
978-1-4244-1674-5/08 /$25.00@ 2008 IEEE CIS 2008

Chinese Word Segmentation based on the Improved
Particle Swarm Optimization Neural Networks

Jia He
Computational Intelligence Laboratory

School of Computer Science and Engineering, UESTC
Chengdu, China

Department of Computer
Chengdu University of Information Technology

hejia@cuit.edu.cn

Lin Chen
Department of Computer

Chengdu University of Information Technology
Chengdu, China

suelincl@126.com

Abstract—The Chinese word segmentation based on the

improved Particle Swarm Optimization (PSO) neural networks is
discussed in this paper. Firstly, a solution is obtained by
searching globally using FPSO (Fuzzy cluster Particle Swarm
Optimization) algorithm, which has strong parallel searching
ability, encoding real number, and optimizing the training
weights, thresholds, and structure of neural networks. Then
based on the optimization results obtained from FPSO algorithm,
the optimization solution is continuously searched by the
following BP algorithm, which has strong local searching ability,
until it is discovered finally. Simulation results show that the
method proposed in this paper greatly increases both the
efficiency and the accuracy of Chinese word segmentation.

Keywords—Particle Swarm Optimization(PSO), Fuzzy cluster
Particle Swarm Optimization(FPSO), Chinese word segmentation,
BP neural networks

I. INTRODUCTION
Chinese word segmentation is one of the most difficult

research topics in natural language processing. It is the base of
Chinese information processing. The smallest components of
Chinese language are meaningful words instead of
characters[1]. Unlike English language, there is no “blank
space” between two Chinese words. How to tell meaningful
Chinese words from sentences, which are serially stored in
computer memory as Chinese character strings, is called
Chinese word segmentation. In the process of Chinese word
segmentation by computer, denote an input Chinese character
string as C1C2C3···Cn and the output as the sequential Chinese
words W1W2W3 ···Wm, where Wi is a Chinese word with either
only one or more Chinese characters[4].

Currently, Chinese word segmentation is usually dealt with
neural networks especially BP neural networks that is widely
used[5][12][13]. However, BP neural networks use gradient
descent method and easily get into local minimum. That is, as
the number of training samples increased, the input and output
relationship becomes complex. The convergence speed of
networks becomes slower[11]. In order to overcome this
shortage, researchers proposed many methods, such as methods
to improve the error function and methods to improve the
excitation function etc., to improve training speed of networks,
but it still can not avoid local convergence. Convergence speed
and accuracy of word segmentation can be improved by the
neural networks trained by genetic algorithm at the same

time[12]. But the training time will be increased because of the
complex operation of genetic algorithm. The accuracy will be
decreased by the redundant connections of neural networks.

In our research, Chinese word segmentation based on the
improved FPSO neural networks is implemented as follows:
Firstly, a solution is obtained by searching globally using FPSO
(Fuzzy cluster Particle Swarm Optimization) algorithm, which
has strong parallel searching ability, encoding real number, and
optimizing the training weights, thresholds, and structure of
neural networks. Then based on the optimization results
obtained from FPSO algorithm, the optimization solution is
continuously searched by following BP algorithm, which has
strong local searching ability, until it is discovered finally[3].
Simulation results show that the method proposed in this paper
greatly increases both of the efficiency and accuracy of
Chinese word segmentation.

II. INTRODUCTION OF FPSO ALGORITHM
PSO optimizing BP neural networks focuses on how the

particle swarm can effectively search the optimization solution
in the solution space[2]. However, along the increasing of
iteration times and swarm types, the basic PSO algorithm is
time-consuming and requires a large number of iteration times
when calculating values with high accuracy although it is able
to converge to the global minimum[6]. Further more, the
information between particles may be too concentrated when
evolving to a certain number of generations. Thus, most
particles gather around few points so that both of the
prematurity and stagnation may appear[7]. The basic PSO
optimizing BP neural networks is impossible if particles are all
premature and stagnation[9]. The difference between FPSO
optimizing neural networks and PSO optimizing BP neural
networks depends on the time before optimizing the location
and speed of PSO. Firstly, the particle swarm is divided into
subpopulations by using FCM algorithm and the optimization
location of each subpopulation is calculated[8]. Then the
particle in the particle swarm updates the values of its speed
and location based on its personal best (Pbest) and the
optimization location of every subpopulation. Therefore, the
performance of FPSO optimizing BP neural networks is better
than the PSO optimizing BP neural networks[3].

