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Abstract—So far the positive partial transpose (PPT) criterion
and the computable cross norm (CCN) criterion are two
strongest operational separability criteria of bipartite mixed
quantum states. In this paper, we exactly connect the PPT
criterion and the CCN criterion with the matrix reorderings
found by Poluikis and Hill [J. A. Poluikis and R. D. Hill, Linear
Algebra and Its Applications 35: 1-10 (1981)] and Oxenrider and
Hill [C. J. Oxenrider and R. D. Hill, Linear Algebra and Its
Applications 69: 205-212 (1985)]. Motivated by work by Chen etc.
[K. Chen, S. Albeverio, and S.-M. Fei, Physical Review Letters 95,
040504 (2005), Physical Review Letters 95, 210501 (2005)], we
compute the trace norm of several bound entangled states and
illuminate the equivalence among the elements of group
generated by the eight matrix reorderings.
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1. INTRODUCTION

Since the famous Einstein, Podolsky, and Rosen [1] and
Schrodinger [2] papers, quantum entanglement still remains
one of the most striking quantum phenomena. In recent years,
great effort has been made to understand the role of
entanglement in quantum information processing [3-13].
However, some fundamental problems about quantum
entanglement such as entanglement criteria and entanglement
measures are still far from being solved completely, especially
in the context of multipartite systems.

Despite considerable effort, the operational characterization
of separable states is still an open problem. There are simple,
efficiently computable, tests that can establish the entanglement
of a large subset of states. The most famous of these criteria is
the positive partial transpose (PPT) criterion [14, 15]. This
simply requires making an appropriate rearrangement of the
matrix elements, corresponding to transposing one of the
parties, and checking that the resulting matrix is positive.
Nevertheless, since 1996 when Peres designed the PPT
criterion, no better computable separability criterion has been
provided for a long time. Only recently a new operational
separability criterion, i.e., the computable cross norm (CCN)
criterion or the realignment criterion, was found by Rudolph in
[16] and Chen and Wu in [17]. This method has recently been
developed further in [18-31]. It is independent of the PPT
criterion. As the PPT criterion, the CCN criterion also requires
making an appropriate rearrangement of the matrix elements,
and checking whether the trace norm of the resulting matrix is
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larger than one or not. Both the PPT criterion and the CCN
criterion require making an appropriate rearrangement of the
matrix elements. Naturally, one question was raised: what is
the relationship between the rearrangement of the matrix
elements of the PPT criterion and that of the CCN criterion?

From the point of view of mathematics, in fact, the similar
rearrangements of the matrix elements, i.e., the matrix
reorderings, were previously studied in the context of general
matrix algebra by Poluikis and Hill in [32] and Oxenrider and
Hill in [33]. In [33], Oxenrider and Hill discussed eight natural
matrix reorderings and explored some of their algebraic
properties and their properties as linear transformations. In the
case of the PPT and CCN criteria are concerned, as stated in
section 5 below, they just corresponding with two elements of
the group generated by the eight matrix reorderings. In section
4 below, we shall know that except for the elements
corresponding the PPT and CCN criteria, there are still twenty-
two different matrix reorderings in the group generated by the
eight natural matrix reorderings. Then another question was
raised: Whether other elements of the group are independent of
the two elements corresponding to the PPT and CCN criteria or
not? If yes, then we shall obtain new operational separability
criteria. Unfortunately, all elements of the group are equivalent
to either the elements corresponding to the PPT or CCN criteria
or identity. Therefore, there is no new operational separability
criteria in this framework.

From the point of view of physics, as Nielsen stated in [34],
“...what we really want is deep theorems connecting measures
of entanglement in surprising ways to other problems in
quantum information sciences....At the present time I believe it
is fair to say that few deep results connecting measures of
entanglement to other problems are known.” In [25] and [26],
Chen, Albeverio, and Fei found an essential quantitative
relation between entanglement measures, i.e., concurrence and
entanglement of formation, and available strong separability
criteria, i.e., the PPT criterion and the CCN criterion,
respectively. Motivated by Ref. [25-26], we compute trace
norms of four examples of bound entangled states [35-38] to
illuminate equivalence in C* ® C° composite quantum systems.

