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Abstract—Researches on neural population coding have re-
vealed that continuous stimuli, such as orientation, moving
direction, and the spatial location of objects could be encoded
as continuous attractors in neural networks. The dynamical
behaviors of continuous attractors are interesting properties
of recurrent neural networks. This paper proposes a class of
recurrent neural networks without lateral inhibition. Since there
is no general rule to determine the stability of the network without
specifying the excitatory connections, individual conditions can be
calculated analytically for some particular cases. It shows that
the networks can possess continuous attractors if the excitatory
connections are in gaussian shape. Simulation examples are
employed for illustration.

I. INTRODUCTION

Continuous attractors of recurrent neural networks (RNNs)
have attracted extensive interests in recent years. Continuous
attractors refer to continuous collections of equilibrium points
of a network. Researches on neural population coding have
revealed that continuous stimuli, such as orientation, moving
direction, and the spatial location of objects could be en-
coded as continuous attractors in neural networks. Under some
conditions, RNNs may possess continuous attractors, see for
examples, [2][4][5][6][12][13].

The continuous attractors of RNNs have been investigated
by many authors. Continuous attractor neural networks are of
central importance in computational neuroscience as there are
strong indications that such mechanisms are used frequently
for information processing in the brain. In some neurobiolog-
ical models, continuous attractors have been used to represent
continuous quantities like working memory in prefrontal cortex
[9], orientation of a visual stimulus [1], eye position [2], head
direction [3], and so on. The study of continuous attractor
neural network models is important in order to see if such
models can explain measured effects or if the experimental
data indicate that other mechanisms must be at work in the
brain.

In continuous attractor network models, if the initial input
pattern is given, through the cooperation between close nodes
and the competition between distant nodes, and inhibition
among all of the neural nodes, locations with the strongest
support will win the competition. Thereby, a combination of
the initial activity of single nodes is in combination with
the activity of neighboring nodes, and the network models

implement a specific version of a winner-take-all algorithm.
This winner-take-all algorithm could be of practical use in
many applications. Thus, such networks that might not only be
utilized in the brain, but might allow in practical applications,
such as winner-take-all or winner-take-most algorithms. The
application of continuous neural network models in technology
was explored in a variety of papers [7][10][11].

Many additions to the basic continuous neural network
model have been proposed in recent years that are destined
for further explorations into various application areas. Gener-
ally, among these models, continuous attractors are difficult
to be studied analytically, especially for those that generate
unimodal profiles of activity [1][3]. However, using appropriate
theoretical framework, an attractor solution can be calculated
explicitly for certain models, see for examples, [12][13].

This paper proposes a class of RNNs without lateral inhi-
bition. Since there is no general rule to determine the stability
of the network without specifying the excitatory connections,
individual conditions can be calculated analytically for some
particular cases. Especially, we study the dynamical behavior
in the case of synaptic connections have a gaussian-like shape.
It shows that if the excitatory connections are in gaussian-
like shape, the network can possess continuous attractors.
Convergence of the network only depends on the the coopera-
tion between close nodes and the competition between distant
nodes.

The remain part of the paper is organized as follows. In
Section II, a model of a class of RNNs is proposed and some
preliminaries are given. Dynamics behaviors of the proposed
network in some particular cases, especially for continuous
attractors are studied in Section III. Simulations are given in
Section IV. Finally, Section V presents the conclusions.

II. PRELIMINARIES

The proposed RNN model without lateral inhibition is
described by the following nonlinear differential equation:

dxi

dt
= −xi +


∑

j

wijxj + ci




m

(1)

for t ≥ 0 and i = 1, 2, ...n, where ci represents an external
input whose value is independent of the network’s activity, m
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is a positive constant. Here, a neighboring neuron j can drive
neuron i excite through synaptic connection wij , but cannot
decrease its gain.

