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Abstract—The Chinese word segmentation based on the 

improved Particle Swarm Optimization (PSO) neural networks is 
discussed in this paper. Firstly, a solution is obtained by 
searching globally using FPSO (Fuzzy cluster Particle Swarm 
Optimization) algorithm, which has strong parallel searching 
ability, encoding real number, and optimizing the training 
weights, thresholds, and structure of neural networks. Then 
based on the optimization results obtained from FPSO algorithm, 
the optimization solution is continuously searched by the 
following BP algorithm, which has strong local searching ability, 
until it is discovered finally. Simulation results show that the 
method proposed in this paper greatly increases both the 
efficiency and the accuracy of Chinese word segmentation. 
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I.  INTRODUCTION  
Chinese word segmentation is one of the most difficult 

research topics in natural language processing. It is the base of 
Chinese information processing. The smallest components of 
Chinese language are meaningful words instead of 
characters[1]. Unlike English language, there is no “blank 
space” between two Chinese words. How to tell meaningful 
Chinese words from sentences, which are serially stored in 
computer memory as Chinese character strings, is called 
Chinese word segmentation. In the process of Chinese word 
segmentation by computer, denote an input Chinese character 
string as C1C2C3···Cn and the output as the sequential Chinese 
words W1W2W3 ···Wm, where Wi is a Chinese word with either 
only one or more Chinese characters[4].  

Currently, Chinese word segmentation is usually dealt with 
neural networks especially BP neural networks that is widely 
used[5][12][13]. However, BP neural networks use gradient 
descent method and easily get into local minimum. That is, as 
the number of training samples increased, the input and output 
relationship becomes complex. The convergence speed of 
networks becomes slower[11]. In order to overcome this 
shortage, researchers proposed many methods, such as methods 
to improve the error function and methods to improve the 
excitation function etc., to improve training speed of networks, 
but it still can not avoid local convergence. Convergence speed 
and accuracy of word segmentation can be improved by the 
neural networks trained by genetic algorithm at the same 

time[12]. But the training time will be increased because of the 
complex operation of genetic algorithm. The accuracy will be 
decreased by the redundant connections of neural networks. 

In our research, Chinese word segmentation based on the 
improved FPSO neural networks is implemented as follows: 
Firstly, a solution is obtained by searching globally using FPSO 
(Fuzzy cluster Particle Swarm Optimization) algorithm, which 
has strong parallel searching ability, encoding real number, and 
optimizing the training weights, thresholds, and structure of 
neural networks. Then based on the optimization results 
obtained from FPSO algorithm, the optimization solution is 
continuously searched by following BP algorithm, which has 
strong local searching ability, until it is discovered finally[3]. 
Simulation results show that the method proposed in this paper 
greatly increases both of the efficiency and accuracy of 
Chinese word segmentation. 

II. INTRODUCTION OF FPSO ALGORITHM  
PSO optimizing BP neural networks focuses on how the 

particle swarm can effectively search the optimization solution 
in the solution space[2]. However, along the increasing of 
iteration times and swarm types, the basic PSO algorithm is 
time-consuming and requires a large number of iteration times 
when calculating values with high accuracy although it is able 
to converge to the global minimum[6]. Further more, the 
information between particles may be too concentrated when 
evolving to a certain number of generations. Thus, most 
particles gather around few points so that both of the 
prematurity and stagnation may appear[7]. The basic PSO 
optimizing BP neural networks is impossible if particles are all 
premature and stagnation[9]. The difference between FPSO 
optimizing neural networks and PSO optimizing BP neural 
networks depends on the time before optimizing the location 
and speed of PSO. Firstly, the particle swarm is divided into 
subpopulations by using FCM algorithm and the optimization 
location of each subpopulation is calculated[8]. Then the 
particle in the particle swarm updates the values of its speed 
and location based on its personal best (Pbest) and the 
optimization location of every subpopulation. Therefore, the 
performance of FPSO optimizing BP neural networks is better 
than the PSO optimizing BP neural networks[3]. 