Although the Horodeckis family [27] and Zyczkowski and
Bengtsson [39] once noted that the PPT and CCN criteria are
part of a large group of matrix reorderings studied in the 1980s,
the present paper makes this comparison very explicit from the
point of view of general matrix algebra.
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The remainder of the paper is organized as follows. In
sections 2 and 3, the PPT and CCN criteria are presented,
respectively. Section 4 is devoted to the matrix reorderings. In
section 5, the relationship between the PPT and CCN criteria
and the matrix reorderings are obtained. In section 6, we give
four known bound entangled states and compute the trace norm
of all matrix reorderings to illuminate the equivalence in C’ ®
C® composite quantum systems. Finally, in section 7, we leave
one open problem for further work.

II. THEPPT CRITERION IN CY ® C" cCOMPOSITE
QUANTUM SYSTEMS

In the case of C* ® C" composite quantum systems, Peres
and the Horodeckis family gave the connection between the
partial transposes of density matrices with separability of
bipartite mixed quantum states in [14] and [15]. In the
following, we recall the main result.

If the M x N state p can be written as

All A12 AIM

_ AZI A22 AZM
pP= : 2

AMI AMZ o AMM

with N x N matrices 4,,, acting on the second ( C" ) space.
They are defined by their matrix elements as {4,,,} 4, = Py ny -

Then the partial transpositions p” and p™ will be realized
simply by commutation and transposition of all of these
matrices 4,,,, respectively, namely,

Ay Ay Ay AlTl A1T2 AITM
ol = Ap Ay o A PL A3 A3 e Ajy
Ay Aoy Avm Ay Ay A

The PPT Criterion [14, 15]
If an m X n bipartite density matrix p,p is separable, then

llo Ml < 1 (or [lp ™[Iy S 1).

In the following we give an example in C” ® C" composite
quantum systems to display the concise and explicit expression
of the partial transposes of density matrices.

Example 2.1. The Horodecki 3 ® 3 bound entangled state [35]
The density matrix p, is

(@ 0 010 a 0 0 0 a |
0 a 0/0 0 0 0 0 0
00 al0 0 0 0 0 0
00 Ola 00 0 0 0

zlanOOaO 0 0 a

“ 8+l g 0 0]l0 0 a 0 0 o |
00 0[00 0 %(l+a) O%x/l—az
00 0[0 0O 0 a 0
aOOOaO%l—az 0 —(+a)
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All A12 A13
where 0 < a < 1. p, can be written as p, =| 4y, Ay, A |,

A31 A32 A33
where 4;; are 3 X 3 matrices. Then we have
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III. THE CCN CRITERION IN CY ® C" cOMPOSITE
QUANTUM SYSTEMS

In the case of C¥ ® CV composite quantum systems,
Rudolph and Chen and Wu obtain the computable cross norm
(CCN) criterion or the realignment criterion in [16] and [17].
We recall the main result below.

If the M x N state p can be written as

A Ap Ay

Ay Ay oy
pP= : ’

A Az Aum

with N x N matrices 4,,, acting on the second ( C" ) space.
They are defined by their matrix elements as {4,,,} 4, = Py ny -

Then the realignment matrix p will be realized simply by
commutation and transposition of all of these matrices A,
namely,

vec(A4, )T

vec(AMl)T

hSYi
Il

vee(dyy)!

vee(Ay )"
The CCN Criterion [16, 17]
If an m X n bipartite density matrix p,p is separable, then

ol <1

In the following we give an example in C” ® C" composite
quantum systems to display the concise and explicit expression
of the realignment of density matrices.

Example 3.1. The Horodecki 3 ® 3 bound entangled state [35]
The density matrix p, is same as Example 2.1.

Then we have
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IV. THE MATRIX REORDERINGS IN C” ® C" cOMPOSITE
QUANTUM SYSTEMS

In [33], Oxenrider and Hill discussed eight natural matrix
reorderings. First, Let us recall the notation of the eight natural
matrix reorderings as follows:

Given positive integers ¢, u, let S={(G, j): i=1,...,j=1,
..., u}; endow S with two orderings, viz., the lexicographical
ordering

G H<(rs) iff i<ror(i=randj<s)
and the antilexicographical ordering
GH<(@rs) iff j<sor(j=sandi<r).

Corresponding to each of these orderings we have bijections
from the set of ordered pairs S onto {1, ..., fu} defined by [, j]
=(i-1)utjand<i,j>=(j-1)t+i.

