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Abstract—So far the positive partial transpose (PPT) criterion 
and the computable cross norm (CCN) criterion are two 
strongest operational separability criteria of bipartite mixed 
quantum states. In this paper, we exactly connect the PPT 
criterion and the CCN criterion with the matrix reorderings 
found by Poluikis and Hill [J. A. Poluikis and R. D. Hill, Linear 
Algebra and Its Applications 35: 1-10 (1981)] and Oxenrider and 
Hill [C. J. Oxenrider and R. D. Hill, Linear Algebra and Its 
Applications 69: 205-212 (1985)]. Motivated by work by Chen etc. 
[K. Chen, S. Albeverio, and S.-M. Fei, Physical Review Letters 95, 
040504 (2005), Physical Review Letters 95, 210501 (2005)], we 
compute the trace norm of several bound entangled states and 
illuminate the equivalence among the elements of group 
generated by the eight matrix reorderings. 
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I.  INTRODUCTION 
Since the famous Einstein, Podolsky, and Rosen [1] and 

Schrödinger [2] papers, quantum entanglement still remains 
one of the most striking quantum phenomena. In recent years, 
great effort has been made to understand the role of 
entanglement in quantum information processing [3-13]. 
However, some fundamental problems about quantum 
entanglement such as entanglement criteria and entanglement 
measures are still far from being solved completely, especially 
in the context of multipartite systems. 

Despite considerable effort, the operational characterization 
of separable states is still an open problem. There are simple, 
efficiently computable, tests that can establish the entanglement 
of a large subset of states. The most famous of these criteria is 
the positive partial transpose (PPT) criterion [14, 15]. This 
simply requires making an appropriate rearrangement of the 
matrix elements, corresponding to transposing one of the 
parties, and checking that the resulting matrix is positive. 
Nevertheless, since 1996 when Peres designed the PPT 
criterion, no better computable separability criterion has been 
provided for a long time. Only recently a new operational 
separability criterion, i.e., the computable cross norm (CCN) 
criterion or the realignment criterion, was found by Rudolph in 
[16] and Chen and Wu in [17]. This method has recently been 
developed further in [18-31]. It is independent of the PPT 
criterion. As the PPT criterion, the CCN criterion also requires 
making an appropriate rearrangement of the matrix elements, 
and checking whether the trace norm of the resulting matrix is 

larger than one or not. Both the PPT criterion and the CCN 
criterion require making an appropriate rearrangement of the 
matrix elements. Naturally, one question was raised: what is 
the relationship between the rearrangement of the matrix 
elements of the PPT criterion and that of the CCN criterion? 

From the point of view of mathematics, in fact, the similar 
rearrangements of the matrix elements, i.e., the matrix 
reorderings, were previously studied in the context of general 
matrix algebra by Poluikis and Hill in [32] and Oxenrider and 
Hill in [33]. In [33], Oxenrider and Hill discussed eight natural 
matrix reorderings and explored some of their algebraic 
properties and their properties as linear transformations. In the 
case of the PPT and CCN criteria are concerned, as stated in 
section 5 below, they just corresponding with two elements of 
the group generated by the eight matrix reorderings. In section 
4 below, we shall know that except for the elements 
corresponding the PPT and CCN criteria, there are still twenty-
two different matrix reorderings in the group generated by the 
eight natural matrix reorderings. Then another question was 
raised: Whether other elements of the group are independent of 
the two elements corresponding to the PPT and CCN criteria or 
not? If yes, then we shall obtain new operational separability 
criteria. Unfortunately, all elements of the group are equivalent 
to either the elements corresponding to the PPT or CCN criteria 
or identity. Therefore, there is no new operational separability 
criteria in this framework. 

From the point of view of physics, as Nielsen stated in [34], 
“…what we really want is deep theorems connecting measures 
of entanglement in surprising ways to other problems in 
quantum information sciences.…At the present time I believe it 
is fair to say that few deep results connecting measures of 
entanglement to other problems are known.” In [25] and [26], 
Chen, Albeverio, and Fei found an essential quantitative 
relation between entanglement measures, i.e., concurrence and 
entanglement of formation, and available strong separability 
criteria, i.e., the PPT criterion and the CCN criterion, 
respectively. Motivated by Ref. [25-26], we compute trace 
norms of four examples of bound entangled states [35-38] to 
illuminate equivalence in C3 ⊗ C3 composite quantum systems. 

Although the Horodeckis family [27] and Życzkowski and 
Bengtsson [39] once noted that the PPT and CCN criteria are 
part of a large group of matrix reorderings studied in the 1980s, 
the present paper makes this comparison very explicit from the 
point of view of general matrix algebra. 



         

The remainder of the paper is organized as follows. In 
sections 2 and 3, the PPT and CCN criteria are presented, 
respectively. Section 4 is devoted to the matrix reorderings. In 
section 5, the relationship between the PPT and CCN criteria 
and the matrix reorderings are obtained. In section 6, we give 
four known bound entangled states and compute the trace norm 
of all matrix reorderings to illuminate the equivalence in C3 ⊗ 
C3 composite quantum systems. Finally, in section 7, we leave 
one open problem for further work. 