In studying algorithms based on FPSO optimization, let 
xi=(xi1, xi2, ⋯ , xid) be a group values of parameters, each 



         

dimension of a vector be the weights or threshold, and d be the 
number of all weights and thresholds in a neural networks. The 
fitness function of every particle is shown as follows[9]: 

( )∑ −=
j

jijii yYI 2
,,                                     (1) 

∑
=

=
n

i
ipopIndex I

n
I

1

1                                           (2) 

Here, n is the number of samples, Yi,j is the jth ideal output 
value of the ith sample, Yi,j is the actual output value of the ith 
sample, and popIndex=1, ⋯, popSize, popSize is the size of the 
particle types(ie.: the number of particles). 

III. DESIGNAND IMPLEMENTATION OF FPSO ALGORITHM 
OPTIMIZING BP NEURAL NETWORKS 

The steps of FPSO optimizing BP networks are shown as 
follows: 

1) Initialize the BP networks, and assign the number of 
neurons in the input layer, hidden layer, and output layer. 

2) Initialize the particle swarm and the speed of every 
particle: 

a) The location of particle, the dimension number of the 
speed vector (dimSize is the size of the particle types, i.e. the 
number of particles)  

dimSize = the number of connection weights from input 
layer to hidden layer +  the number of connection weights 
from hidden layer to output layer + the threshold number in 
hidden layer + the threshold number in output layer 

b) While initializing the particle swarm and the speed of 
every particle, the 1st and 2nd matrix x, all dimensions of the 
first dimSize columns representing the particle locations, all 
dimensions of the last dimSize columns representing the 
particle speeds, and the last dimension representing the fitness 
of the particle, are initialized firstly. 

c) Initialize the Pbest and Gbest of every particle. Here, 
Pbest is the particle's personal best, and Gbest is the particle's 
global best. 

3) Calculate the fitness of every particle: 

a)  A  particle is input first. For each sample, an output 
value of the networks can be calculated by using the 
forwarding method of BP neural networks. Then the error is 
calculated by formula(1). By following the same process, errors 
of all samples are calculated. Next, the mean square diviations 
(i.e:  the fitness of a particle) of all samples are calculated by 
formula(2). 

b) Return to step a), and input all other particles until the 
fitness values of all particles are calculated. 

I) In order to calculate conveniently, the elements 
from column 1 to column IN * HN in the initialized 
particle matrix are assigned to the weight matrix 
from input layer to hidden layer. Respectively, 

elements from column IN * HN+1 to column IN* 
HN + HN * ON  are assigned to the weight matrix 
from hidden layer to output layer, elements from 
column IN * HN + HN * ON + 1 to column IN* 
HN + HN * ON + HN are assigned to thresholds of 
the hidden layer, and elements from column IN* 
HN + HN * ON + HN + 1 to column IN * HN + 
HN * ON + HN + ON are assigned to thresholds of 
output layer. Here, IN is the number of neurons in 
the input layer, HN is the number of neurons in the 
hidden layer, and ON is the number of neurons in 
the output layer[2]. 

II) When calculating using the forwarding method of 
BP neural networks, the Sigmoid function is used in 
the hidden layer, while the linear Pureline function 
is used in the output layer. The curve function is 
adopted in the last layer of a network in BP network 
models, the output is limited in a very small 
domain. If the linear function is adopted, the output 
can be a random value. Thus, the linear function is 
adopted in the last layer when BP networks are 
designed in MATLAB, i.e.: f(x)=x. 

4) Compare the fitness values, and ensure the Pbest and 
Gbest of every particle:  

If Present < Pbest and Pbest = Present, Pbest= xi; 
otherwise, Pbest is not changed;  

If Present < Gbest and Gbest=Present, Gbest= xi; 
otherwise, Gbest is not changed.  