Eight reorderings naturally appear:
()% =1 jrs] o YD) =l s irs] o
21 = i, jl<r.s> > o4 =t s <r,s> o
wherei,j=1,...,q;r,s=1,...,n,and
‘P(T)'iy :[<r,s>,<i,j> ’ A(T)Z; :[<r,s>,[i,j] P

A(T)i{v =t[r,s],<i,j> s Q(T)Ii{v :[[r,s],[i,j] s
wherei,j=1,...,nr,s=1,...,q.

Now we will present these results for density matrices in C*
® C° composite quantum systems to display the concise and
explicit expression of the matrix reorderings as follows:

Example 4.1. Let p be a 3 ® 3 bipartite density matrix as
follows:

P P2 P3| Pa Pis Pie | P11 P18 Pro
P21 P22 P23 | Pu Pas P | P21 P28 P29
P31 P32 P33 | P P35 P | P37 P38 P39
Pa1 Pa2 Paz | Paa Pas Pas | P41 P4ag P49
P=|Ps1 Psz Ps3 | Psa Pss Pse | P51 Pss P59
Pe1 P2 Pe3 | Pea Pes Pes | Pe1  Peg  Peo
P P2 P13 | P P15 Pis | P11 P P19
P31 P2 Ps3 | Psa Pss Pse | P87 Pss  Pso
LPo1 P92 P93 | Poa  Pos  Pos | P97 Pog P9 |
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Then the eight natural matrix reorderings are

I'(p)=

O(p) =

Q(p) =

Y(p)=

Y(p)=

P Po P | Pa Pn Pu|Pu Pn Ps 1
P Pis Pis | Pu P P | Pu P P
P Pis P | Pr Pxs Pu | Py P Py
P Pr Ps|Psi P Pss| Pa Pe Pe
Pas Pas Pas | Psa Pss Pss | P Pos Pes |5
Py Pss P | Psi Pss Pso | P Pss  Peo
P Pr Pri | P P Pss| P Po Po
Pu Pris P | Psa Pss Pso | P Pos Pos
LP77 Prs P | Psr Pss Pso | Por Pos Poo |
P Pu P | Pa Pu Pa | Pn Pu ,077_
P Pis Pis | Po Pis Pws | P P P
Pis P Po | Ps P Pu | P P Pr
P Pu Py | Psi Pss Ps1 | Psi Psa Py
Pn P P | P2 Pss Pss | Pso Pss Pss |?
Py P Pw | Pss Pss Pso | Pss Pss  Pso
Py P Py | Pa Pea Per | P Poa Py
Px Pss P | P Pss Pos | P Pos  Pos
LPss P P | Pss Pss Peo | Pos Pos  Poo |
P Pa P | P Pn Pu | Ps P pss_
Pa Psi Pea | P P2 Pe | Pz Pss Pe
P Psi Pot | P P2 P | Pz Pss Po
P Pu Pu | Pis Ps P | Pie Px P
Pas Pss Pes | Pas Pss Pos | Pas Pss  Pes |2
P Psa Pos | P1s Pss Pos | Prs Pss  Pos
P Py Py | Pis Pi P | Po Py Pi
Paz Psi Per | Pais Pss Pes | Pao Pso Peo
P Psr Por | Pis Pss Pos | Pro Pso Poo |
P Pa Pn | Pu Pu Pu | P Pa ,077_
P Psi Psi | Pu Pss Psa | P Ps1 Py
Py Psi Pot | Py Pss Pos | Ps1 Per Por
P Px Pn | Ps P Pis|Pis P P
Pn Ps: Ps| P Pss Pss | P Pss Pss |°
Py Ps Po | Pis Pes Pos | Pz Pes  Pos
P Pxs P | P Pass Pis | Po P P
Py Pss Pss | P Pss Pse | Po Pso Pso
Pz Pes Pos | Pis Pes Pos | Py Peo Poo |
Pu P P | Pu Po Ps|Pn Pn /.773_
P Pis P | Pu Pis Pas | Pu Prs Prs
P Pis P | P P P | P P P
Pa Pun Pxu | Psi P Pss| Psi P Pss
P P P | Pss Pss Pse | Psa Pss Pss |»
Py Pas P | Psi Pss Pso | Ps1 Pss Pso
Py Pn Py | Pa Po Ps | P Po Po
P Pss Pis | P Pos Pos | Pos Pos  Pos
Py Pz Py | Psr Pss Peo | Po7 Pos Poo |




