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Abstract—This paper studies the problem of group selection by
using Lotka-Volterra recurrent neural networks. The networks
are required to be with self-inhibition and lateral inhibition.
The group selection is based on the concepts of permitted and
forbidden sets. By restricting the strength of the lateral inhibition
and self-inhibition to be in some interval, conditions for group
selection are obtained. Under these conditions, groups are related
to permitted and forbidden sets, i.e., each group is a permitted
set. Thus, groups can be selected by the networks. Simulation
results further confirm the theory.

I. INTRODUCTION

The winner-take-all (WTA) competition can be imple-
mented by some variant recurrent neural networks [7][10][13].
Many unsupervised learning neural networks are designed by
WTA rules, such as Grossbergs competitive learning, Ham-
ming networks, fuzzy associative memory, and learning vector
quantization. In the traditional WTA neural networks, however,
the selection of a single winner may easily suffer from noise in
inputs because there are only one single neuron which receives
the largest input value is active at a steady state [1]. As an
extension of WTA, K-winner-take-all (KWTA) selects the k
largest values which are uniformly arranged [9]. In the K-
winner networks, the solutions could be systematically studied
only for homogeneous external inputs, and their dynamic be-
havior with nonhomogeneous inputs is in general complicated
[3]. The winners of KWTA were selected according to the
initial conditions of neural networks.

Recently, the Lotka-Volterra (LV) recurrent neural net-
works have been used for implementing competition prob-
lems. The model of LV networks was proposed in [3], and
it has been studied by many authors, see for examples,
[1][2][11][12]. As initial-condition-independent behavior of
neural network, WTA, winner-share-all(WSA) and variant
winner-take-all(VWTA) competition solutions with LV recur-
rent neural networks in steady states were studied in [3].
These solutions are classified according to the number of active
neurons that we call winner. Transitions among these three
types solutions can been implemented by the ration of the
strength of lateral inhibition to that of self-inhibition.

Group selection, performing group winer-take-all and simi-
lar to WSA, was studied in [8] by using continuous-time linear
threshold recurrent neural networks. A group can be selected

based on the concepts of permitted and forbidden sets if the
strength of the lateral inhibition is sufficiently strong. It extends
the grouping of potential winners in the WTA networks beyond
single neuron or uniformly arranged groups of neurons [8].
The competition between arbitrary groups of neurons can be
realized by organizing lateral inhibition in the networks.

In this paper, we use LV recurrent neural networks to study
the problem of group selection by lateral inhibition and self-
inhibition. We will derive conditions on the strength of the
lateral inhibition and self-inhibition so that the network can be
used for group selection by using the concepts of permitted
and forbidden sets [5][8][4]. Simple necessary and sufficient
conditions will be established respectively for existence of
permitted and forbidden sets, relationships between permitted
set and groups.

This paper is organized as follows. The problem formulation
is given in Section II. The theory of permitted and forbidden
sets in LV recurrent neural networks with lateral inhibition is
presented in Section III. Section IV studies the relationships
between permitted sets and the groups. Simulations are given
in Section V to further illustrate the theory. Conclusions are
given in Section VI.

II. THE PROBLEM FORMULATION

The model of Lotka-Volterra recurrent neural networks is
described by

ẋi = xi


−xi + bi +

n∑
j=1

wijxj




for t ≥ 0, where xi denotes the activity of neuron i and x =
(x1, x2, · · · , xn)T ∈ Rn denotes the state of the network, W =
(wij)n×n is real n×n matrices, each of their elements denotes
the synaptic weight matrix and represents the connection form
neuron i to neuron j, b = (b1, b2, · · · , bn)T ∈ Rn denotes
the external input. The neural activities xi of networks will
remain nonnegative for all future time and any inputs b when
its initialized value is nonnegative. The networks can be also
write as vector form

ẋ = diag (x) (−x + b + Wx) , (1)
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where diag(x) is a n × n matrices which the main diagonal
elements are xi (i = 1 · · ·n), the other elements are zero.

Definition 1: Let A be an n × n matrix, and let P ⊆
{1, 2, · · · , n} be an index set. The matrix AP is called a
submatrix of A if it can be constructed from A simply by
removing from A all rows and columns not indexed by P .

The group selection we will study in this paper is based
on the concepts of permitted and forbidden sets. A set of
neurons is said to be permitted if it can be coactived to a
stable equilibrium point by some input. Here, the concept of
Lyapunov stability is associated with some equilibrium points.
An equilibrium point can be stable or unstable. However, in
practice, only the outputs of stable equilibrium points can be
observed.

A point x∗ ∈ Rn
+ is called an equilibrium point of the

network (1), if it satisfies

x∗ = b + W · x∗.

Next, we give the definition of Lyapunov stability for an
equilibrium point.

Definition 2: An equilibrium point x∗ ∈ Rn
+ is called

stable, if given any constant ε > 0 there exists a constant
δ > 0 such that

‖x(0)− x∗‖ ≤ δ

implies that
‖x(t)− x∗‖ ≤ ε

for all t ≥ 0. An equilibrium point is called unstable if it is
not stable.