In studying algorithms based on FPSO optimization, let
xi=(xi1, xi2, ⋯ , xid) be a group values of parameters, each

dimension of a vector be the weights or threshold, and d be the
number of all weights and thresholds in a neural networks. The
fitness function of every particle is shown as follows[9]:

()∑ −=
j

jijii yYI 2
,, (1)

∑
=

=
n

i
ipopIndex I

n
I

1

1 (2)

Here, n is the number of samples, Yi,j is the jth ideal output
value of the ith sample, Yi,j is the actual output value of the ith
sample, and popIndex=1, ⋯, popSize, popSize is the size of the
particle types(ie.: the number of particles).

III. DESIGNAND IMPLEMENTATION OF FPSO ALGORITHM
OPTIMIZING BP NEURAL NETWORKS

The steps of FPSO optimizing BP networks are shown as
follows:

1) Initialize the BP networks, and assign the number of
neurons in the input layer, hidden layer, and output layer.

2) Initialize the particle swarm and the speed of every
particle:

a) The location of particle, the dimension number of the
speed vector (dimSize is the size of the particle types, i.e. the
number of particles)

dimSize = the number of connection weights from input
layer to hidden layer + the number of connection weights
from hidden layer to output layer + the threshold number in
hidden layer + the threshold number in output layer

b) While initializing the particle swarm and the speed of
every particle, the 1st and 2nd matrix x, all dimensions of the
first dimSize columns representing the particle locations, all
dimensions of the last dimSize columns representing the
particle speeds, and the last dimension representing the fitness
of the particle, are initialized firstly.

c) Initialize the Pbest and Gbest of every particle. Here,
Pbest is the particle's personal best, and Gbest is the particle's
global best.

3) Calculate the fitness of every particle:

a) A particle is input first. For each sample, an output
value of the networks can be calculated by using the
forwarding method of BP neural networks. Then the error is
calculated by formula(1). By following the same process, errors
of all samples are calculated. Next, the mean square diviations
(i.e: the fitness of a particle) of all samples are calculated by
formula(2).

b) Return to step a), and input all other particles until the
fitness values of all particles are calculated.

I) In order to calculate conveniently, the elements
from column 1 to column IN * HN in the initialized
particle matrix are assigned to the weight matrix
from input layer to hidden layer. Respectively,

elements from column IN * HN+1 to column IN*
HN + HN * ON are assigned to the weight matrix
from hidden layer to output layer, elements from
column IN * HN + HN * ON + 1 to column IN*
HN + HN * ON + HN are assigned to thresholds of
the hidden layer, and elements from column IN*
HN + HN * ON + HN + 1 to column IN * HN +
HN * ON + HN + ON are assigned to thresholds of
output layer. Here, IN is the number of neurons in
the input layer, HN is the number of neurons in the
hidden layer, and ON is the number of neurons in
the output layer[2].

II) When calculating using the forwarding method of
BP neural networks, the Sigmoid function is used in
the hidden layer, while the linear Pureline function
is used in the output layer. The curve function is
adopted in the last layer of a network in BP network
models, the output is limited in a very small
domain. If the linear function is adopted, the output
can be a random value. Thus, the linear function is
adopted in the last layer when BP networks are
designed in MATLAB, i.e.: f(x)=x.