Here, Present is the fitness of the current particle, Pbest 
is the particle’s personal best, and Gbest is the particle’s global 
best. 

5) Update the location and speed of every particle:  

Let G={x1, x2, ⋯ , xn} represent a data collection 
composed of n particals xi ( i=1, 2, ⋯, n), which is divided into 
K cluster Ci ( i=1, 2, ⋯, K), and spi( i=1, 2, ⋯, K) be the 
optimization location searched by particles in every cluster Ci 
until current time. The particles update their speeds and 
locations by the formula shown as follows[3]: 
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Here, the learning factor cj (j=0, 1, ⋯, K) is a constant, 
and rj (j=0, 1, ⋯, K) is a random number in the domain of [0,1]. 
The speed and location of particles are updated by formula (3) 
and (4). Meanwhile, it is considered whether both the updated 
speed and location are within the limited domains. 

6) Calculate the error caused by the algorithm using the 
on-line performance criterion or the off-line performance 
criterion. The on-line performance criterion are utilized to 
evaluate the performance of networks, and the criterion are as 
follows: If fun(Gbesti)<eg, the algorithm is convergent; 
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otherwise, iterate continuously until fun(Gbesti) reaches the 
assigned accuracy. Here, eg is the assigned accuracy for 
algorithm, and fun(Gbesti) is the fitness of the global best of 
the ith iteration. 

7) Compare if the number reaches the largest iteration 
number or satisfies the requirements of Step 6). If satisfying 
the assigned accuracy, the algorithm is convergent. Thus, the 
weight and threshold of each dimension in the global best 
Gbest obtained from the last iteration is what we desire; 
otherwise, return to Step 2), the algorithm is iterated 
continuously. The BP algorithm presented in this paper, which 
is based on  FPSO optimization algorithm. 

  From the discussion above, we know that these two 
algorithms are similar on two aspects: 

1) The weights and thresholds of BP network are assigned as 
the value of each element in vectors of particles.  

2) While the fitness of a particle is calculated, the forward 
propagation of BP algorithm is used. The definition of the 
fitness function for particles is obtained based on the mean 
square deviation of BP algorithm.  

IV. SIMULATION AND RESULTS ANALYSIS 

TABLE I.  SAMPLE  AND EXPECTING OUTPUT OF NEURAL NETWORKS 

Sample Expecting Output 

1 Ta-YiZhen-Feng-Shi-Di-Pao-Le 1011111000 

2 
ZheZhi-Ge-Tai-PingDan-WuWei-Le 

0111010100 

3 Ta-Cong-MaShang-XiaLai 1101100000 

4 WuLi-Xue-QiLai-HenNan 0110100000 

5 Ta-XueHui-Le-Jie-FangCheng 1011100000 

 

While FPSO-based BP algorithm is used in our research, 
the initialized parameter values are as follows: the particle 
swarm size is 20, the cluster number K is 3, and the studying 
factors are set as c0= 0.5, c1=0.5, c2=0.5, c3=0.5. The studying 
ratio = 0.6, momentum factor =0.2; the evolving number is set 
as 3000 in order to evaluate the convergence performance of 
our algorithm; the single hidden layer network structure is 
adopted by considering the effects that the number of hidden 
layers causes. At the same time, the effects of node number in 
the hidden layer to the accuracy and convergence speed are 
also taken into consideration. The less the node number of the 
hidden layer is, the lower the network accuracy will be and the 
worse the fitness will be. On the contrast, the larger the node 
number of the hidden layer is, the longer the training time will 
be. Thus, the requirements of the on-line performance 
evaluation cannot be satisfied, even the pre-evaluation accuracy 
of networks would be decreased. Finally, the node number of 
the hidden layer is set as 60 after considering both the numbers 
of the input and output nodes and the number of samples, and 
recursively conducting comparison experiments. The training 

samples' expecting output and the segmentation sentence are 
shown in TABLE I.   

