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Abstract— This paper proposes a new approach to solve
Traveling Salesman Problems (TSPs) by using a class of Lotka-
Volterra neural networks (LVNN) without self-excitatory. Some
stability criteria that ensure the convergence of valid solutions
are obtained. It is proved that a class of equilibrium states are
stable if and only if they correspond to the valid solutions of the
TSPs. That is, one can always obtain a valid solution whenever
the network convergence to a stable state. A set of analytical
conditions for optimal settings of LVNN is derived. The simulation
results illustrate the theoretical analysis.

I. INTRODUCTION

The TSP can be defined as: given a set of N cities, find the
shortest path linking all the cities such that all cities are visited
exactly once. The TSPs are typical problems of combinatorial
optimization. The theoretical and practical insight of TSPs can
often be useful in solving other combinatorial optimization
problems. In fact, much progress in combinatorial optimization
can be traced back to research of TSPs. It has been widely
studied in mathematics and artificial intelligence communities.

Since the seminal work of Hopfield and Tank [3], there has
been an increased interest in applying Hopfield neural network
to TSPs and many attempts have been made to try to solve
this problem [4], [5], [6], [7], [8]. Many of them study the
parameter settings of Hopfield neural network. Most of the
study, however, have limitations such as the fine-tuning of the
network coefficients, and invalidity of the obtained solutions
and so on.

In this paper, we employ a class of LVNN to solve TSPs.
The well-known Lotka-Volterra model, which is a differential
nonlinear system describing linear growths and quadratic in-
teractions between variables, was first proposed to describe the
predator-prey relationship in an ecosystem, and soon became
well known and formed the basis of many important models
in mathematical biology and population dynamics. It has also
been found with successful and interesting applications in
physics, chemistry, economics and other fields. The Lotka-
Volterra model of recurrent neural networks [11], which are
derived from conventional membrane dynamics of competing
neurons, providing a mathematical basis for understanding
neural selection mechanisms, has found successful applications
in winner-take-all problems [11], [12], [13].

The class of Lotka-Volterra neural networks discussed in
this paper are without self-excitatory. We address several
important properties such as the networks convergence to a

set of specific states, which correspond to the permutation
matrix. This property presents Winner-Take-All (WTA) within
each row and column, which can be successful applied to
TSPs. Some simple conditions are derived to guarantee the
stability of this class of LVNN. We get a set of analytical
conditions guaranteeing that any equilibrium point of the
network characterizes a valid tour for the TSPs. A series of
experiments are carried out to verify the theoretical analysis.
The simulation results show that the proposed network exhibits
good performance in terms of solution quality.

The rest of this paper is organized as follows. Section
II presents the architecture and dynamics of the proposed
network. In Section III, some important properties of the
network and the principles for choosing its parameter value
are discussed. The simulation results are given in Section IV.
Finally, conclusions are drawn in Section V.

II. SOME PRELIMINARIES AND TSP MAPPING

The TSP is an optimization task that arises in many practical
situations. Let n be the number of cities and dij be the
distance between the cities i and j, i, j ∈ {1, 2, · · · , n},
then a valid solution of the TSPs can be presented by a
n × n permutation matrix, where each column and each row
is associated respectively to a particular city and order in the
tour. Let H = {X ∈ [0, 1]n×n} and HC = {X ∈ {0, 1}n×n}
be an unit hypercube of Rn2

and its corner set, respectively.
Given a fixed X ∈ H , define Si ≡

∑
i xiα and Sα ≡∑α xiα

as the sum of rows and columns. Then the set of valid tour of
TSPs is

HT = {X ∈ HC |Si = 1, Sα = 1, ∀i, α = 1, · · · , n},
and the invalid tour set H − HT can be divided into two sets
by

