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Abstract—Recently, remanufacturing has received more and
more attention by many manufacturers. It is economical to
schedule manufacturing and remanufacturing on the same single
product line due to setup cost saving. In this paper, we extend
the classical Economic Lot Scheduling Problem to schedule the
manufacturing and remanufacturing on the same single product
line. We assume that the demand rate and return rate are constant
and the product line has limited capacity of manufacturing and
remanufacturing. We employ the Common Cycle approach to
coordinate manufacturing with remanufacturing such that the
total cost of per unit time is minimized. Furthermore, many
numerical examples are presented to show the effects of return
rate on the performance of this manufacturing/remanufacturing
hybrid system.

Keywords—Inventory Control, Remanufacturing, Reverse Lo-
gistics

I. INTRODUCTION

Recently, remanufacturing has received more and more
attentions for the pressure of the environmental legislations,
economic interesting and environmental consciousness. It is
economical to accommodate the manufacturing and reman-
ufacturing of the homogenous products on the same single
product line. How to schedule the manufacturing and reman-
ufacturing on the same product line is aroused. Our aim is to
find a scheduling to minimize the average total cost.

The management of this material flow opposite to the
conventional supply chain flow is addressed in the rapidly
expanding field of reverse logistics [1]. Fleischmann et al. [1]
divided this new field into three main areas, namely, distri-
bution planning, inventory control, and production planning.
There were many research papers concerning on the inven-
tory control of manufacturing/remanufacturing hybrid system.
Sherbrooke [2] presented a METRIC model to control the
repairable products. The METRIC model is based on the
assumption that return and demand are perfectly correlated.
Heyman [3] and Muckstadt and Issac [4] have investigated the
situation of independent demand and return. E. van der Lann et
al. [5][6][7][8] presented so called PUSH and PULL strategies
to control the inventory of the manufacturing/remanufacturing
hybrid system. More details can be referred to the extended
review of Fleischmann et al. [1].

All the above researches assumed that manufacturing and
remanufacturing are processed at different facilities. As we
know, there are no researches concerning the problem of

accommodating manufacturing and remanufacturing on the
same single product line.

The classic Economic Lot Scheduling Problem (denoted by
ELSP) accommodates the production of a number of items
on a single product line. Most of the published literatures
concern the situations of constant demand, non-backorder
and finite production rate. There are several approaches to
solve this problem. One of the approaches is Common Cycle
approach [9]. For the Common Cycle approach, the optimal
common cycle can be easily obtained, but this approach is
not optimal. Then an alternative approach named Basic Period
was presented by Bomberger [10]. Bomberger [10] employed
dynamic programming to solve the optimal Basic Period
model. The Common Cycle and Bomberger’s approaches are
simple and will always provide a feasible solution (if a feasible
solution exists). Besides the above analytical approaches, some
heuristic approaches have be widely used to solve the ELSP
[11][12][13]. The computation of the heuristic approaches is
very easy. The main disadvantage of these heuristic approaches
is that there are no guarantee for even a feasible solution.

In this paper, we implement the Common Cycle approach
to accommodate the manufacturing and remanufacturing of the
homogenous products on the same single product line. Our
problem shares the same feature with the classic Economical
Lot Scheduling Problem since remanufacturing represents a
alternative production process. But our problem has distinct
features that the number of returned products is limited and the
returns are imperative. The products return process make the
scheduling of manufacturing and remanufacturing much more
complicated than the classic ESLP. The rest of this paper is
organized as follow: the mathematic model is derived in the
next section. In section 3, we present some numerical examples
to investigate the system behaviors. Section 4 is our conclusion,
and the last section is our acknowledgement.

II. MATHEMATIC MODEL

In this section, we will derive the mathematic model to
accommodate the manufacturing and remanufacturing of the
homogenous products on the same single product line. There
are two inventory in the considered system, namely, the return
inventory and serviceable inventory. The return inventory is
used to hold the returned products and the serviceable inven-
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tory is used to stock the manufacturing or remanufacturing
finished products to satisfy the demands. Before we give
the mathematic model derivation, we make the following
assumptions:

• Manufacturing or remanufacturing can not occupy the
product line at the same time;

• The products return rate and demand rate are deterministic
constant, furthermore, the demand rate is greater than
return rate;