Pu P P | Pu Pu Pxn|Pu Pu Pxn

pl} pl6 pl‘) p23 p26 p29 p33 p36 p}‘)

AP)=|Pyu Psi Po | Pis Pss Pos | Pis Pss  Pes |>

AP)=|Po Pss Psa | Pis Pss Pss | P Pss Pss |

P31 Per Por | Pz Pes Pog | P Peo  Poo |

In [33], Oxenrider and Hill observed that T, ©, Q, ¥, Y, Z,
A, and A do not preserve the matrix properties of determinant,
rank, and trace. However, the eight natural matrix reorderings
do generate the transpose operator, which preserves all of the
above properties and types of matrices. Moreover, under
composition they generate a 24-element group, all members of
which preserve the inner product and thus the corresponding
metric properties.

Observation 4.1. For any m ® n bipartite density matrix pyg, if
both dimensions m and »n are squares of nature numbers, and
ply=p,s, then the eight natural matrix reorderings, i.e.,
[(p48), ©(pan), 2pa), Y(048), Y(pur), E(pap), A(psp), and
A(p4p), generate a 12-element group under composition, and all

members of which preserve the inner product and thus the
corresponding metric properties.

V. THE RELATIONSHIP AMONG THE PPT CRITERION, THE
CCN CRITERION, AND THE MATRIX REORDERINGS
In the case of the above C° ® C® composite quantum
systems, we can rewrite the partial transpositions p”, p” and
the realignment matrix p as follows:

U

Pii P2 P3| P2 P P3| P13 P P33
Pa1 Pst Pel | P2 Ps2 Per | Paz Ps3 Pes
P11 Psi Po1t | P2 P2 P2 | P73 Ps3 Po3
Pia Paa P3a | Pis Prs Pss | Pie P Pie
P=|Pau Pss Pes|Pas Pss Pes | P Pss Pes |
Pra Psa Poa | P15 Pss Pos | Pie Pse  Pos
P11 Par P37 | P18 P2 P3| P9 P P39
P41 P51 Per | P48 Pss Pes | Pao P59 Peo
P11 P81 Por | P1s Pss Pog | P19 P9 Pog |

In the following Observations 5.1 - 5.5, we shall give the
relationship among the PPT criterion, the CCN criterion, and
the matrix reorderings:

Observation 5.1. For any m ® n bipartite density matrix pyg, if
both dimensions m and » are squares of nature numbers, then
we have

Phe =YT(p15) = EQp 45) = AO(p 45) = A¥(P45) -

Observation 5.2. For any m ® n bipartite density matrix pyg, if
both dimensions m and » are squares of nature numbers, then
we have

Pl =EL(p45) =YQUp 45)=AO(P 15) = A¥(p5) -

Observation 5.3. For any m ® n bipartite density matrix pyg, if
both dimensions m and » are squares of nature numbers, then
we have

P=Qpyp) .

Observation 5.4. For any m ® n bipartite density matrix pyg, if
both dimensions m and » are squares of nature numbers, then
we have

pr =0T (p,5)=TQ(p45)=YO(p45) =Q¥ (P 45) -
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Observation 5.5. For any m ® n bipartite density matrix pyg, if
both dimensions m and » are squares of nature numbers, then
we have

Pap =Q0(p 45)=0Q(p 15) =YY (P45)=TT(pPy3) -

VI. THE TRACE NORMS IN C° ® C° COMPOSITE QUANTUM
SYSTEMS

Now we shall give four examples of bound entangled states
and compute the trace norms of all matrix reorderings to
illuminate the equivalence in C* ® C° composite quantum
systems as follows:

Example 6.1. The Horodecki 3 ® 3 bound entangled state [35]

Let a = 0.8, we have

08 0 0[]0 08 0|0 0 08

0 08 0 olo o0 o

0 0 08/0 0 0|0 0 0

0 0 0/08 0 0|0 0 0
pos=—108 0 0l0o 08 ol0o o 08
9 0 olo o 080 o o0
00 0|0 0 0[09 0 03

00 0l0 0 0[]0 08 0

08 0 00 08 03 0 09

By a simple calculation we obtain
“Pglg“l =1, ",508"1 =1.0009, "P&s"l =1.

