithm. In such a way, GLocal OCC is able to 
preserve all the advantages of SVM including the global 
optimality, the sparse solution and the large margin. Moreover, 
the optimization of the GLocal OCC can be solved using the 
standard SVM approach similar to OCSVM rather than SOCP 
as in SCMPM.  

The rest of this paper is organized as follows: Section 2 
briefly introduces the OCSVM and SCMPM as the related 
works. Section 3 presents our GLocal OCC and its kernelized 
version. Section 4 gives the experimental results on benchmark 
datasets. Finally, some conclusions are drawn in Section 5. 

II. RELATED WORKS 

A. One-Class SVM(OCSVM) 

Given a set of patterns { }1 2, , , nx x x , OCSVM [5] tries 
to find the hyperplane which separates most samples with the 
maximal margin from the origin by solving 
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ix ρ=Tw  is the desired hyperplane and the margin from 

the origin to the hyperplane is ρ
Tw w . (0,1)ν ∈  is the 

parameter which characterizes the fraction of support vectors 
and outliers. iζ is the slack variables used to penalize the 
samples lying on the negative half space. 

The corresponding Wolfe dual form of (1) is 
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where 1, , ,nα α α T=    [ ]1, ,1= T1 . 

The dual formulation has two outstanding properties: first, 
the solution is sparse, which means that only the training 
samples that lie on the surface of the optimal hyperplane have 

their corresponding nonzero iα  and are called Support Vectors 
(SV). Second, it is possible to use the mercer kernel ( , )k ⋅ ⋅ to 
replace the dot product TX X such that it implicitly maps the 
input samples into the higher-dimensional feature space. 
According to Cover’s theory [2], the nonlinear problem in the 
data space can be more likely linearly solved in the mapped 
space. 

For a given new test point z , the following decision 
function determines whether the point belongs to the target 
class or outliers: 

1    target class  
( ) sgn

1  outlier
Tf x zα ρ  = − =   −

TX
   

(3) 

B. Single-Class MPM ( SCMPM) 
Similar to the OCSVM, SCMPM finds the smallest half-

space ( , ) { ' }Q b x x b= ≥a a for the normal patterns by 
maximizing the Mahalanobis distance from hyperplane to the 
origin. Given only the mean x and the covariance matrix Σ  of 
a distribution and without further assumptions on the data, the 
SCMPM minimizes the worst-case probability of a data pattern 
falling inside Q . Hence, for a given (0,1)α ∈ , this leads to the 
following constrained optimization problem: 

max    . .   inf  P( b)
b

s t x α≥ ≥T

T
a

a Σa
           (4) 

Without loss of generality, we set 1b = in (4). In addition, 
by using the generalized Chebychev inequality, the constraint 
in (4) is the same as the ones in the following optimization 
problem: 

min    
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where ( ) 1κ α α α= − . 

The above optimization problem needs to be solved by 
SOCP, which is computationally time-consuming compared to 
the QP solver. Moreover, the solution loses the sparseness 
property. In addition, the SCMPM heavily depends on the 
mean and the covariance which are estimated from the data. To 
improve the robustness, a uncertainty model is adopted for the 
estimation as the following: 

2{ ,
F

δ γ≤ ≤0 T -1 0 0(x,Σ) : (x - x ) Σ (x - x )} Σ - Σ     (6) 

Where 0x and 0Σ are the nominal estimates of x and Σ , 

F⋅  denotes the Frobenious norm and , 0δ γ ≥  are the 
corresponding uncertainties. 

It is worth noting that SCMPM can also obtain the 
nonlinear region by using the kernel trick even without 
exploiting the dual theory. For the reason that the mean and the 
covariance matrix can be denoted by the samples in first and 
second order moments, the optimum will lie in the span of the 
sample data so that the objective function and the constraints of 



         

(5) can be expressed in terms of inner products. For more the 
detailed derivation, please refer to [12]. 

III. GLOCAL ONE-CLASS-CLASSIFIER  
From the formulation of the related work, we draw the idea 

that OCSVM stresses much more on the local information of 
the support vectors but pays less attention to the whole data’s 
structure. Conversely, SCMPM emphasizes more on the global 
information by using sample’s mean and covariance while 
neglecting individual data’s effect on the boundary. Although 
these two algorithms compete for each other in solving one-
class classification, they both indeed lose some useful 
information during constructing classifier. Motivated by 
unifying the global and the local issues into an integrated 
framework, we proposed a novel OCC called Global&Local 
One-Class-Classifier (GLocal OCC). Through incorporating 
the covariance matrix into the original OCSVM, the GLocal 
OCC takes into account the sample structure at the same time 
maximizing the margin to the hyperplane . In the following 
sections, we will discuss the linear and kernel versions of 
GLocal OCC respectively. 