Next, we given the mathematical definition for permitted
and forbidden sets.

Definition 3: A set of neurons with index set P is called
permitted if there exists an input b such that the network (1)
has a stable equilibrium point x∗ with{

x∗
i > 0, i ∈ P

x∗
j = 0, j /∈ P.

(2)

A set of neurons is called forbidden if it is not permitted, i.e.,
given any input b, it is not possible to find a stable equilibrium
point satisfies (2).

Lemma 1: [5] If W is symmetric and I −W copositive,
a set of neurons with index set P is permitted if and only if
each eigenvalue of (I −W )P is nonnegative.

III. PERMITTED AND FORBIDDEN SETS WITH INHIBITION

A. The model with lateral inhibition

Suppose there are n neurons which are grouped into some
groups. We assume that each neuron belongs to at least one
group, and that each group contains at least one neuron. One
neuron is allowed to belong to more than one group, so that
the groups may come into overlapping. Let us first define the
lateral inhibitory synaptic matrix.

Definition 4: Let J = (Jij)n×n be an matrix. If both
neuron i and j are contained in a group, then Jij = 0. If
neuron i and j are not contained in any of a same group, then

Jij = 1. The matrix J is called lateral inhibitory synaptic
matrix.

Clearly, the lateral inhibitory synaptic matrix J is symmetric
and all of the diagonal elements are zero. The inhibitory matrix
J shows that the inhibitory connection between two neurons is
established only if the two neurons are not contained in any of
a same group. The matrix J can be constructed from a simple
learning mechanism [8] described as follows.

Suppose there are m groups of neurons, and the group
membership ξ of the ath group is defined by

ξa
i =

{
1, i ∈ a
0, i /∈ a

for i = 1, 2, ..., n. Each group a can be described by the binary
vector ξa = (ξa

1 , ξa
2 , · · · , ξa

n)T . All elements of matrix J are
initialized to be unity. The elements of matrix J can be learned
simply through the updating rule

Jij ← Jij

(
1− ξa

i ξa
j

)
,

where a = 1, 2, · · · , m and i, j = 1, 2, · · · , n. This implies that
if both neuron i and j belong to pattern a, then the connection
between them is removed.

At the beginning of the learning, the initial state of J per-
forms uniform inhibition. During step by step of the learning,
the inhibitory connections are removed between neurons that
they belong to some same group, then the competition evolves
to mediate competition between groups of neurons.

Based on the concept of later inhibition and self-inhibition,
the network (1) can be rewritten as follows

ẋ = diag (x) (b + (αI − βJ) · x) (3)

for t ≥ 0. where I is the unit matrix which represents
self-inhibition connection weight, α is the strength of self-
inhibition, β is the strength of lateral inhibition, J is lateral
inhibition synaptic matrix defined by Definition 4, and diag(x)
is a n × n matrices which the main diagonal elements are
xi (i = 1 · · ·n), the other elements are zero. Here, we
assume that the networks have the same strength of self-
inhibition synaptic and the same strength of lateral inhibitory
synaptic. Figure 1 intuitively illustrates the network structure
of connection defined by tow group

ξ1 =


 1

0
1


 , ξ2 =


 0

1
1


 .

The two parameters α and β in the network (3) play
important roles in the group selection. Through out this paper,
we assume the two parameters satisfy the following condition:

Condition :
{

α < 0
‖α‖ < β.

(4)

B. Permitted Sets and Forbidden Sets

Generally, it is difficult to check whether a given set of
neurons is permitted or forbidden by the Definition 3. Although
Lemma 1 has already established the sufficient and necessary
condition guaranteeing a given set of neurons can be permitted
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Fig. 1. The connection structure of the network defined by six groups ξ1 =
{1, 0, 1} and ξ2 = {0, 1, 1}. The connection between neurons represent the
self-inhibition and lateral inhibition synaptic.

in networks (1), but based on the concept of later inhibition, we
can give another equivalent condition that relate to the matrix
J and is more easy to be checked in practice. Next, we relate
these concepts with the matrix J and a simple condition will
be given.

Theorem 1: A set of neurons with index P is permitted if
JP = 0, where 0 is a zero matrix.

Proof: Suppose that JP = 0, we will prove that the set
of neurons with index set P is permitted. By networks (1) and
networks (3), we can get

W = (α + 1)I − βJ.

Clearly, we can get

λmin ((I −W )P ) = −α > 0.

By 4 and Lemma 1 , we can get that the set of neurons with
index P is permitted. The proof is completed.

The following two theorems are straightforward from the
above Theorem 1 and Interlacing Theorem [6].

Theorem 2: A set of neurons with index F is forbidden if
JF �= 0.

Theorem 3: Each subset of a permitted set is permitted,
each superset of a forbidden set is forbidden.

IV. RELATIONS BETWEEN GROUPS AND PERMITTED AND

FORBIDDEN SETS

In this section, we investigate the relationships between
permitted set and groups. We will address two important
problems. First, whether each group is a permitted set? Second,
whether a permitted set is contained in some group?

Theorem 4: Each group and its any subgroups are permit-
ted.

