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Abstract—Least Squares Support Vector Machine (LS-SVM) is
a modified version of traditional Support Vector Machine (SVM).
LS-SVM considers equality constraints, therefore it solves a set
of linear equations instead of quadratic programming problem
in SVM. However, the sparseness of LS-SVM is lost due to it’s
ε-sensitive cost function. Sparseness can be obtained by applying
a pruning method, which eliminates some vectors with smallest
support values and retrains the remaining samples. But iterative
retraining is a time-consuming process. Motivated by the fact
that boundary samples are more significant for constructing a
LS-SVM classifier, this paper proposes a method of using Pulse
Coupled Neural Networks (PCNNs) to search boundary samples
of original data sets. The original data sets are mapped into some
PCNN neurons, and a firing algorithm is designed to determine
which samples lie at boundary region. It gives a novel approach to
impose sparsity for LS-SVM. Experiments show that the proposed
method can effectively detect boundary samples and speed up
LS-SVM classifiers.

I. INTRODUCTION

Support vector machine proposed by Vapnik et al in [1]
has been receiving increasing attention in recent years. SVM
is an important machine learning methodology with good
generalization ability. It has strong theoretical foundations
and excellent empirical successes in many pattern recogni-
tion applications, such as pattern classification and function
estimation [2] [3]. However, SVM does not scale well with
respect to the size of training data. For standard SVM case, it
is formulated as a quadratic programming (QP) problem. Given
n training instances, the training time complexity of QP is the
time O(n3) and its space complexity is at least O(n2). Hence,
a major stumbling block is in scaling up the method to large
data sets, such as those commonly encountered in data mining
applications.

To reduce the time and space complexities, some modified
methods for SVM are proposed. Decomposition methods are
currently one of the major methods for training support vector
machines. A popular approach to scale up SVM is by chunking
[3]. However, chunking needs to optimize the entire set of
non-zero Lagrange multipliers that have been identified, and
the kernel matrix may still be too large to fit into memory.

A method proposed in [4] suggests that optimizing only a
fixed-size working set of the training data each time, while the
variables corresponding to the other patterns are frozen. Going
to the extreme, the sequential minimal optimization (SMO)
algorithm [5] breaks the original QP into a series of smallest
possible QPs, each involving only two variables. However, the
convergence of SMO algorithm can be slow in large scale data
cases.

A more radical approach is to avoid the QP altogether.
J.A.K. Suykens et al [6] propose a modified SVM called
LS-SVM, which has been investigated for classification and
function estimation problems. Taking into account equality
constraints, LS-SVM only needs to solve a set of linear
equations. This method significantly reduces the computation
complexity. However, the sparseness of LS-SVM solution is
lost because of the choice of ε-sensitive cost function. A
pruning method, called sparse LS-SVM, is proposed in [7] for
imposing sparseness of LS-SVM by Suykens et al. Motivated
by the fact that the LS-SVM support values are proportional
to the errors at the data points, they remove a small amount of
points with smallest support values and retrain the LS-SVM
iteratively until the user-defined performance index degrades.
But the iterative process is still very time-consuming for large
size data set. Some other methods are proposed to improve
LS-SVM, see [8], [9] etc. A general comparison of various
pruning algorithms is given in [10]. It makes a conclusion that
pruning based on absolute support values is still most attractive
if one takes into account both the computational costs and
classification accuracy.

Motivated by the fact that boundary samples are more
significant for constructing a LS-SVM classifier, we propose a
PCNN-based method to search boundary samples from original
data set. PCNNs are developed as a result of studies from
the visual cortex of cats and monkeys [13]. The method has
been used for image smoothing, image segmentation, feature
extraction etc [14]. Similar in spirit to image segmentation
algorithms using PCNNs , we map the original data sets
into some PCNN neurons, and design a firing algorithm
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to determine which samples lie at boundary region. Unlike
processing pixels in image applications, the proposed method
map more than one data samples into a neuron. But only those
data points closest to PCNN neurons will be recorded. By this
mean, we impose sparsity for our PCNN model and speed
up its convergence. This contribution introduces a suitable
method to impose sparseness for LS-SVM by selection of
significant boundary points. The proposed method can speed
up the training speed of LS-SVM classifiers.

This paper is organized as follows. In Section II, the LS-
SVM classifiers are reviewed. In Section III, we proposed a
modified PCNN model. The algorithm to detecting boundary
samples for LS-SVM is given in section IV. The experimental
results are reported in Section V. The conclusions are given
in Section VI.