HS = {X ∈ H |∃α, β and i, s.t. xiα > 0 and xiβ > 0}.
and

HR = {X ∈ H |∃i, j and α, s.t. xiα > 0 and xjα > 0}.
It is clear that HT represents the set of valid tour for TSPs and
H−HT represents the set of invalid tour for TSPs. Meanwhile,
HS ∪ HR = H − HT and HS ∩ HR cannot always be ∅.
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In this paper, the model of Lotka-Volterra neural networks
without self-excitatory can be described by

ẋiα(t) = xiα(t)


A


1 −

n∑
β=1

xiβ(t)




+B


1 −

n∑
j=1

xjα(t)




+
n∑

j=1

wijxjα(t) +
n∑

β=1

wαβxiβ(t)


 , (1)

where each xiα is the state of neuron viα, wij is the connection
wight between neuron viα and neuron vjα, wαβ is the connec-
tion wight between neuron viα and neuron viβ , wij = wαβ if
i = α and j = β. Note that wij = wji.

Fig. 1. The connections of the network (1).

Then the network is associated with an energy function in
which the lowest energy state corresponds to the shortest tour.
This include two aspects. Firstly, the energy function must
favor strongly stable states of the form of a permutation matrix.
Secondly, all the solutions to the problem correspond to valid
tour. We use the method in [2] to obtain the following energy
function

E = −
n∑

α=1

n∑
i=1

n∑
j=1

wijxiαxjα −
n∑

i=1

n∑
α=1

n∑
β=1

wαβxiαxiβ

+
A

2

n∑
i=1

(
n∑

α=1

xiα − 1

)2

+
B

2

n∑
α=1

(
n∑

i=1

xiα − 1

)2

.

It is clear that the third and forth term are constraint conditions,
where the first and second term denotes the total cost to
minimize.

III. PERFORMANCE ANALYSIS FOR NETWORK (1)

Assume the initial condition as xiα(0) = φiα(0) >
0, (i, α = 1, · · · , n). Form [2] we can easily know that each so-
lution x(t) of (1) with the initial condition xiα(0) = φiα(0) >
0, (i, α = 1, · · · , n) satisfies xiα(t) > 0, (i, α = 1, · · · , n) for
all t ≥ 0.

Definition 1: The network (1) is called completely stable,
if each trajectory of (1) converges to an equilibrium point.

Lemma 1: Denote ω = max{ωij}, if it holds that ρ = A+
B − 2nω > 0, (i, α = 1, · · · , n), the network (1) is bounded,
and the network (1) is completely stable.
Proof. See [2].

A. Non-convergence of invalid solution

Theorem 1: Suppose that wii = 0 for ∀i = 1, 2, · · · , n
and wij < −max (A, B), (i 	= j). The equilibrium point is
unstable if the equilibrium point not correspond to a valid tour
of the TSP, namely that the equilibrium point is not a n × n
permutation matrix.
Proof. Three steps will be used for the prove.

Case x = 0. It is clearly that the linearization system of
(1) is given by

ẋiα = (A + B)xiα, (i, α = 1, 2, · · · , n).

Clearly its eigenvalues of the matrix are positive. Then,

lim
t→+∞xiα(t) = lim

t→+∞ xiα(0)e(A+B)t = +∞.

So that x∗ = 0 is unstable.
Case x∗ ∈ HS . Suppose that x∗ is an equilibrium point.

we prove that if there are more than one elements larger than
zero in a column, the equilibrium x∗ is unstable.

Suppose that there exist constants α and β such that x∗
iα >

0, x∗
iβ > 0, then it must have

A

(
1 −

n∑
γ=1

x∗
iγ

)
+ B


1 −

n∑
j=1

x∗
jα


+

n∑
j=1

wijx
∗
jα

+
n∑

γ=1

wαγx∗
iγ = 0,

A

(
1 −

n∑
γ=1

x∗
iγ

)
+ B


1 −

n∑
j=1

x∗
jβ


+

n∑
j=1

wijx
∗
jβ

+
n∑

γ=1

wβγx∗
jγ = 0.