For some of the following theoretical derivations, it is useful
to rewrite the networks (1) in an essentially equivalent form
that involves continuous functions rather than vectors and
matrices. The key is to consider a relatively large number of
neurons, so that sum over cells can be replaced by integral. In
this case, the vector of neuron’s activity turns into a function
x(a), where a acts the neuron’s index or label; similarly,
the connection matrix turns into a function w(a, b) of two
variables. Thus, the continuous version of the network (1) is

dx(a)
dt

= −x(a) +
(

ρ

∫ +∞

−∞
w(a, b)x(b)db + c(a)

)m

(2)

for t ≥ 0, where ρ is the density of neurons. This factor ensures
that for any quantity x, the sum over neurons

∑
j xj is equal

to the integral ρ
∫ +∞
−∞ x(b)db. Equations (1) and (2) will be

used interchangeably, as they are basically identical.
As mentioned above, in these expressions, w(a, b) is the

excitatory connections, and c(a) is the external input. In the
rest of the paper, We explore the dynamics of this model for
various connection patterns w. We show that these equations
typically have several stable solutions, and especially, when
w(a, b) is gaussian shape, the networks possess continuous
attractors.

Next, some definitions and a useful lemma are given.
Definition 1: x∗ is an equilibrium point of the networks (1)

if x(0) = x∗ implies x(t) = x∗, for t ≥ 0.
Definition 2: x∗ is a stable equilibrium point of the net-

works (1) if for any ε > 0, there exists a δ(ε) > 0, such that
| x(0)− x∗ |< δ(ε) implies that | x(t)− x∗ |< ε for all t ≥ 0.

Lemma 1: It holds that∫ +∞

−∞
exp

(−s2
)
dx =

√
π.

Proof: Define

I =
∫ +∞

−∞
exp

(−s2
)
dx,

then,

I2 =
∫ +∞

−∞
exp

(−s2
)
ds

∫ +∞

−∞
exp

(−θ2
)
dy

=
∫ +∞

−∞

∫ +∞

−∞
exp

(−(s2 + θ2)
)
dxdy

=
∫ 2π

0

∫ +∞

0

exp
(−r2

) · rdr

= π.

Thus, I =
√

π. The proof is completed.

III. EQUILIBRIUM POINT AND CONVERGENCE ANALYSIS

A key property of equation (2) is that it allows a solution
in which all neurons’ activity are equal; refer to this uniform

activity as X . If the activity is same for all neurons, the
network equations are reduced to a single, nonlinear equation

dX

dt
= −X + (wtotX + c)m (3)

for t ≥ 0. Two conditions are necessary for this to be possible:
first, the external input should be the same for all units. This
is why the term c(a) now appears as a constant c. Second, the
quantity

wtot ≡ ρ

∫ +∞

−∞
w(a, b)db (4)

must also be independent of a. Because w(a, b) corresponds
to synaptic weight from neuron b to neuron a, this means that
the total synaptic input to all neurons must be the same. Notice
that this is a normalization condition, it does not restrict the
distribution of synaptic weights, just the total amount works.

Theorem 1: If X∗ is an equilibrium of the network (3), it
must be stable under the condition:

m · wtot (wtotX
∗ + c)m−1

< 1. (5)

Proof: From definition 1 and the network model (3), the
equilibrium point X∗ must satisfy

X∗ = (wtotX
∗ + c)m

. (6)

To determine whether X∗ is stable or not, set the steady state
plus a small perturbation, X −→ X∗ + δX . Then derive the
first-order development at point X∗ as follows

dδX

dt
= δX

(
−1 + m · wtot (wtotX

∗ + c)m−1
)

for t ≥ 0. The requirement for stability is that the coefficient
multiplying δX must be negative, which leads to the condition
(5). The proof is completed.

The results in Theorem 1 are under the condition that all
xi vary identically; for the system (1) to be stable, however,
the procedure is more complicated if each neuron is perturbed
by an independent amount. This is discussed in the following
theorem.

Theorem 2: If x∗ is an equilibrium point of the networks
(1), it must be stable under the following condition:

α · wtot < 1, (7)

where

α = m ·

∑

j

wijxj + ci




m−1

.

Proof: Substitute xj for x∗ + δxj in Eq.(1). Again use
Eq.(6) and linearize to obtain

dδxi

dt
= −δxi + α

∑
j

wijδxj . (8)

Rewrite the equation in vector form,

dδx

dt
= Lδx = (−1 + αW )δx. (9)



The largest eigenvalue of L is equal to −1+αwtot, imposing
that it be smaller than 0 leads to the condition (7). The proof
is completed.