• The manufacturing rate and remanufacturing rate are
deterministic and constant;

• No disposal of returned item are permitted;
• No backorder are permitted;
• There are setup costs and setup time associated with

manufacturing and remanufacturing respectively.
Based on the above specifications, we introduce the following
notations:

hr: holding cost of a returned products of per unit time;
hn: holding cost of a serviceable products of per unit

time;
Ar: setup cost for remanufacturing;
Am: setup cost for manufacturing;
r: constant return rate;
d: constant demand rate;
pr: remanufacture rate;
pm: manufacture rate;
sr: setup time for remanufacturing;
sm: setup time for manufacturing;
T : common cycle for manufacturing and remanufactur-

ing.
Furthermore, we assume that r < d < pm and r, d ≤ pr.

In this paper, we employe the Common Cycle approach to
schedule the production inventory system with return-flow. The
Common Cycle approach behavior as: In each time cycle T ,
there are a remanufacturing batch and a manufacturing batch.
If we assume that remanufacturing starts at the beginning
of a production cycle, the remanufacturing process is ended
when there are no returned items left. In consequence, the
manufacturing starts when the serviceable items are exhausted.
The manufacturing batch equals to the extra demands which
can not satisfied by the returned items in each production
cycle. Then a remanufacturing batch starts again when the
serviceable inventory is empty and a new production cycle
begins. The schemes of the return inventory and the serviceable
inventory are illustrated in Figure 1. We should note that
the manufacturing and remanufacturing should be prepared in
advance since there is setup time.

During each cycle T , the number of remanufactured prod-
ucts is rT , and remanufacturing time (including setup time)
is sr + rT/pr. The number of manufactured products is
(d − r)T , and the manufacturing time (including setup time)
is sm +(d− r)T/pm. We definite the busy rate of the product
line as:
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Fig. 1. The scheme of the return inventory and serviceable inventory

From the scheme shown in Figure 1, we can easily calculate
that the holding cost of returned products in each period T is:

C1 =
1
2
hr

(
1 − r

pr

)
rT 2 (2)

The holding cost of remanufacturing finished in each period
T is:
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)2
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The holding cost of manufacturing finished in each period T
is:
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The total cost in each period T is:
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The average total cost per time unit is:
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which subject to the capacity constraint:(
1
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− 1

pr

)
rT ≥ sm (7)(

1
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)
(d − r)T ≥ sr (8)
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r
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The constraints (7) and (8) ensure that the facility have
enough time for manufacturing setup and remanufacturing



setup respectively. The constraint (9) guarantee that a feasible
solution exists. Let:

A = Ar + Am
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1
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Then the objective function (6) can be rewritten as:

C =
A

T
+ BT (10)

Note that A, B > 0, the objective is obviously convex in
T . The optimal cycle time when disregarding the capacity
constraints (7)-(9) is:

T̂ =

√
A

B
(11)

Note that the constraint (7), (8) and (9) can also be expressed
as:

T ≥ dprsm

(pr − d)r
= T1 (12)

T ≥ dpmsr

(pm − d)(d − r)
= T2 (13)

T ≥ (sm + sr)prpm

(pr − r)pm − (d − r)pr
= T3 (14)

Since the objective function (10) is convex in T , the optimal
solution, T ∗, is easily obtained as:

T ∗ = max(T̂ , T1, T2, T3) (15)

III. NUMERICAL EXAMPLES

In this section, some numerical examples are presented
to illustrate the system behaviors when the Common Cycle
approach is implemented. Since return is the distinct feature
in this paper, we give the numerical examples under different
return rates.
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Fig. 2. The optimal production cycle under different holding cost, in which
Ar = 10000, Am = 12000, d = 500, pr = 5000, pm = 4000, sr = sm =
1
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Fig. 3. The optimal production cycle under different setup cost, in which
Ar = 10000, Am = 12000, d = 500, pr = 5000, pm = 4000, hr = hn =
10
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Fig. 4. The optimal total cost under different holding cost, in which Ar =
10000, Am = 12000, d = 500, pr = 5000, pm = 4000, sr = sm = 1
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Fig. 5. The optimal total cost under different setup cost, in which Ar =
10000, Am = 12000, d = 500, pr = 5000, pm = 4000, hr = hn = 10



First, we consider the performance of the optimal produc-
tion cycle T ∗ under different return rates. The numerical results
are illustrated in Figure 2 and Figure 3.

