
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

The Research of Association Rules Mining Algorithm
Based on Binary

Gang FANG1, Zu-Kuan WEI1*, Qian YIN2
1 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054,

P.R. China
2 College of Information Science and Technology, Beijing Normal University, Beijing 100875, P.R. China

E-MAIL: fg_7@163.com, anlexwee@uestc.edu.cn*, yinqian@bnu.edu.cn

 Abstract—An algorithm of association rules mining based on
binary has been introduced to solve two problems that how to
easily generate candidate frequent itemsets and fast compute
support. However the basic notion of presented algorithms in
generating candidate itemsets is still similar to Apriori. In some
degree the efficiency of these algorithms is very confined, and so
this paper proposes two different searching strategies of
association rules mining algorithms based on binary, which are
suitable for mining corresponding characteristic database. One is
that the notion of generating candidate frequent itemsets is
similar to up-down searching of traditional association rules
mining algorithm, which uses the method of forming subset to
generate candidate frequent itemsets from long to short and is
suitable for mining long frequent itemsets. The other is that the
method of increasing value is used to generate candidate frequent
itemsets, which is more efficient than Apriori based on binary
and is more suitable for mining short frequent itemsets, in this
mining course length of candidate frequent itemsets crossways
varies from short to long. The both algorithms use digital
character to reduce the number of scanned transactions. The
experiment based on above three algorithms indicates that the
efficiency of two presented algorithms is fast and efficient when
mining corresponding characteristic database.

Keywords—data mining, association rules, binary, increasing
search, digital transaction

I. INTRODUCTION
Traditional association rules mining algorithm Apriori [1]

mainly wants to solve two problems: one is that how to reduce
the number of candidate frequent itemsets and the times of
browsing database, the other is that how to generate candidate
frequent itemsets and compute the support of candidate
frequent itemsets. In order to solve the first problem, scholars
presented many algorithms, such as Max-Miner [2], Pincer-
Search [3], DMFI [6] and DMFIA [7]. And then, in order to
solve the second, some algorithms based on binary [8, 9, 11]
were presented, such as B-Apriori [8]. The kind of algorithm
calculates support by binary logic “and” operation to indeed
improve efficiency. However, at present, some of algorithms
based on binary generate candidate frequent itemsets still
according to the notion of Apriori. When mining some

 * corresponding author

This work was fully supported by a grant from the S&T Foundation of
Chengdu Sci.&Tech. Bureau. (Project No. 06GGYB801GX-032)

character of database, the efficiency of these algorithms is
badly influenced, therefor this paper proposes two kinds of
association rules mining algorithm based on binary. An
algorithm denoted by B_UDMA uses strategy of up-down
searching to generate candidate frequent itemsets of binary.
The algorithm uses binary logical “and” operation to compute
support of itemsets and uses the method of forming subset to
generate candidate frequent itemsets from long to short, which
is suitable for mining long frequent itemsets. The other denoted
by B_IVMA uses the method of increasing value to generate
candidate frequent itemsets of digital, which is more efficient
than Apriori and is suitable for mining short frequent itemsets.
In this mining course length of candidate frequent itemsets
crossways varies from short to long. The both algorithms use
digital character to reduce the number of scanned transactions.
The experiment based on above three algorithms indicates that
the efficiency of two presented algorithms is fast and efficient
at the time of mining corresponding characteristic database.

II. BASIC NOTIONS AND PROPERTIES

Let I= {i1, i2…im} be a set of items, if ik (ik∈I), let T=
{i1 ∧ i2 ∧ … ∧ im} (Tk ⊆ I) be a subset of items, called a
Transactions. For example, let Tk= {i1, i2, i3} be a subset of
items, called a transaction. And then let D= {T1, T2…Tn}, let
Tk ⊆I, (k=1…n) be a set of transactions, called Transaction
Database (TD).

Definition 1 Binary Transaction (BT), a transaction is
expressed as binary, binary transaction of transaction T is
expressed as BT= (b1 b2…bm), bk∈ [0, 1], k=1…m.

If ik∈Ti, and then bk=1, otherwise bk=0, the order of binary
digits is as same as items which have been fixed.

Example, let I={1,2,3,4,5} be a set of items, if a transaction
is expressed as Ti={2,3,5}, and then BTi=(01101).

Definition 2 Digital Transaction (DT), which is an integer,
the value of which would be obtained by turning binary of
transaction into algorism.