4) Compare the fitness values, and ensure the Pbest and
Gbest of every particle:

If Present < Pbest and Pbest = Present, Pbest= xi;
otherwise, Pbest is not changed;

If Present < Gbest and Gbest=Present, Gbest= xi;
otherwise, Gbest is not changed.

Here, Present is the fitness of the current particle, Pbest
is the particle’s personal best, and Gbest is the particle’s global
best.

5) Update the location and speed of every particle:

Let G={x1, x2, ⋯ , xn} represent a data collection
composed of n particals xi (i=1, 2, ⋯, n), which is divided into
K cluster Ci (i=1, 2, ⋯, K), and spi(i=1, 2, ⋯, K) be the
optimization location searched by particles in every cluster Ci
until current time. The particles update their speeds and
locations by the formula shown as follows[3]:

 (3)

)1()()1(++=+ tvtxtx iii (4)

Here, the learning factor cj (j=0, 1, ⋯, K) is a constant,
and rj (j=0, 1, ⋯, K) is a random number in the domain of [0,1].
The speed and location of particles are updated by formula (3)
and (4). Meanwhile, it is considered whether both the updated
speed and location are within the limited domains.

6) Calculate the error caused by the algorithm using the
on-line performance criterion or the off-line performance
criterion. The on-line performance criterion are utilized to
evaluate the performance of networks, and the criterion are as
follows: If fun(Gbesti)<eg, the algorithm is convergent;

()∑
=

−+

−+=+
K

j
iijj

iiii

txtsprc

txtpbesttrctvtv

1

00

)()(

))()()(()()1(

otherwise, iterate continuously until fun(Gbesti) reaches the
assigned accuracy. Here, eg is the assigned accuracy for
algorithm, and fun(Gbesti) is the fitness of the global best of
the ith iteration.

7) Compare if the number reaches the largest iteration
number or satisfies the requirements of Step 6). If satisfying
the assigned accuracy, the algorithm is convergent. Thus, the
weight and threshold of each dimension in the global best
Gbest obtained from the last iteration is what we desire;
otherwise, return to Step 2), the algorithm is iterated
continuously. The BP algorithm presented in this paper, which
is based on FPSO optimization algorithm.

 From the discussion above, we know that these two
algorithms are similar on two aspects:

1) The weights and thresholds of BP network are assigned as
the value of each element in vectors of particles.

2) While the fitness of a particle is calculated, the forward
propagation of BP algorithm is used. The definition of the
fitness function for particles is obtained based on the mean
square deviation of BP algorithm.

IV. SIMULATION AND RESULTS ANALYSIS

TABLE I. SAMPLE AND EXPECTING OUTPUT OF NEURAL NETWORKS

Sample Expecting Output

1 Ta-YiZhen-Feng-Shi-Di-Pao-Le 1011111000

2
ZheZhi-Ge-Tai-PingDan-WuWei-Le

0111010100

3 Ta-Cong-MaShang-XiaLai 1101100000

4 WuLi-Xue-QiLai-HenNan 0110100000

5 Ta-XueHui-Le-Jie-FangCheng 1011100000

While FPSO-based BP algorithm is used in our research,
the initialized parameter values are as follows: the particle
swarm size is 20, the cluster number K is 3, and the studying
factors are set as c0= 0.5, c1=0.5, c2=0.5, c3=0.5. The studying
ratio = 0.6, momentum factor =0.2; the evolving number is set
as 3000 in order to evaluate the convergence performance of
our algorithm; the single hidden layer network structure is
adopted by considering the effects that the number of hidden
layers causes. At the same time, the effects of node number in
the hidden layer to the accuracy and convergence speed are
also taken into consideration. The less the node number of the
hidden layer is, the lower the network accuracy will be and the
worse the fitness will be. On the contrast, the larger the node
number of the hidden layer is, the longer the training time will
be. Thus, the requirements of the on-line performance
evaluation cannot be satisfied, even the pre-evaluation accuracy
of networks would be decreased. Finally, the node number of
the hidden layer is set as 60 after considering both the numbers
of the input and output nodes and the number of samples, and
recursively conducting comparison experiments. The training

samples' expecting output and the segmentation sentence are
shown in TABLE I.