Clearly, suppose W = w0U or w0I , where U is matrix with
all entries equal to 1, I is an identity matrix. From (7), it is
easy to give the corresponding stable condition of (1).

Recurrent neural networks may possess continuous attrac-
tors. The dynamical behaviors of continuous attractors are
interesting properties of RNNs. Next, we will show that if
the excitatory connections have a gaussian shape, the network
(2) can also possess continuous attractors.

Theorem 3: Suppose excitatory connections have a gaus-
sian shape with standard deviation σ, such that

w(a, b) = wmax exp
(
− (a − b)2

2σ2

)
, (10)

where wmax is a constant. Then, given any z ∈ R,

x(a, t) = xmax(t) exp
(
− (a − z)2

2σ2
1

)
, t ≥ 0 (11)

is a trajectory of (2) with c(a) = C ·exp
(
− (a − z)2

2mσ2
1

)
, where

C is a constant, and

σ2
1 =

σ2

m − 1
, (12)

xmax(t) is a solution of the following equation

dxmax

dt
= −xmax +

(
1√
m

wtot · xmax + C

)m

(13)

for t ≥ 0.
Proof: Substitute (11) into Eq.(2), we have

dxmax

dt
exp

(
− (a − z)2

2σ2
1

)

= −xmax exp
(
− (a − z)2

2σ2
1

)

+
(

ρwmaxxmax

∫ +∞

−∞
exp

(
− (a − b)2

2σ2
− (b − z)2

2σ2
1

)
db

+C · exp
(
− (a − z)2

2mσ2
1

))m

for t ≥ 0.
Since,∫ +∞

−∞
w(a, b)x(b)db

= wmax · xmax

∫ +∞

−∞
exp

(
− (a − b)2

2σ2
− (b − z)2

2σ2
1

)
db

= wmax · xmax exp
(
− (a − z)2

2(σ2 + σ2
1)

)

×
∫ +∞

−∞
exp

(
(a − z)2

2(σ2 + σ2
1)

− (a − b)2

2σ2
− (b − z)2

2σ2
1

)
db

= wmax · xmax exp
(
− (a − z)2

2(σ2 + σ2
1)

)

×
∫ +∞

−∞
exp−

(
b − aσ2

1+zσ2

σ2+σ2
1

)2

2
(

σσ1√
σ2+σ2

1

)2 db

= wmax · xmax exp
(
− (a − z)2

2(σ2 + σ2
1)

)
·
√

2π · σσ1√
σ2 + σ2

1

Because of

ρ

∫ +∞

−∞
w(a, b)db

= ρ

∫ +∞

−∞
wmax exp− (a − b)2

2σ2
db

=
√

2πρ · wmaxσ = wtot

From Lemma 1 and (13), it follows that,

dxmax

dt
exp

(
− (a − z)2

2σ2
1

)

= −xmax exp
(
− (a − z)2

2σ2
1

)

+
(

wtot · xmax
1√
m

+ C

)m

exp
(
− (a − z)2

2σ2
1

)
for t ≥ 0. Reducing the above equation to a scalar equation
for the amplitude of the guassian shape, Eq.(12) can be given.
The proof is completed.

Theorem 4: Suppose that

w(a, b) = wmax · exp
(
− (a − b)2

2σ2

)
,

where wmax is some constant. If x∗
max (�= 0) is a stable

equilibrium point of (13), then,

S =
{

x(a)
∣∣∣∣x(a) = x∗

max · exp
(
− (a − z)2

2σ2
1

)
, a ∈ R, z ∈ R

}
is a continuous attractor of (2).

Proof: By Theorem 3, clearly, to each fixed value of
z, if x∗

max(�= 0) is a stable equilibrium point of (13),

x∗
max · exp

(
− (a − z)2

2σ2
1

)
is a stable equilibrium of (2). Then,

through continuous variation of z, we can get S as a continuous
attractor of the network (1). The proof is completed.

IV. SIMULATIONS

In this section, some simulations will be provided to illus-
trate and verify the theory developed.