II. LS-SVM CLASSIFIERS

Given a training set of n data points {(x1, y1), (x2, y2), ...,
(xN , yN)}, where xk ∈ Rp is the kth input vector and yk ∈
{+1,−1} is the corresponding class label. Assuming the data
points are linearly separable, there exists a linear classifier in
input space such that y(x) = Sign(wT x+ b). For nonlinearly
separable cases, we employ the idea of mapping the data points
into a high dimensional feature space by means of a nonlinear
function ϕ(.), and a separating hyperplane in feature space
takes form as y(x) = Sign(wT ϕ(x) + b). To build an SVM
classifier, one needs to find the optimal hyperplane between
the two classes of training samples, which has the maximum
margin of separation 1/||w||. Obviously, the maximization of
the margin is equivalent to the minimization of the Euclidean
norm of w. In order to obtain the optimal hyperplane, LS-SVM
needs to build an optimization problem

min
w,b,e

J3(w, b, e) =
1
2
wT w +

γ

2

N∑
k=1

e2
k. (1)

Unlike traditional SVM, LS-SVM considers equality con-
straints

yk[wT ϕ(xk) + b] = 1 − ek, k = 1, ..., N. (2)

The Lagrangian is constructed as

L(w, b, e; α) = J3(w, b, e)−
N∑

k=1

αk{yk[wT ϕ(xk) + b] − 1 + ek}. (3)

According to Kuhn-Tucker conditions, one of the conditions
for optimality is obtained as follows

∂L

∂ek
= 0 → αk = γek, k = 1, ..., N. (4)

In Equation (4), αk are Lagrange multipliers. αk multipliers
reflect the importance of the training samples. Their weights
are proportional to the ek, errors in the training samples. From
Equ.(2) we can formulate ek as

ek = 1 − yk

(
wT ϕ(xk) + b

)
. (5)

Those data samples closest to and farthest from the separating
hyperplane have largest |ek|. Obviously, these samples also
have largest |αk|. Sparseness can be obtained for LS-SVM by
applying a pruning method [7] , which eliminates some training
samples based on the sorted |αk| spectrum. By eliminating
some vectors, represented by the smallest values from the
|αk| spectrum, the number of support vectors can be reduced.
The irrelevant points are omitted, by iteratively leaving out
the least significant vectors. As a result, the pruning method
in [7] shows they keep an amount of data points closest to
and farthest from the separating hyperplane. The remaining
samples form a subset of the boundary samples. So if we
can seek all the boundary samples which include the most
significant vectors, then a sparse LS-SVM can be obtained.
Motivated by this reason, we propose a PCNN-based method to
search boundary samples as candidates of support vectors for
LS-SVM. Therefore an sparse LS-SVM classifier on boundary
samples can be obtained directly.

III. A MODIFIED PCNN MODEL

The original Pulse-Coupled Neural Networks (PCNNs)
were derived from studies on the cat’s eye, which was proposed
by Eckhorn et. al [13]. They had studied the cat visual cortex,
the part of the brain that processes the information from the
eye, and discovered that the midbrain in an oscillating way
creates binary images that extract different features from the
visual impression. Based on these so-called pulse images, the
actual image is created in the cat brain. They proposed a neural
network that simulated this behavior, and it was developed
by many researchers. PCNNs can be applied in many fields,
such as digital image processing, moving object recognition,
communication and optimization etc [14], [15].

In a two dimensional PCNN model, the PCNNs consist of
multiple nodes forming in a grid [14]. The nodes are coupled
together with their neighbors within a radius r0. A typical
neuron has two input compartments, linking and feeding. The
feeding compartment, F , receives both an external and a local
stimulus, whereas the linking compartment, L, only receives
a local stimulus. The feeding and linking are combined in a
second order fashion to form the membrane voltage, U . This
is then compared to a dynamic threshold Θ for determining
the output.

To search boundary samples, we introduce some modifi-
cations into standard PCNN model. These modifications are
reflected in the neuron architecture as illustrated by the Fig.1.
The proposed model can be described as following equations:

Fij [n] =

{
0, neurons with data sample.

S, neurons without data sample.
(6)

Lij [n] =
∑
kl

WijklYkl[n − 1] (7)

Cij [n] =
{

1, Fij [n] > 0
0, Otherwise

(8)

Uij [n] = Fij [n] + βLij [n] (9)
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Fig. 1. Architecture of modified PCNN neuron.