A. Linear GLocal OCC 
Since the covariance matrix usually expresses global 

information and the SVM framework is relatively convenient to 
solve with QP, we arbitrarily embed the covariance matrix Σ  
of the whole data into the original OCSVM formulation. 
Coinciding with (1) of OCSVM, here we describe the soft 
margin objective function as the following: 
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where 0λ ≥  is the trade-off parameter that regulates the 
balance between the new term and the original formulation. 
Here the Σ  denotes the covariance matrix of the samples in 
order to represent the global issue of the input data, while the 
other items are the same as OCSVM which try to find support 
vectors referred to as the local characteristic of the training 
data.  

Transforming the primal problem into its corresponding 
dual one, we have: 
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Compared to the dual (2) of OCSVM, the above dual (8) is 
not in the input space defined by the inner product ( , )i jx x , 

but replaced by ( )λ -1TX Ι + Σ X , which is equivalent to 

mapping the samples into a new feature space by λ
−1

2(I + Σ) . 
That is, GLocal OCC finds a hyperplane that is in a different 
space from the one in the OCSVM. When this hyperplane is 
mapped back to the input space, it becomes a nonlinear 

boundary which is undoubtedly with more separable ability 
than the linear hyperplane. 

It is worth noting that solving process for GLocal is almost 
the same as the OCSVM, thus off-the-shelf QP solver or some 
decomposition methods such as SMO[13] can be exploited 
even without any modification.  

The decision function is described as: 
1( ) sgn ( )Tf zα λ ρ− = + − 

Tx X I Σ            (9) 

From the above process, we can see that the GLocal OCC is 
similar to the OCSVM no matter in primal, in dual and in 
decision function. If without considering the covariance 
information, (7), (8) and (9) would be reduced to (1), (2) and 
(3) respectively. In other words, the GLocal OCC is the 
generalization of the OCSVM except that it takes into account 
the global information of the data’s distribution.  

For further explanation, Fig. 1 displays the geometric 
interpretation of GLocal OCC. In this figure, the target samples 
distribute in an ellipsoid. Each point therefore has additional 
global information of the whole data. For simplicity, Fig. 1 
only shows some points illustrated by the dash-dotted ellipsoids 
with the same shape. However, OCSVM doesn’t consider this 
global issue: Its decision hyperplane H1 locates on the points 
nearest to the origin which is indicated by the SVs in the Fig 1. 
In comparison, GLocal constructs its decision plane H2 
according to both the global and local information: The GLocal 
hyperplane is adjusted by the tangent hyperplane of the dash-
dotted ellipsoids centered at the support vectors (the local 
information) and the covariance of the members in the target 
class (the global information).  

 
Figure 1.  A geometric interpretation of GLocal OCC. 

B. Kernel GLocal OCC 
Here we omit the formulas of kernel GLocal OCC but still 

utilize the linear version (7) (8) and (9). In order to utilize the 
kernel trick in the dual form, all the terms of ( )−1TX Ι + λΣ X  
need to be denoted by the inner product. For this reason, the Σ  
is described as 

=T T T T
2
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Here X is the vector of the input patterns. 

Denote = − T1H (I 11 )
n

, where I is the identity matrix. So by 

using  the following Woodbury formula [14] 
1 1 1 1 1 1( − − − − − −−A + BC) = A A B(I + CA B) CA  

And using the properties of =HH H and = TH H , we 
obtain 

( ) 1 1( )
n n
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By adopting the kernel trick, (8) then becomes: 
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where TK = X X  is the kernel matrix. This is again a standard 
QP. Moreover, when K  is invertible, by using the Woodbury 
formula, (12) can be further simplified (the detailed derivation 
is in the Appendix): 
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The decision function (9) is also changed to: 

( )f
n n
λ λα ρ = −  

T -1x sgn (K - KH(I + HKH) HK    (14) 

where K represents the kernel matrix between training and 
testing samples. Since it is not a square matrix, the decision 
function can not be further simplified as (13). 

IV. EXPERIMENT  
Since there are hardly one-class benchmark data sets, we 

compared the performances of GLocal OCC with OCSVM and 
SCMPM on seven binary class from the UCI machine learning 
repository as the OCC usually does [12][15]. Table I lists all 
these data sets which are divided into three groups by 
dimension from low to high. For each data set, we follow the 
step in [15] to take the larger class as normal data and the other 
as outliers. We randomly sample 80% of the normal patterns 
for training, and the remaining 20% of the normal patterns and 
all the outliers are used for testing. 

TABLE I.  DATA SETS USED IN  EXPERIMENT 

training testing  
Group dataset dimension total normal normal outlier 

Biomed 5 194 102 25 67 
Breast cancer 9 699 367 91 241 Low  

Heart 13 303 123 41 139 
Import 25 159 71 17 71 Medium Ionosphere 34 351 180 45 126 
Sonar 60 208 89 22 97 High Arrhythmia 278 420 190 47 183 

 

In the experiment, we use a Gaussian kernel 
2 2/( , ) x yK x y e σ− −=  

where the kernel parameterσ  is tuned by the grid search, so is 
the hyperparamete λ in GLocal OCC. Set  0.1ν =  both in 
OCSVM and GLocal OCC. For the α  in SCMPM, although 
in theory it should be set near to1 0.9ν− = , in our experiment 
the results can not compete with OCSVM until it decreases to 
0.6. This value is coincident with the experiment result 
reported in [16], which concludes SCMPM has comparative 
performance when [0.6,0.8]α ∈ . In addition, we set 

0.01ρ = to the plug-in estimate of the covariance matrix as in 
[12]. 