In order to clarify conveniently, we name the traditional BP 
algorithm as Model 1, and the FPSO-based BP algorithm 
proposed in this paper as Model 2. The output accuracy ratios 
of each sample in the 5 sentence samples after being trained 
3000 times, are shown in TABLE II ( due to the limitation of 
the paper, only the values of 9 output nodes are listed in 
TABLE II).   

The analysis and comparison of the two algorithms are 
discussed next. 

1) The comparison of the network convergence 

 

 

 

 

 

 

 

 

 

Figure 1.      The error convergence curves of Model 1. 
 

 

 

 

 

 

 

 

 

 
            

Figure 2.       The error convergence curve and 
                 particle optimization of Model 2. 

 
The training goal curve of the pure BP algorithm is shown 

in Fig. 1 with err_goal = 0.001 and lr = 0.01. We have that its 
response results TT = [0.9230     0.0606     0.9718     0.9272 
0.9638    0.9171   0.9487   0.0479   0.0479] and the running 
time elapsed_time  =  87.1230s. When the error reaches 0.5 
after  Model 1 has been trained 3000 times, the error curve has 
the intendance of no change and the network error almost has 
no effect. Thus, the convergence error of 0.5 for the algorithm 
can far less meet the error requirement of 0.001 set before. The 
error curves of the training process for Model 2 are shown in 



         

TABLE II.   OUTPUT ACCURACY RATIOS OF SAMPLES AFTER BEING TRAINED 3000 TIMES 

 
 
 

 

 

TABLE III.   OUTPUT RELATIVE ERROR OF DIFFERENT MODELS OF SAMPLE 1   

 
 

 

sub-graph 1 of Fig. 2. FPSO-based BP algorithm converged to 
the assigned accuracy εBP (εBP=0.001) after running 28 times. 
The total running time is elapsed_time = 39.1250s, and we 
have the recall result TT = [0.9991   0.0041  0.9998   1.0004   
0.9994    1.0003   0.9996    0.0037   0.0030]. Obviously, the 
iteration number to train networks when FPSO-based BP 
algorithm being used is much less than that of being used of 
the conventional BP algorithm.  While in sub-graph 2 of Fig. 2, 
20 blue nodes represent 20 particles, the red nodes with * 
represent global best particles, and the yellow traces show the 
process when particles search the optimization. From all these, 
we can see that the FPSO algorithm costs less time while 
searching the optimization solution, and is not easily be 
premature and stagnant. 

2) Comparison of Generalization Error 

Different output results for the testing data are obtained 
when 30 samples are tested using two algorithms. Part of the 
data is presented in TABLE III. 

It is shown from data in TABLE III that the generalization 
error reaches 30‰ - 80‰ and the average error reaches 
58.98‰ when testing by the traditional BP algorithm. While 
the generalization error reaches 0.2‰～2‰ and the average 
error reaches 0.79‰ when testing by the FPSO-based 
algorithm proposed in this paper. Therefore, the generalization 
performance of FPSO-based algorithm is better than that of 
both the inheritance-algorithm-based BP algorithm and the 
basic BP algorithm. 

V. CONCLUSION  
The principle and construction on how to improve the 

neural networks word segmentation model based on the neural 
network algorithm of improving particle swarm algorithms is 
discussed in the paper. Large amount of simulation conducted 
through MATLAB. From the experiment results, we see that 
the improved neural networks avoid not only the problems that  

 

 

 

 

 

BP algorithm runs into the local minimum and converges 
slowly, but also the problems of long searching time, slow 
speed, easily appearing prematurity, stagnancy, etc., that are 
caused when the particle swarm algorithms search for the 
optimization solution by using positive feedback principle. 
Therefore, it is very meaningful to the automatic processing of 
Chinese information that the practicability and efficiency of 
word segmentation of our model can be increased further.  
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