Example, if BT=01101, and then DT=13.
Definition 3 Digital Transaction Length (DTL), which is an

integer, the value of which is equal to the number of digital
“1” that is contained in digital transaction.

Example, if DT=13, and then DTL=3.

Definition 4 Relation of digital transaction accord with
relation of transaction set.

Example, suppose digital transaction of a transaction T1 is
denoted by DT1, digital transaction of a transaction T2 is
denoted by DT2. If T1 ⊆ T2, and then DT1 ⊆ DT2, DT1 is
regarded as subset of DT2, DT2 is regarded as superset of DT1.

Definition 5 Frequent Digital Transaction (FDT), which is a
digital transaction, the support of which excess minimal
support given by users.

Definition 6 Candidate Digital Transaction Section (CDTS),
this is an integral section from 3 to max, which includes all the
candidate frequent digital transaction that may generate
frequent digital transaction except for power of 2. Here 3 is
regarded as initialization because 3 is the least digital
transaction expressing dualistic relation, and max is regarded
as the maximal digital transaction in database.

Example, if the maximal digital transaction in database is
denoted by max=63, and so CDTS = [3, 63].

Definition 7 Candidate Frequent Digital Transaction
(CFDT), which is a digital transaction that may become
frequent digital transaction from CDTS.

Property 1 The given binary transaction uniquely
corresponds to a digital transaction, vice versa.

Property 2 Let p and q be binary transactions with m bits,
let Tp be transaction about p, let Tq be transaction about q, then
Tp ⊆ Tq ⇔p ∧q=p.

Proof is expressed as follows:
Suppose digit 1 locates each bit of binary p from ij1 to ijk

(jk≤m), digit 0 locates other ones. If p and q=p, then digit 1
locates each bit of binary q from ij1 to ijk (jk≤m) (otherwise
these bits must occur digit 0 with logic “and” operation), other
ones will be either 0 or 1, so Tp ⊆ Tq according to definition 1.

And then via the hypothesis about p as before, since
Tp ⊆ Tq , then digit 1 must locate each bits of binary q from ij1
to ijk (jk≤m) (otherwise, ∃ ik, so ik∈Tp , ik ∉ Tq, the conclusion
is contrary to premises as Tp ⊆ Tq), other ones will be either 0
or 1, so p ∧q=p.

Via theorems as before, there are two conclusions obviously
deduced.

Conclusion 1 Let p and q be binary transactions, let DTp be
digital transaction about p, let DTq be digital transaction about
q. If p ∧q=p, and then DTp ≤DTq.

Conclusion 2 Let p and q be binary transactions, let Tp be
transaction about p, let DTp be digital transaction about p, let
Tq be transaction about q, let DTq be digital transaction about q.
If DTp≤DTq, then Tq ⊄ Tp.

Property 3 Let p and q be binary transactions with m bits,
let Tp be transaction about p, let Tq be transaction about q, and
p ∧q=p, let F be frequent itemsets.
①If Tq ⊆F, then Tp ⊆F.
②If Tp ⊄F, then Tq ⊄F
Proof is expressed as follows:
Since p ∧q=p, via property 2, then Tp ⊆ Tq, and Tq ⊆ F,

based on set theory, then Tp ⊆F. If Tp ⊄F, then Tq ⊄F as the
same theory.

III. THE UP-DOWN SEARCHING STRATEGY MINING
ALGORITHM BASED ON BINARY

A. The key technologies of mining algorithm
As we all know, it is the most key technology for

association rules mining algorithm to search frequent itemsets
which includes generating candidate frequent itemsets and
pruning redundancy candidate frequent items. According to
up-down [6] searching strategy of traditional association rules,
the process of up-down searching frequent digital transaction
based on binary is expressed as follows:

Let I= {i1, i2…im} be a set of items, digital transactions of
database are sorted on descending. If candidate frequent digital
transaction is denoted by CFDTk, where k is equal to the
number of items in CFDT, and is also equal to digital
transaction length.

Step1: Generating the first Ck= {i1, i2…im} (k=m) which is
denoted by CFDTk.

Step2: At first, if CFDTk can’t belong to frequent digital
transaction denoted by FDT, and then calculating support of
CFDTk which is denoted by Sk. if Sk≥minimal support, then
CFDTk is became into FDTk, and adding FDTk to FDT,
otherwise the algorithm would go on generating candidate
frequent digital transaction CFDTi

k-1, which is the (k-1)
subsets of CFDTk, and if CFDTi

k-1 is subsets of FDT, it will be
pruned via property 3.