Yij [n] = Step(Uij [n] − Θij [n])Cij [n]

=

{
1, if Uij [n] > Θij [n] and Cij [n] = 1
0, if Uij [n] < Θij [n] or Cij [n] = 0

Θij [n] = eαF Θij [n − 1] + VΘYij [n] (10)

The proposed PCNN neurons consist of three parts: the
receptive field, the modulation field, and the pulse generator.
In the input receptive field, see Equ.6, the feeding input Fij

is simplified to external input. The feeding input can be set to
zero or a nonzero constant S according to the neuron having
a data sample or not. The linking input Lij , see Equ.7, is
the sum of responses of the output from surrounding neurons.
The feeding and linking are combined in an additive fashion
to form Uij . A control unit Cij , see Equ.8, is introduced in
our model, which is used to filter the output of the neurons,
see Equ.10. The control unit promises our model stop after
two times firing. At first firing time, all the neurons without
data samples fire because their feeding inputs are initialized
as a adequate big constant S. At the same time, their control
unit outputs are 1 which make sure that they can emit pulses.
These pulses make those neurons stored boundary samples fire
at next time, yet the outputs of these neurons’ control units are
0 which make they emit no pulses. The PCNNs firing process
thus stop naturally. Data samples stored in the neurons fired
at the second time are boundary samples.

IV. SEARCHING BOUNDARY SAMPLES BY PCNNS

In the following accounts, we illustrate our method with
two dimensional data sets. Given a training set of n data
points {(x1, y1), (x2, y2), ..., (xn, yn)}, where (xk, yk) is the
kth input vector. To search boundary samples for the data
set, a PCNNs with l × m (l << n, m << n) neurons
are necessary, which form a l × m grid. The first row of
neurons are used to map those data samples with the smallest
y values, and the lth row are used to map samples with the
largest y values. The first column of neurons are used to map
those data samples with the smallest x values, and the mth
column are used to map those samples with the largest x
values. Unlike processing pixels by one-to-one correspondence
between pixels and neurons in image applications, we map
more than one data samples into a PCNN neurons, yet only

Neurons without data samples
Data samples

Neurons with data samples

Fig. 2. Mapping data samples into PCNN neurons.

those data samples closest to the PCNN neurons are stored.
By this mean, the sparseness for our PCNN model is obtained.
Generally, there are two kinds of neurons in the our model:
neurons with data samples and neurons without samples. Fig.2
shows how to map data samples into neurons. The dotted
circles are neurons having data samples and the other circles
are neurons without data samples. The little dots are data
samples. For searching boundary samples effectively, two extra
rows are added as the first row and the last row, and two extra
columns are added too. The PCNN model thus scales up to
(l + 2) × (m + 2), see Fig.2.

According to the neuron type, The feeding inputs can be
arranged as two choices. For neurons without data points, Fij

are set to S(S > Θij [0]) . The feeding inputs of neurons with
data points are set to 0. At time t0, all the linking inputs are 0
and only external sources are added to PCNN neurons. Thus,
the neurons without data point will fire at time t0. The control
field Cij is used to filter the neuron output. The control field
of the neuron is set to 1 when Fij > 0 , otherwise set to
0. This control part makes the neurons without data points
emit a pulse when they fire, yet the neurons with data point
emit no pulses. It thus promise the PCNN Auto-wave stop
when it meets neurons having data samples. As a result, to
search boundary samples of data set, only two times of firing
are needed. All the neurons without data points fire and emit
pulses at time t0. Those neurons with boundary samples will
fire at time t1, because they recept enough linking inputs from
their surrounding neurons fired at time t0. All the data samples
stored in the neurons fired at t1 are boundary samples.

The detail description of our method is given as follows:
1) Normalize the features of input vectors.
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Fig. 3. Searching boundary samples using a 32× 32 PCNNs for circle data
set. (a). The first time firing map, the highlighted regions are neurons fired at
time t0. (b). The second time firing map, the highlighted regions are neurons
fired at time t1. (c). Original circle data set with 3142 data samples. (d). 129
Boundary samples stored in the neurons fired at time t1.

2) Design a PCNN. Compute the range of feature values
and determine the PCNN size: l and m , and then design a
PCNN with (l + 2) × (m + 2) neurons.

3) Map data samples into the PCNN neurons, and store
those data points closest to the neurons.