In one-class classification, according to its true labels and 
classified results, there are four possible cases listed in Table II 
[1] called confusion matrix. 

 

 

 

There are two kinds of errors denoted by italic in Table II 
called False Positive (FP) and False Negative (FN). In 
experiment, we adopt FP/FN together with Balanced Loss (BL) 
[15] to evaluate the results of the algorithms, here 

( )FP+FNBL= 2 .Obviously, the lower of the above criteria, 
the better performance of the algorithms. Experiment results 
are shown in Table III. To reduce statistical variability, average 
results of 10 repetitions are reported. The italic and bold font 
denotes the best result of each data set according to the Balance 
Loss. 

TABLE II.  ALL CASES FOR OCC 

True label Classified 

label Target outlier

target True Positive(TP) False Negative(FN) 
outlier False Positive(FP) True Negative(TN) 



         

TABLE III.   TEST  RESULTS ON THE UCI DATA 

OCSVM SCMPM GLocal OCC Data Sets 
FP FN BL FP FN BL FP FN BL 

Biomed 0.1418 0.1520 0.1469 0.2119 0.0880 0.1500 0.1313 0.1120 0.1217 
Breast cancer 0.0228 0.0604 0.0416 0.0622 0.0319 0.0471 0.0274 0.0473 0.0373 

Heart 0.5424 0.2781 0.4103 0.7691 0.1531 0.4611 0.5165 0.2531 0.3848 
Import 0.1775 0.3353 0.2564 0.2338 0.2294 0.2316 0.1817 0.2294 0.2056 

Ionosphere 0.0317 0.1556 0.0937 0.1183 0.0689 0.0936 0.0325 0.1156 0.0740 
Sonar 0.1165 0.6591 0.3878 0.6567 0.1000 0.3784 0.1351 0.5409 0.3380 

Arrhythmia 0.4612 0.1191 0.2902 0.4732 0.0064 0.2941 0.3798 0.1596 0.2697 
In Table III, for the comparison of BL, we have noticed that 

GLocal OCC is better than the other two algorithms in all of 
the seven datasets consistently, no matter in low, medium and 
high dimensions. Particularly in Sonar, the BL decreases nearly 
5~6% compared to OCSVM and SCMPM. For other data sets, 
GLocal OCC obtains at least 2~3% better than the others. 
These results sufficiently prove that it is more reasonable of 
considering both the global and local information than only 
taking one into account.  

According to further analysis, we found the small values of 
BL obtained by GLocal OCC are mainly caused by the lower 
values of  FN compared with OCSVM (except Arrhythmia). It 
is reasonable since GLocal OCC considers the target data’s 
distribution in finding its decision boundary just as shown in 
Fig. 1, this hyperplane can undoubtedly cover more target data. 
For the exceptional case of Arrhythmia, it may be due to that 
its training sample is too small (190) compared with its high 
dimension (278). We also notice that this hyperplane possibly 
leads to large FP since its enlarged boundary has the risk to 
include the space of the outliers. This dilemma can be reduced 
if the negative samples are supplied in training. In one-class 
classification, we have to burden this risk. However, the 
increase of FP is usually slower than the decrease of FN, so we 
can get these satisfactory results. This further proves that it is 
reasonable to take into account the data’s distribution in 
OCSVM.  

For the SCMPM, since the loose possibility α  is set for the 
sake of comparative BL, FP/FN shows great unbalance, FP is 
almost much bigger than FN except Import. On the one hand, it 
shows that SCMPM is really too cautious to label samples as 
outlying and therefore has a high FP rate[15]; On the other 
hand, this deeply proves it is not a valid way for SCMPM to 
only focus on global information without caring about local 
characteristic of the individual data. 

V. CONCLUSION 
In this paper, we proposed a novel classifier called GLocal 

OCC. Through embedding the covariance matrix into the 
original OCSVM, GLocal OCC shows better generalization 
proved by the experiment results on benchmark datasets. At the 
same time, this new model provides a general method to 
incorporate the global information into the SVM framework 
with only local characteristic. Since it is also a QP problem, the 
standard SVM approach can be employed to solve the 
optimization similar to OCSVM. In addition, GLocal OCC still 
keep all the advantages of OCSVM such as the global 
optimality, the sparse solution and the large margin. In future 

work, inspired by sTructure OCC (TOCC) [16] which further 
considers the data distribution in delicate granularity, we will 
extend our work under present framework in finer clusters 
within the target class.  
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Appendix: Derivation (13) from (12), use Woodbury formula to the second term of (12) under the condition that λHKH  is taken 
as a whole. 
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Put the above result back to (12) and the derivation is proved.  

 