II. THE PPT CRITERION IN CM ⊗ CN COMPOSITE 
QUANTUM SYSTEMS 

In the case of CM ⊗ CN composite quantum systems, Peres 
and the Horodeckis family gave the connection between the 
partial transposes of density matrices with separability of 
bipartite mixed quantum states in [14] and [15]. In the 
following, we recall the main result. 

If the M × N state ρ can be written as 
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with N × N matrices Amn acting on the second ( CN ) space. 
They are defined by their matrix elements as µνµν ρ nmmnA ,}{ ≡ . 
Then the partial transpositions 1Tρ  and 2Tρ  will be realized 
simply by commutation and transposition of all of these 
matrices Amn, respectively, namely, 
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The PPT Criterion [14, 15] 
If an m × n bipartite density matrix ρAB is separable, then 

||ρ T1||1 ≤ 1 (or ||ρ T2||1 ≤ 1). 

In the following we give an example in CM ⊗ CN composite 
quantum systems to display the concise and explicit expression 
of the partial transposes of density matrices. 

Example 2.1. The Horodecki 3 ⊗ 3 bound entangled state [35] 

The density matrix ρa is 
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where 0 ≤ a ≤ 1. ρa can be written as 

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where Aij are 3 × 3 matrices. Then we have 
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III. THE CCN CRITERION IN CM ⊗ CN COMPOSITE 
QUANTUM SYSTEMS 

In the case of CM ⊗ CN composite quantum systems, 
Rudolph and Chen and Wu obtain the computable cross norm 
(CCN) criterion or the realignment criterion in [16] and [17]. 
We recall the main result below. 

If the M × N state ρ can be written as 
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with N × N matrices Amn acting on the second ( CN ) space. 
They are defined by their matrix elements as µνµν ρ nmmnA ,}{ ≡ . 
Then the realignment matrix ρ~  will be realized simply by 
commutation and transposition of all of these matrices Amn, 
namely, 
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The CCN Criterion [16, 17] 
If an m × n bipartite density matrix ρAB is separable, then 

|| ρ~ ||1 ≤ 1. 

In the following we give an example in CM ⊗ CN composite 
quantum systems to display the concise and explicit expression 
of the realignment of density matrices. 

Example 3.1. The Horodecki 3 ⊗ 3 bound entangled state [35] 

The density matrix ρa is same as Example 2.1.  

Then we have  
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IV. THE MATRIX REORDERINGS IN CM ⊗ CN COMPOSITE 
QUANTUM SYSTEMS 

In [33], Oxenrider and Hill discussed eight natural matrix 
reorderings. First, Let us recall the notation of the eight natural 
matrix reorderings as follows: 

Given positive integers t, u, let S ={(i, j): i = 1,…, t; j = 1, 
…, u}; endow S with two orderings, viz., the lexicographical 
ordering 

(i, j) < (r, s)       iff       i < r or ( i = r and j < s) 

and the antilexicographical ordering 

(i, j) < (r, s)       iff       j < s or ( j = s and i < r). 

Corresponding to each of these orderings we have bijections 
from the set of ordered pairs S onto {1, …, tu} defined by [i, j] 
= ( i –1 ) u + j and <i, j> = ( j –1 ) t + i. 

Eight reorderings naturally appear: 
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where i , j = 1,…, q; r , s = 1, …, n, and 
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where i , j = 1,…, n; r , s = 1, …, q. 

Now we will present these results for density matrices in C3 
⊗ C3 composite quantum systems to display the concise and 
explicit expression of the matrix reorderings as follows: 

Example 4.1. Let ρ be a 3 ⊗ 3 bipartite density matrix as 
follows: 
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Then the eight natural matrix reorderings are 
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In [33], Oxenrider and Hill observed that Γ, Θ, Ω, Ψ, Υ, Ξ, 
∆, and Λ do not preserve the matrix properties of determinant, 
rank, and trace. However, the eight natural matrix reorderings 
do generate the transpose operator, which preserves all of the 
above properties and types of matrices. Moreover, under 
composition they generate a 24-element group, all members of 
which preserve the inner product and thus the corresponding 
metric properties. 

Observation 4.1. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, and 

AB
T
AB ρρ = , then the eight natural matrix reorderings, i.e., 

Γ(ρAB), Θ(ρAB), Ω(ρAB), Ψ(ρAB), Υ(ρAB), Ξ(ρAB), ∆(ρAB), and 
Λ(ρAB), generate a 12-element group under composition, and all 
members of which preserve the inner product and thus the 
corresponding metric properties. 

V. THE RELATIONSHIP AMONG THE PPT CRITERION, THE 
CCN CRITERION, AND THE MATRIX REORDERINGS 

In the case of the above C3 ⊗ C3 composite quantum 
systems, we can rewrite the partial transpositions 1Tρ , 2Tρ  and 
the realignment matrix ρ~  as follows: 
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332313322212312111

~

ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ
ρρρρρρρρρ

ρ . 