Proof: Let P be an index set of a group of neurons. By
the definition of lateral inhibitory matrix, it holds that JP = 0.
Using Theorem 1, neurons with index set P must be permitted.

By Theorem 3, each subset of a permitted set is also
permitted, then any subgroup of P is also permitted. The proof
is completed.

To address the second problem. Let us consider an example,
suppose there are group memberships:

ξ1 =


 1

1
0


 , ξ2 =


 0

1
1


 , ξ3 =


 1

0
1


 .

Let P = {1, 2, 3} be an index set, by Theorem 5, neurons
with index set P is permitted. However, such neurons are not
contained in any group. This shows that in general there may
exist permitted set which are not contained in any group. We
call such permitted set as spurious permitted set.

Definition 5: A set of neurons P is called a spurious
permitted set, if P is permitted but not contained in any group.

Identifying spurious permitted sets is important for group
selection. Next, we derive some results on this problem.

Lemma 2: Let P be a set of neurons. If there are two
neurons of P are not contained in any same group, then P
must be a forbidden set.

Proof: Let F be the index of the the two neurons of P that
are not contained in any same group. Then, by the definition
of lateral inhibitory matrix J , we have

JF =
(

0 1
1 0

)
�= 0.

By Theorem 2, F must be forbidden. Since P is superset of
F , then P is also forbidden. The proof is completed.

Theorem 5: Suppose a set of neurons with index set P has
at least three elements. Then, P is permitted if and only if any
two neurons of P are contained in a same group.

Proof: Suppose that there are two neurons not contained
in any same group. By Theorem 2, these two neurons form
a forbidden set, then P is also forbidden. This contradiction
implies that any two neurons must be contained in some same
group.

Suppose any two neurons of P are contained in some same
group. Then, it follows that JP = 0. By Theorem 1, P is
permitted. The proof is completed.

Theorem 6: A set of neurons P is a spurious permitted set
if and only if P is not contained in any group and any two
neurons of P are contained in some group.

Proof: By the definition of spurious permitted set and
theorem 5, the result follows and the proof is completed.

V. SIMULATION RESULTS

In this section, some simulations will be carried out to
illustrate the theories. Consider a ring Lotka-Volterra recurrent
neural network as showing by Figure 2.

There are 12 groups to can be stored in the ring networks as
shown by Figure 2. We can define twelve group memberships
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Fig. 2. The structure of ring LV network consist of 12 neurons. The
connection on each neuron represent the self-inhibition synaptic of neuron.
The connection among neurons represent the lateral inhibition synaptic which
they are not belong to set of 4 contiguous neurons.

by

ξ1 =




1
1
1
1
0
...
0




, ξ2 =




0
1
1
1
1
0
...




, ..., ξ11 =




1
1
0
...
0
1
1




, ξ12 =




1
1
1
0
...
0
1




.

By the learning mechanism of lateral inhibitory synaptic
matrix in Section II, we can get the 12×12 inhibitory synaptic
matrix J as

J =




0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0




.

Clearly, each 4×4 submatrix of J is zero. Thus, the dynamics
of the network shown in Figure 2 can be described by

ẋ(t) = diag (x(t)) (b + (−0.5I − 0.85J) · x(t)) ,

where I is the 12 × 12 unit matrix. By Theorem 1, it can be
checked that neurons with the following index set

P1 = {1, 2, 3, 4}, P2 = {2, 3, 4, 5}, ...,
P11 = {11, 12, 1, 2}, P12 = {12, 1, 2, 3}
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Fig. 3. Networks input b = {0.1611, 0.7581, 0.8711, 0.3508, 0.6855, 0.2941,
0.5306,0.8324, 0.5975, 0.3353, 0.2992, 0.4526}
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Fig. 4. Each trajectory of ring network with 12 neurons where α = −0.5
and β = 0.85 converges to an equilibrium. The output of networks with index
set P = {2, 3, 4, 5} is positive value, P is a permitted set.

are permitted. The network can select a group by using random
input b. Figure 4 illustration that neurons with index set P =
{2, 3, 4, 5} is permitted when each trajectory of the networks
converges to an stable equilibrium point by input as shown
in Figure 3. Figure 5 shows that the group represented by
neurons with index set P = {2, 3, 4, 5} can be selected by
input as shown in Figure 3.

Figure 6 shows that one group formed by 100 contiguous
neurons can be selected by a randomly input b in the ring
network consists of 300 neurons.

VI. CONCLUSION

In this paper, we have developed a class LV recurrent neural
networks to implement group selection. Some necessary and
interesting conditions are established for existence of permitted
and forbidden sets, as well as the relations between groups and
permitted sets. It shows that competition between arbitrary
groups of neurons can be realized by LV recurrent neural
networks with lateral inhibition and self-inhibition.
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Fig. 5. Group selection by ring network with 12 neurons where α = −0.5
and β = 0.85. The neurons index set P = {2, 3, 4, 5} holding positive output
is a permitted set and indicates a group.
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Fig. 6. Group selection by ring network with 300 neurons. The output of
networks with index set P is positive value, P = {101, 102, ...199, 200}
consists of 100 neurons is a permitted set and indicates a group.
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