Figure 2 shows the comparison of the optimal production
cycles under different holding cost hr and hn. We find that
higher holding cost usually results in shorter production cycle,
because that short production cycle can guard against higher
holding cost. When the return rate is high (namely, r = 360 ∼
440), the optimal production cycles of hr = hn = 5 and
hr = hn = 10 are the same and increase sharply, since that the
optimal production cycle is determined by T2 (see constraint
(13)) when the return return rate r is close to demand rate d.
The sharp decrease of the optimal production cycle in relatively
low return return can be explained by the constraint (12).

In Figure 3, we can find that optimal product cycle decrease
at first and then increase over the return rate, which is similar
with the curve in Figure 2. These phenomena can be explained
as: the optimal production cycle are mainly determined by
constraint (12) when return rates are relative low, and the
optimal production cycles are mainly determined by constraint
(13) when return rates are relative high. These phenomena
and explanations are accordant with the above discussion. We
should note that the production cycles are nearly unchange over
the return rate when sr = sm = 0.5, since that the optimal
production cycle are mainly determined by the equation (11)
when the setup time is relative low. We also find that the high
setup time setting results higher production cycle, this result
also can be explained by the constraint (12) and (13).

The performance of the optimal total cost of per unit time
are presented in Figure 4 and Figure 5.

The optimal total cost of per unit time under different
holding cost are illustrated in Figure 4. We can find the optimal
total cost increase sharply when the return rate is close to the
demand rate. This can be explained as: the optimal production
cycle increases sharply when the return rate is close to demand
rate (see Figure 2), and hence the total holding cost increases
greatly. The fluctuation of the optimal total cost is rather flat
when the holding cost is quite low (namely, hr = hn = 1).

From Figure 5 we can find that longer setup time is
correlated with higher optimal total cost. To our surprise,
the curve of Figure 5 resemble the curve of Figure 3. Since
that the higher production cycle usually results in higher
average inventory and then induces higher optimal total cost.
The optimal production cycle with low setup time (namely,
sr = sm = 0.5) is nearly unchange over return rate, as
correspondence, the optimal total cost seldom change over
return rate under same setup time setting.

IV. CONCLUSION

For the pressure of environmental legislations and eco-
nomic interesting, many manufacturers have to take their
products back after use and handle the returned products
in environment-friendly manners. Remanufacturing is one of
the most environment-friendly ways to deal with the re-
turned products. How to integrate the remanufacturing into
manufacturing process is a difficult problem. In this paper

we have investigated the inventory control of a manufactur-
ing/remanufacturing hybrid system, in which manufacturing
and remanufacturing are carried on the same single product
line. In comparison with the manner that remanufacturing is
processed at a special product line, the single product line
scheduling has the following advantage: (a) Saving the vast
investment on a special product line for remanufacturing;
(b) Improving the busy rate of the existing product line. In
contrast with classical Economic Lot Scheduling Problem, the
manufacturing/remanufacturing hybrid system have a distinct
feature: the returned products are limited and can not be
rejected. This return-flow make this scheduling problem much
more complicated than the classic ESLP. In this paper, we
extended the classical ESLP and used a Common Cycle
approach to schedule the manufacturing and remanufacturing
on the same product line. Our aim is to determine the optimal
production cycle to balance the holding cost and setup cost
such that the total cost is minimized.

In the numerical examples, we found that the optimal
production cycles are mainly determined by the constraints in
(12) and (13) when the difference between demand and return
is large. Through comparing the optimal production cycle and
optimal total cost, we found that the relative larger optimal
production cycle is usually correlated with higher optimal total
cost, especially when the holding cost is relative high.

As we know, this paper is the first research to investigate
the scheduling problem that manufacturing and remanufac-
turing are accommodated on the same single product line.
Unfortunately, the optimal policy structure is not know yet.
Further research can focus on the optimal policy structure of
this problem. By many numerical examples, we find that the
busy rate of the product line, i.e. ρ, is not exceed 0.5 in most
situations. It sounds economical to coordination the production
of another items into the same production line. The problem
of scheduling multi-item’s manufacturing and remanufacturing
on the same production line is much more difficult and can be
an alternative focus in the future research.
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