In the following Observations 5.1 - 5.5, we shall give the 
relationship among the PPT criterion, the CCN criterion, and 
the matrix reorderings: 

Observation 5.1. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, then 
we have 

)()()()(1
ABABABAB

T
AB ρρρρρ ΛΨ=∆Θ=ΞΩ=ΥΓ= . 

Observation 5.2. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, then 
we have 

)()()()(2
ABABABAB

T
AB ρρρρρ ∆Ψ=ΛΘ=ΥΩ=ΞΓ= . 

Observation 5.3. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, then 
we have 

)(~
ABρρ Ω= . 

Observation 5.4. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, then 
we have 

)()()()( ABABABAB
T
AB ρρρρρ ΩΨ=ΨΘ=ΓΩ=ΘΓ= . 



         

Observation 5.5. For any m ⊗ n bipartite density matrix ρAB, if 
both dimensions m and n are squares of nature numbers, then 
we have 

)()()()( ABABABABAB ρρρρρ ΓΓ=ΨΨ=ΘΩ=ΩΘ= . 

VI. THE TRACE NORMS IN C3 ⊗ C3 COMPOSITE QUANTUM 
SYSTEMS 

Now we shall give four examples of bound entangled states 
and compute the trace norms of all matrix reorderings to 
illuminate the equivalence in C3 ⊗ C3 composite quantum 
systems as follows: 

Example 6.1. The Horodecki 3 ⊗ 3 bound entangled state [35] 

Let a = 0.8, we have 





































=

9.003.008.00008.0
08.00000000
3.009.0000000

0008.000000
8.00008.00008.0

000008.0000
0000008.000
00000008.00
8.00008.00008.0

37
5

8.0ρ
. 

By a simple calculation we obtain 

1
18.0

1 =Tρ , 0009.1~
18.0 =ρ , 118.0 =ρ . 

The reminder matrix reorderings are equal to either 1 or 
1.0009. Therefore, the entanglement of ρ0.8 could be detected 
by the CCN criterion, not by the PPT criterion and all twelve 
elements of the group generated by all matrix reorderings are 
equivalent to either the elements corresponding to the PPT or 
CCN criteria or identity. 

Example 6.2. The BDMSST 3 ⊗ 3 bound entangled state [36] 



































−−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−

=

772222222
772222222
227227222
222722722
2222162222
227227222
222722722
222222277
222222277

72
1ρ

. 

By a routine calculation we obtain 

1
1

1 =Tρ , 0874.1~
1 =ρ , 11 =ρ . 

The reminder matrix reorderings are equal to either 1 or 
1.0874. Hence the entanglement of ρ could be detected by the 
CCN criterion, not by the PPT criterion and all twelve elements 
of the group generated by all matrix reorderings are equivalent 
to either the elements corresponding to the PPT or CCN criteria 
or identity. 

Example 6.3. The BP 3 ⊗ 3 bound entangled state [37, 30] 



































−

−−
−

−
−

−−

=

000000000
020001010
002010001
000201010
001010100
010101000
000010201
010100010
001000101

12
1

cρ
. 

A simple calculation yields 

1
1

1 =T
cρ , 1667.1~

1 =cρ , 11 =ABρ . 

The reminder matrix reorderings are equal to either 1 or 
1.1667. Thus the entanglement of ρc could be detected by the 
CCN criterion, not by the PPT criterion and all twelve elements 
of the group generated by all matrix reorderings are equivalent 
to either the elements corresponding to the PPT or CCN criteria 
or identity. 

Example 6.4. The GMTA 3 ⊗ 3 bound entangled state [38] 

Let p = 0.875, we have 



































−−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−

=

574914141414141414
495714141414141414
141457141449141414
141414571414491414
1414141412014141414
141449141457141414
141414491414571414
141414141414145749
141414141414144957

576
1ρ

. 

A routine calculation yields 

1
1

1 =Tρ , 9884.0~
1 =ρ , 11 =ρ . 

The reminder matrix reorderings are equal to either 1 or 
0.9884. Consequently, the entanglement of ρ could be detected 
neither by the CCN criterion, not by the PPT criterion and all 
twelve elements of the group generated by all matrix 
reorderings are equivalent to either the elements corresponding 
to the PPT or CCN criteria or identity. 

VII. CONCLUSIONS 
Operational characterization of entanglement is an open 

problem. So far, the strongest operational separability criteria 
are the positive partial transpose (PPT) criterion and the 
computable cross norm (CCN) criterion. Both of them are 
based on an appropriate rearrangement of the matrix elements 
from original density matrix. What is the relation between the 
rearrangement of the matrix elements of the PPT criterion and 
the CCN criterion? From the general matrix algebra point of 
view, we can connect them with the matrix reorderings. There 
are also some drawbacks for our discussion due to limitation of 
the matrix orderings found by Poluikis and Hill in [32] and 
Oxenrider and Hill in [33]. In this letter we mainly discuss the 
m × n bipartite density matrix ρAB, where both dimensions m 
and n are squares of nature numbers. One question is leave: 



         

What is the relationship between the rearrangement of the 
matrix elements of the PPT criterion and the CCN criterion if 
either dimensions m or n is not square of nature number? 
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