The reminder matrix reorderings are equal to either 1 or
1.0009. Therefore, the entanglement of pys could be detected
by the CCN criterion, not by the PPT criterion and all twelve
elements of the group generated by all matrix reorderings are
equivalent to either the elements corresponding to the PPT or
CCN criteria or identity.

Example 6.2. The BDMSST 3 ® 3 bound entangled state [36]

7 7 2|-2 -2 2|2 =2 =2
7 7 =2|-2 -2 =-2|-2 =2 =2
-2 -2 7 |-2 =2 7 |=-2 =2 =2
-2 =2 =27 =2 =27 -2 =2,
p=—|-2 -2 =-2|-2 16 -2|-2 -2 =2
-2 -2 7 |-2 =2 7 |=-2 =2 =2
-2 =2 =27 =2 =27 =2 =2
-2 -2 =2|-2 =2 =2|=-2 7 17
-2 -2 =2|-2 =2 =2|=-2 7 17

By a routine calculation we obtain
lor], =1 13, = 10874, [, =1.

The reminder matrix reorderings are equal to either 1 or
1.0874. Hence the entanglement of p could be detected by the
CCN criterion, not by the PPT criterion and all twelve elements
of the group generated by all matrix reorderings are equivalent
to either the elements corresponding to the PPT or CCN criteria
or identity.

Example 6.3. The BP 3 ® 3 bound entangled state [37, 30]

1 0 1[0 0 01 0 0
01 0/0 0 —1/0 -1 0
10 20 -1 00 0 0
00 0|1 0 -1]0 1 0
pﬁ.:% 00 -1{0 1 o1 0 of
0 -1 0/-1 0 2]0 0 0
1 0 0lo 1 02 0 0
0 -1 0/1 0 0[]0 2 0
00 0/0 0 0]0 0 0

A simple calculation yields

T
o

| =1, "'56"1 =1.1667, ||pAB"1 =1

The reminder matrix reorderings are equal to either 1 or
1.1667. Thus the entanglement of p. could be detected by the
CCN criterion, not by the PPT criterion and all twelve elements
of the group generated by all matrix reorderings are equivalent
to either the elements corresponding to the PPT or CCN criteria
or identity.

Example 6.4. The GMTA 3 ® 3 bound entangled state [38]
Let p=0.875, we have

57T 49 —14|-14 —14 —14|-14 —-14 -14
49 57 —14|-14 —14 —14|-14 —14 -14
14 —14 57 |-14 —14 49 |-14 —14 —14
14 —14 —14]| 57 —14 -14| 49 —14 —14
p=—| 14 —14 —14|-14 120 —14|-14 —14 -14|
—14 —14 49 |-14 —14 57 |-14 —14 —14
14 —14 —14| 49 —14 14|57 —14 —14
14 —14 —14|-14 —14 —14|-14 57 49
14 —14 —14|-14 —14 —14|-14 49 57

A routine calculation yields
Jo7), =1 151, = 09854, [ol, =1

The reminder matrix reorderings are equal to either 1 or
0.9884. Consequently, the entanglement of p could be detected
neither by the CCN criterion, not by the PPT criterion and all
twelve elements of the group generated by all matrix
reorderings are equivalent to either the elements corresponding
to the PPT or CCN criteria or identity.

VII. CONCLUSIONS

Operational characterization of entanglement is an open
problem. So far, the strongest operational separability criteria
are the positive partial transpose (PPT) criterion and the
computable cross norm (CCN) criterion. Both of them are
based on an appropriate rearrangement of the matrix elements
from original density matrix. What is the relation between the
rearrangement of the matrix elements of the PPT criterion and
the CCN criterion? From the general matrix algebra point of
view, we can connect them with the matrix reorderings. There
are also some drawbacks for our discussion due to limitation of
the matrix orderings found by Poluikis and Hill in [32] and
Oxenrider and Hill in [33]. In this letter we mainly discuss the
m X n bipartite density matrix oy, where both dimensions m
and n are squares of nature numbers. One question is leave:
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What is the relationship between the rearrangement of the
matrix elements of the PPT criterion and the CCN criterion if
either dimensions m or » is not square of nature number?
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