It is sufficient to prove the following system


ẋiα = xiα


A


1 − xiα − xiβ −

n∑
γ �=α,β

x∗
iγ




+B


1 − xiα −

n∑
j �=i

x∗
jα


+ wiixiα

+
n∑

j �=i

wijx
∗
jα + wααxiα

+wαβxiβ +
n∑

γ �=α,β

wαγx∗
iγ




ẋiβ = xiβ


A


1 − xiα − xiβ −

n∑
γ �=α,β

x∗
iγ




+B


1 − xiβ −

n∑
j �=i

x∗
jβ


+ wiixiβ

+
n∑

j �=i

wijx
∗
jβ + wββxiβ

+wβαxiα +
n∑

γ �=α,β

wβγx∗
jγ




is unstable at (x∗
iα, x∗

iβ).
Consider the Jacobe matrix of the above system at

(x∗
iα, x∗

iβ)

J1 =
(

J11 J12

J21 J22

)
,

where J11 = −(A+B−wii−wαα)x∗
iα, J12 = −(A−wαβ)x∗

iα,
J21 = −(A − wβα)x∗

iβ , J22 = −(A + B − wii − wββ)x∗
iβ .

Let λ1, λ2 be the eigenvalues of matrix J1, it is clear that

λ1λ2

= (A + B − wii − wαα)x∗
iα(A + B − wii − wββ)x∗

iβ

−(A − wαβ)(A − wβα)x∗
iαx∗

iβ

= x∗
iαx∗

iβ

[
(A + B)2 − (A − wαβ)2

]
< 0.

It implies that there is at least one of λi(i = 1, 2) must be
positive, thus above system is unstable at (x∗

iα, x∗
iβ).

Case x∗ ∈ HR. we discuss the case that there are two
elements in the same row larger than zero. Suppose that there
exist constants i and j such that x∗

iα > 0, x∗
jα > 0, then it

must have

A

(
1 −

n∑
γ=1

x∗
iγ

)
+ B

(
1 −

n∑
k=1

x∗
kα

)
+

n∑
k=1

wikx∗
kα

+
n∑

γ=1

wαγx∗
iγ = 0,

A

(
1 −

n∑
γ=1

x∗
jγ

)
+ B

(
1 −

n∑
k=1

x∗
kα

)
+

n∑
k=1

wjkx∗
kα

+
n∑

γ=1

wαγx∗
jγ = 0.

To complete the proof, it is sufficient to prove the following
system



ẋiα = xiα


A


1 − xiα −

n∑
γ �=α

x∗
iγ




+B


1 − xiα − xjα −

n∑
k �=i,j

x∗
kα




+wiixiα + wijxjα +
n∑

k �=i,j

wikx∗
kα

+wααxiα +
n∑

γ �=α

wαγx∗
iγ




ẋjα = xjα


A


1 − xjα −

n∑
γ �=α

x∗
jγ




+B


1 − xiα − xjα −

n∑
k �=i,j

x∗
kα




+wjixiα + wjjxjα +
n∑

k �=i,j

wjkx∗
kα

+wααxiα +
n∑

γ �=α

wαγx∗
jγ




is unstable at (x∗
iα, x∗

jα).
Consider the Jacobe matrix of the above system at

(x∗
iα, x∗

jα)

J2 =
(

J ′
11 J ′

12

J ′
21 J ′

22

)
,

where J ′
11 = −(A+B−wii−wαα)x∗

iα, J ′
12 = −(B−wij)x∗

iα,
J ′

21 = −(B − wji)x∗
jα, J ′

22 = −(A + B − wjj − wαα)x∗
jα

Let λ1, λ2 be the eigenvalues of matrix J2, it is clear that

λ1λ2

= (A + B − wii − wαα)x∗
iα(A + B − wjj − wαα)x∗

jα

−(B − wij)x∗
iα(B − wji)x∗

jα

= x∗
iαx∗

jα

[
(A + B)2 − (B − wij)2

]
< 0.

It implies that there is at least one of λi(i = 1, 2) must be
positive, thus above system is unstable at (x∗

iα, x∗
jα).