Example 1: Consider the one-dimensional neural network:

dx

dt
= −x + (0.5x + 0.25)2 (14)

for t ≥ 0. Clearly, x∗
1 = 1.5 +

√
2, x∗

2 = 1.5 − √
2 are the

equilibrium points of the network (14).
By the condition (5) in Theorem 1, it can checked that x∗

1

is not a stable equilibrium point of the network (14), but, x∗
2

is stable.
Figure 1 shows the simulation result for convergence of

the network (14) for 100 trajectories starting from randomly
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Fig. 1. Convergence of network in (14)

selected initial points. It can be observed that x∗
2 is a stable

equilibrium point.
Example 2: Consider the following three-dimensional neu-

ral network:

d

dt


 x1

x2

x3


 = −


 x1

x2

x3




+




 0 0.2 0.3

0.4 0 0.1
0.3 0.2 0




 x1

x2

x3


+


 0.2

0.2
0.2






2

(15)

for t ≥ 0. Clearly,

W =


 0 0.2 0.3

0.4 0 0.1
0.3 0.2 0


 .

thus, wtot = 1.5, because of the condition (7) in Theorem 2,
it is evident that

x∗ =


 1.5 −√

2
1.5 −√

2
1.5 −√

2


 .

is a stable equilibrium of the network (15).
Figure 2 shows the simulation result for the convergence

of the network (15). Three kinds of curves represent the
convergence of three neurons respectively. It can be observed
that every trajectory converges to an equilibrium point. This
well verifies Theorem 2.

From Eq.(13), if C = 0, the equilibrium point x∗ must
satisfy

−x∗ +
(

wtot
1√
m

x∗
)m

= 0,

then use the expression above and linearize to obtain the
following stable condition:

m < 1.

Thus, it is easy to see that, the network (13) has stable
equilibrium points in the case of m = 1

3 .
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Fig. 2. Convergence of networks in (15)
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Example 3: Consider the following one-dimensional neural
network:

dxmax

dt
= −xmax +

(
6√
3
· xmax

) 1
3

(16)

for t ≥ 0. It is easy to calculate out the equilibrium points
of Eq.(16), zero is one equilibrium point, another two equilib-
rium point are

√
2
√

3 and −
√

2
√

3. Obviously, two nonzero
equilibrium points are stable.

The dynamics of (16) can be visualized by plotting the
derivative dxmax/dt against xmax as in Figure 3. Derivative
becomes zero when the curve crosses the horizontal line, the
crossing points

√
2
√

3, 0 and −
√

2
√

3 are equilibrium points
to the network.

Figure 4 shows the simulation results for convergence of the
network (16) for 100 trajectories originating from randomly
selected initial points. It can be observed that the two nonzero
equilibrium points are stable.

However, from Eq.(12), there must hold m > 1. In this case,
C �= 0 is a necessary condition for the network (1) having
continuous attractors.

Example 4: Consider the network (2) with m = 2:

dx(a)
dt

= −x(a) +
(

ρ

∫ +∞

−∞
w(a, b)x(b) + c(a)

)2

(17)
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for t ≥ 0, where c(a) = C exp
(
− (a − z)2

2σ2

)
, then for t ≥ 0

x(a) = xmax(t) exp
(
− (a − z)2

2σ2

)
(18)

is a solution of the network (17), and xmax(t) satisfies

dxmax

dt
= −xmax +

(√
2

2
wtotxmax + C

)2

, t ≥ 0 (19)

Suppose ρ = 1, C = 0.1 and wtot =
√

2, it is easy to check
that x∗

max = 0.0254 is a stable equilibrium point of (19). Fig.5
shows the result of (18) with continuous variation of a and z.
Fig.6 shows the simulation results of a continuous attractor of
the network (17) with three neurons which indice equal to 0.1,
0.2 and 0.3 respectively. Each point in the figure indicates a
stable equilibrium point.

V. CONCLUSION

This paper proposes a class of RNNs without lateral inhi-
bition. Since there is no general rule to determine the stability
of the network without specifying the excitatory connections,
individual conditions are calculated analytically for some par-
ticular cases. Especially, we study the dynamical behavior in
the case of synaptic connections having a gaussian-like shape.
It shows that the networks can possess continuous attractors
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Fig. 6. Continuous attractors of network in (17) with three neurons

if the excitatory connections are in gaussian shape. For all
specific examples discussed here, there was good qualitative
agreement between theories and simulations. This model is
under going research both in theory and applications. It is
believed that more interesting results on this model will come
out.
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