Step3: Aiming to each CFDTi
k-1, we regard CFDTi

k-1 as
CFDTk in step 1, and then repeatedly execute from step 2 to 3
until k=1.

The algorithm of generating candidate digital transaction
from CFDTk to CFDTi

k-1 is expressed as follows:
We regarded {ik} (k=1…m) as a transaction, digital

transaction of which is denoted by DTk.
The algorithm of Creating-Candidate (int [] Array) will

return all CFDTi
k-1 after inputting CFDTk.

(1) Array [0] =CFDTk;
(2) c=0;
(3) For (i=1; i≤m; i++)
(4) {
(5) If (DTi ⊂ Array [0])
(6) Array [++c] =Array [0] & (~ DTi);
(7) }
(8) Array [0] =c;
(9) Return Array;

B. The algorithm of up-down generating frequent digital
transaction based on binary

Firstly, we define following signs:
DT0: expressing digital transaction of {i1, i2…im}.
DB: expressing database with N digital transactions in a

descending order.
DTi: expressing digital transaction in DB, which includes

value and count.
F: saving frequent digital transaction.
NF: saving non-frequent digital transaction.
C: saving candidate frequent digital transaction.
The algorithm is expressed as follows:

(1) Write DT0 to C;

(2) While (exit=false) {
(3) If(C!= φ) {
(4) NF = φ ;
(5) For(all CFDTi

k∈C){
(6) S_count=Count-Support (CFDTi

k);
(7) If (S_count≥minisup)
(8) Write CFDTi

k to F;
(9) Else
(10) Write CFDTi

k to NF;
(11) }//separating candidate itemsets
(12) C=φ ;
(13) For(all DTi

k∈NF) {
(14) Array [0]= DTi

k;
(15) Creating-Candidate (Array);
(16) Write Array[i] (i≠0) to C and pruning all repeated
digital transactions in C;
(17) }
(18) Deleting all subset of F from C;
(19) }
(20) Else
(21) exit=true;
(22) }
Count-Support (int DT)
(1) While (i≤N&&DT≤DBi.value) {
(2) If (DT ⊂ DBi.value) support+=DBi.count;
(3) i++;
(4) }
(5) Return support;

IV. THE INCREASING VALUE SEARCHING STRATEGY MINING
ALGORITHM BASED ON BINARY

A. The process of generating frequent digital transaction
According to basic notion of algorithm Apriori, we further

propose an increasing value searching strategy of mining
algorithm based on binary, but the notion of generating
candidate frequent itemsets is different from the other
algorithm. The process of generating frequent digital
transaction is expressed as follows:

Step1: Creating candidate digital transaction section (CDTS)
according to database and definition 5.

Step2: Generating candidate frequent digital transaction
(CFDT) from minimum digital to maximum digital by
increasing value.

Setp3: Computing support of CFDT when it isn’t superset
of non frequent digital transaction denoted by NFDT. If
support≥ minimal support, and then writing CFDT to frequent
digital transaction denoted by FDT after deleting all subsets of
CFDT from FDT, otherwise, writing CFDT to NFDT.

Setp4: Generating the next CFDT, and then repeatedly
execute Step3 until maximum of CDTS.

B. The algorithm of increasing-value generating frequent
digital transaction

Let [3, max] be a CDTS, and there are N digital transaction
saved in DB on descending, where data are different from each
other, and we define following signs:

DB: expressing database with N digital transactions in a
descending order.

Di: expressing digital transaction in DB, which includes
value and count.

FDT: saving frequent digital transaction.
NFDT: saving non-frequent digital transaction.
The algorithm is expressed as follows:

(1) While (DT∈ [3, max]) {
(2) DT=3;
(3) If (all NFDTj ⊄DT) {
(4) While (i≤N&&DT≤Di.value) {// Di∈DB
(5) If (DT ⊆Di.value)
(6) s_count+= Di.count;
(7) i++;
(8) }//calculating support of items
(9) If (s_count/N≥support) {
(10) Delete all FDTk (FDTk ⊂ DT) from FDT;
(11) Write DT to FDT;
(12) }
(13) Else
(14) Write DT to NFDT;
(15) }
(16) DT++;
(17) }