4) Initialize Fij , Lij , β and Θij .
(i) Set Feeding inputs Fij . The feeding inputs of neurons

with data samples are set to 0, otherwise set to 1.
(ii) Set Linking inputs Lij . All the linking inputs of neurons

are set to 0 at time t0.
(iii) Set linking weight β. The linking weight of each neuron

is set to W

W =


 0.5 1 0.5

1 1 1
0.5 1 0.5




(iv) Set threshold Θij . All the thresholds are set to Θ(< 1)
at time t0.

5) The first time firing. At time t0, the total internal activity
Uij of the neurons without data samples are more than their
thresholds, hence these neurons will parallelized fire. After
firing, their threshold values increase by a large constant VΘ

which prevent them from firing at time t1.
6) The second time firing. At time t1, the neurons with

boundary samples will fire, because they can recept adequate
linking inputs from their neighbors.

7) Find all the data samples stored in the neurons fired at
time t1. These samples are boundary samples.

8) end.
Fig.3 shows the process for searching data boundary of a

circle data sets with 3142 data points. To search boundary
samples for the data set, a 32× 32 PCNN is designed. In (a),
the highlighted regions are neurons fired at time t0. In (b), the
highlighted regions are neurons fired at time t1, in which the
boundary samples are stored. (c) is the original circle data set.

In (d), the dots are boundary samples stored in the neurons
fired at time t1.

V. EXPERIMENTS

In this section, some experiments will be carried out to
test our method. Part A is a experiment for linearly separable
problems, and part B is a nonlinearly separable experiment.
Our experiments are carried on an Intel Pentium(R)4 2.66GHz
with 512MB of memory and running Windows XP Profes-
sional 2002. In the two experiments presented here, LS-SVM is
carried out using LS-SVM tools from LS-SVMlab [16] based
on Matlab 6.5 system. The proposed searching boundary data
samples algorithm is carried out based on matlab 6.5 program.

A. linearly separable problems

In this experiment, we use a linearly separable training
set, called Syn1 data set, to test our method in classification
application. The data set has two classes (1000 points for each
class) in a two dimensional space (Fig.4), which is generated
from Gaussian distributions. Linear kernel is employed for the
LS-SVM classifier in the experiment. In Fig.4, the classifica-
tion result is trained on the original 2000 data samples. Fig.5
shows the LS-SVM training result on the 57 boundary samples
searched by our method.
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Fig. 4. The LS-SVM training result on the original Syn1 data set(2000
points).

B. nonlinearly separable problems

In this experiment, we use another nonlinearly separable
training set, called fourclass data set [17], [18]. The data set
has 862 data samples and two classes. RBF kernel function
with γ = 7 , σ2 = 0.3 is employed for the LS-SVM classifier.
In the Fig.6, the classification result is trained on the original
data set. There are 144 boundary samples searched by our
method. The training result on the boundary samples is shown
in Fig.7.

From Fig.5 and Fig.7, one can see that the training results on
the boundary samples are comparable to the results on original
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Fig. 5. The LS-SVM training result on 57 boundary samples of Syn1 data
set.

data sets. A simple comparison is given in Table I, which
shows the proposed method can effectively reduce the number
of support vectors and speed up LS-SVM. In the table, the
training time of our method is the Sum of searching boundary
samples time and training a sparse LS-SVM time. Obviously,
our algorithm is computationally attractive. At the same time,
the tests show that there is no accuracy loss by using our
method.
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Fig. 6. The LS-SVM training result on the original fourclass data set(862
points).

VI. CONCLUSIONS

An effective sparse method for LS-SVM is proposed by
using a modified PCNN model to search boundary samples of
original data set. The boundary samples can be regarded as
candidates of support vectors which include the most signifi-
cant vectors for LS-SVM classifiers. Experiments for linearly
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Fig. 7. The LS-SVM training result on 144 Boundary samples of the fourclass
data set.

TABLE I
COMPARISON OF REGULAR LS-SVM AND PROPOSED METHOD.

# of SVs Training time (s) Error rate (%) 
Data 

Sets LS-SVM 
Proposed 

Method 
LS-SVM 

Proposed 

Method 
LS-SVM 

Proposed 

Method 

Syn1 2000 57 0.946 0.078 0.15 0.1 

fourclass 862 144 8.54 0.326 0 0 

 

separable and nonlinearly separable cases are given. These
experiments show support vectors can be reduced obviously by
proposed method without loss of performance. The proposed
model can be developed for three dimensional data sets.
For high dimensional problems, we can use PCA (Primary
Component Analysis) for dimension reduction, and then use
our PCNN model to search boundary samples based on their
primary components.
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