In order to clarify conveniently, we name the traditional BP
algorithm as Model 1, and the FPSO-based BP algorithm
proposed in this paper as Model 2. The output accuracy ratios
of each sample in the 5 sentence samples after being trained
3000 times, are shown in TABLE II (due to the limitation of
the paper, only the values of 9 output nodes are listed in
TABLE II).

The analysis and comparison of the two algorithms are
discussed next.

1) The comparison of the network convergence

Figure 1. The error convergence curves of Model 1.

Figure 2. The error convergence curve and
 particle optimization of Model 2.

The training goal curve of the pure BP algorithm is shown

in Fig. 1 with err_goal = 0.001 and lr = 0.01. We have that its
response results TT = [0.9230 0.0606 0.9718 0.9272
0.9638 0.9171 0.9487 0.0479 0.0479] and the running
time elapsed_time = 87.1230s. When the error reaches 0.5
after Model 1 has been trained 3000 times, the error curve has
the intendance of no change and the network error almost has
no effect. Thus, the convergence error of 0.5 for the algorithm
can far less meet the error requirement of 0.001 set before. The
error curves of the training process for Model 2 are shown in

TABLE II. OUTPUT ACCURACY RATIOS OF SAMPLES AFTER BEING TRAINED 3000 TIMES

TABLE III. OUTPUT RELATIVE ERROR OF DIFFERENT MODELS OF SAMPLE 1

sub-graph 1 of Fig. 2. FPSO-based BP algorithm converged to
the assigned accuracy εBP (εBP=0.001) after running 28 times.
The total running time is elapsed_time = 39.1250s, and we
have the recall result TT = [0.9991 0.0041 0.9998 1.0004
0.9994 1.0003 0.9996 0.0037 0.0030]. Obviously, the
iteration number to train networks when FPSO-based BP
algorithm being used is much less than that of being used of
the conventional BP algorithm. While in sub-graph 2 of Fig. 2,
20 blue nodes represent 20 particles, the red nodes with *
represent global best particles, and the yellow traces show the
process when particles search the optimization. From all these,
we can see that the FPSO algorithm costs less time while
searching the optimization solution, and is not easily be
premature and stagnant.

2) Comparison of Generalization Error

Different output results for the testing data are obtained
when 30 samples are tested using two algorithms. Part of the
data is presented in TABLE III.

It is shown from data in TABLE III that the generalization
error reaches 30‰ - 80‰ and the average error reaches
58.98‰ when testing by the traditional BP algorithm. While
the generalization error reaches 0.2‰～2‰ and the average
error reaches 0.79‰ when testing by the FPSO-based
algorithm proposed in this paper. Therefore, the generalization
performance of FPSO-based algorithm is better than that of
both the inheritance-algorithm-based BP algorithm and the
basic BP algorithm.

V. CONCLUSION
The principle and construction on how to improve the

neural networks word segmentation model based on the neural
network algorithm of improving particle swarm algorithms is
discussed in the paper. Large amount of simulation conducted
through MATLAB. From the experiment results, we see that
the improved neural networks avoid not only the problems that

BP algorithm runs into the local minimum and converges
slowly, but also the problems of long searching time, slow
speed, easily appearing prematurity, stagnancy, etc., that are
caused when the particle swarm algorithms search for the
optimization solution by using positive feedback principle.
Therefore, it is very meaningful to the automatic processing of
Chinese information that the practicability and efficiency of
word segmentation of our model can be increased further.

REFERENCES
[1] Yinfeng, Design and analysis of Chinese word segmentation automation

system based on neural network, Journal of the China Society for
Scientific and Technical Information (in Chinese), 1998,1,pp.41–49

[2] Pan Hao, Hou Qinglan, "A BP Neural Networks Learning Algorithm
Research Based on Particle Swarm Optimizer", Computer, Engineering
and Applications[J]. vol. 42.16, pp.41–43,2006.