B. Convergence of valid solution

Theorem 2: A stable equilibrium point corresponds to a
valid tour. That is, if x∗ is a stable equilibrium point, then
x∗ ∈ HT .



Proof. Suppose the statement is not true, namely that there
exist a stable equilibrium point corresponding to an invalid
tour. Then there must be at least two elements within a column
or row larger than 0. From Theorem 3 we know that this
equilibrium point is not stable, this poses a contradiction to the
assumption. Hence a stable equilibrium point is corresponding
to a valid tour of TSPs.

IV. SIMULATION RESULT

The convergence conditions of network (1) have been
discussed above. To verify the theoretical result and the
effectiveness of the network applied to TSPs, the following
experiments have been carried out.

Set initial states xij(0) ∈ [0, 1], (i, j = 1, 2, · · · , 8),n =
8, A = 2, B = 1 and the connection inhibition matrix W =
(wij), (i, j = 1, 2, · · · , 8) as follows

W =




0 −1.3361 −1.3141 −1.3601 −1.5111 −1.5176 −1.2982 −1.4564
−1.3361 0 −1.1107 −1.6149 −1.8407 −1.8083 −1.5815 −1.6418
−1.3141 −1.1107 0 −1.5349 −1.7919 −1.8207 −1.5941 −1.6908
−1.3601 −1.6149 −1.5349 0 −1.3397 −1.6528 −1.5171 −1.7375
−1.5111 −1.8407 −1.7919 −1.3397 0 −1.4579 −1.4529 −1.6686
−1.5176 −1.8083 −1.8207 −1.6528 −1.4579 0 −1.2274 −1.2937
−1.2982 −1.5815 −1.5941 −1.5171 −1.4529 −1.2274 0 −1.2277
−1.4564 −1.6418 −1.6908 −1.7375 −1.6686 −1.2937 −1.2277 0



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Fig. 2. Trajectories of the network in a random column.

Fig. 2 and Fig. 3 show the trajectories of the variables
in a random row and column, respectively. Fig. 4 show the
trajectories of all variables. Clearly it follows the rule WTA
within each row or column, however, it shows a winner-share-
all phenomenon in the global view. Those properties illustrated
in the figures are not the same as the properties in [11]. Fig.
2, 3, 4 correspond to a permutation matrix which column and
row are associated respectively to a particular city and order
in the tour of TSPs.

TABLE I

10-CITY PROBELM

i 1 2 3 4 5 6 7 8 9 10
X 1 2 3 4 5 1 2 3 4 5
Y 1 2 1 2 1 3 4 3 4 3

The second experiment is on a 10-city problem which was
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Fig. 3. Trajectories of the network in a random row.

TABLE II

PERFORMANCE OF LVNN WITH DIFFERENT PARAMETER SETTING

Good(%) Min Length Ave Length
A = B = 0.1 30% 15.3137 23.9717
A = B = 0.5 27% 15.3137 23.0063

presented in [8]. Its city coordinates are shown in Table I. Its
minimal tour length is 15.3137. The initial states were ran-
domly generated by xiα ∈ (0, 1). The item ”good” indicated
the number of tours with distance within 150% of the optimum
distance.

Simulation results are shown in Table II, where data of the
two rows show the performance of the proposed network. The
network gets the shortest tour with different parameter setting
shown in the table. Fig. a and b are two optimum solutions
get by LVNN with varied parameters, respectively.
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Fig. 4. Trajectories of all the variables.

V. CONCLUSIONS

In this paper, a class of LVNN is used to solve the TSPs.
The dynamics of the networks are analyzed in terms of stability
of specific equilibrium points, including the conditions derived
for the convergence. The WTA within each row and column
enable the networks can solve TSPs. The theoretical results
have been illustrated with a series of experiments.

These analytical conditions depend upon all the lateral
inhibitory of the network, including the parameters of the
network. For simplicity we consider the parameters A equal to
B in the simulations in this paper. If the coefficient A and B
are different, the model would be more better, more research
on this issue is required.
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