[3] Lin Chen, Jia He, A Particle Swarm Optimization Based on Fuzzy C-
Means Clustering, Journal of Southwest university for nationalities [J].,
Vol 33, No 4, pp.739–742,2007.4

[4] Jia He, Lin Chen, Hong Xu, Chinese Word Segmentation Using Back-
propagation Trained by Genetic Algorithm DCDIS A Supplement,
Advances in Neural Networks, Vol.14(S1), pp.416–420,2007

[5] Bao-Yi W and Shao-Min Z, A Chinese text classification model based
on vector space and semantic meaning, {\it Machine Learning and
Cybernetics}, Shanghai , 2004,vol. 2,pp. 1141–1145.

[6] J.Kennedy, R.C.Eberhart. Particle swarm optimization [A]. Proceedings
of the IEEE International Conference on Neural Networks[C].
1995,pp.1942–1948.

[7] P.J.Angeline.Evolutionary Optimization Versus Particle Swarm
Optimization:Philosophy and Performance Difference[R].Annual
Conference Center on Evolutionary Programming,San,1998.

[8] Xianghao Li, Hongxing Li etc, fuzzy cluster analysis and its application,
Guizhou science and technology press,1994,pp.27， 102–110， 184–
286.

[9] Ying Gao, Shengli Xie etc. Multi-subpopulation optimization algorithm
based on clustering [J]. application research of computers, 2006,4,pp.
40–41.

[10] R.C.Eberhart,Y.H.Shi.Evolving Artificial Neural Networks[R].
Proceedings of International Conference on Neural Networks and Brain,
Beijing, 1998.

Sample Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
Model 1 0.9230 0.0606 0.9718 0.9272 0.9638 0.9171 0.9487 0.0479 0.0479 1 Model 2 0.9991 0.0041 0.9998 1.0004 0.9994 1.0003 0.9996 0.0037 0.0030
Model 1 0.0601 0.8217 0.8941 0.9245 0.0125 0.9004 0.0354 0.8947 0.0213 2
Model 2 0.0014 0.9817 0.9978 0.9916 0.0023 0.9991 0.0045 0.9946 0.0008
Model 1 0.9501 0.8875 0.0092 0.8714 0.9230 0.0631 0.0651 0.0651 0.0651 3
Model 2 0.9978 0.9821 0.0028 0.9991 0.9917 0.0008 0.0009 0.0009 0.0009
Model 1 0.0786 0.8185 0.9031 0.1239 0.8831 0.1002 0.1342 0.0451 0.0981 4
Model 2 0.0009 0.9902 0.9997 0.0072 0.9974 0.0056 0.0091 0.0031 0.0078
Model 1 0.9501 0.0375 0.8092 0.8714 0.9230 0.0431 0.0451 0.0651 0.0651 5 Model 2 0.9932 0.0078 0.9487 1.0009 0.9814 0.0054 0.0006 0.0003 0.0003

Output Relative Error (‰) Model Average Error Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Model 1 58.98 80.42 67.62 29.42 77.12 27.24 90.09 51.42 42.90 42.90

Model 2 0.79 0.90 1.81 0.27 0.41 0.59 0.30 0.40 2.04 1.97

[11] Cichocki A and Unbehauen R, Neural networks for opimization and
signal processing. England: John Wilcy and Sons Ltd, pp. 142–150,
1993.

[12] W. Schiffmann, M. Joost and R. Werner, Optimization of the
backpropagation algorithm for training multilayer perceptrons technical
Report, University of Koblenz, Institute of Physics, 1993.

[13] Hecht - Nielsen R, Theory of backpropagation neural networks , Proc.
IJCNN - 89, pp. 1–593, 1989.

This work was supported by Natural Science and Technology
Development Fund of CUIT (Chengdu University of
Information Technology) CSRF200705.