V. COMPARING CAPABILITY OF ALGORITHM
Aiming to the algorithm of B_Apriori presented by

reference[8], this paper proposes two different searching
strategies of mining algorithm based on binary, which are
B_UDMA and B_IVMA. Firstly, we compare capability of
these algorithms, which are expressed as follows:

B_Apriori: The algorithm uses combination of items to
generate candidate frequent items based on binary. The
number of items contained by candidate frequent itemsets
varies from fewness to many, namely, generating (k+1)-
candidate itemsets after inputting some k-frequent itemsets.
The algorithm uses the method of ② in property 3 to prune
redundant candidate frequent itemsets. And the algorithm uses
binary logical “and” operation to calculate support of itemsets.
However, if the number of item contained by frequent itemsets
is too many, the algorithm will generate a lot of candidate
frequent itemsets and repeatedly scan database, and because of
these the efficiency of B_Apriori is too bad. Hence, the
algorithm is suitable for mining relative short frequent
itemsets.

B_UDMA: The algorithm uses forming subset of non
frequent itemsets to generate candidate frequent items based
on binary. The number of items contained by candidate
frequent itemsets varies from many to fewness, namely,
generating k-candidate itemsets after inputting (k+1) non-
frequent itemsets. The algorithm uses the method of ① in
property 3 to prune redundant frequent itemsets. And the
algorithm also uses binary logical “and” operation to calculate
support of itemsets, and at the time it is the most key to use
conclusion 2 of property 2, namely digital character, to
reduce the number of scanned transactions in database, which
is different from B_Apriori. However, if the number of item

contained by frequent itemsets is too few and the number of
frequent itemsets is too many, the algorithm will generate a lot
of candidate frequent itemsets and repeatedly scan database,
and so since these the efficiency of B_UDMA is also too bad.
Hence, the algorithm is suitable for mining long frequent
itemsets.

B_IVMA: The algorithm generates candidate frequent
itemsets by automatically increasing value. DTL of candidate
frequent digital transaction generated across varies, but trend
of variation is from few to many. For example:

If CDTS= [3, 15], the sequence of generating candidate
frequent itemsets is expressed as follows:

DT1=3, DTL1=2.
DT*=4, DTL*=1. (4 have been pruned via definition 6)
DT2=5, DTL2=2.
DT3=6, DTL3=2.
DT4=7, DTL4=3.
DT*=8, DTL*=1. (8 have been pruned via definition 6)
DT5=9, DTL5=2.
DT6=10, DTL6=2.
DT7=11, DTL7=3.
DT8=12, DTL8=2.
DT9=13, DTL9=3.
DT10=14, DTL10=3.
DT11=15, DTL11=4.
As before their lengths crossways vary from 2 to 4,

candidate frequent itemsets are easily generated. The method
of the algorithm is different from the other algorithm. The
algorithm uses the method of ① and ② in property 3 to
prune redundant candidate frequent itemsets. The algorithm
also uses binary logical “and” operation to calculate support of
itemsets, and at the time it is the most key to use conclusion 2
of property 2, namely digital character, to reduce the number
of scanned transactions in database. However, if the number of
item contained by frequent digital transaction is too many, the
algorithm will generate a lot of candidate frequent digital
transaction, and so since these the efficiency of B_IVMA is
too bad. But it is easier to create candidate frequent items than
B_Apriori and B_UDMA. Hence, the algorithm is more
efficient than B_Apriori, which is more suitable for mining
short frequent itemsets.

Now we use result of experiment to testify above analyses.
Three mining algorithms are used to generate frequent
itemsets from these digital transactions, which are expresses as
digital from 3 to 4095, m=12, N=4083. Our experimental
circumstances are expressed as follow: AMD Athlon (tm) 64X2
Dual Core Processor 3800+ 2.00 GHz, 512MB, language of the
procedure is Visual C# 2005.NET, OS is Windows XP Professional.

One of experiment results is expressed as figure 1 and
figure 2, here is absolute support. As the relative support of
frequent itemsets changes, the executed time of algorithms is
expressed as figure 3. As the length of frequent itemsets
changes, the executed time of algorithms is expressed as figure
4 and 5.

According to these result, we can draw a conclusion as
follows: B_UDMA is suitable for mining long frequent

itemsets. B_IVMA is more efficient than B_Apriori and is
more suitable for mining relative short frequent itemsets.

Figure 1. The result of experiment Length=3.

B_IVMA< B_Apriori< B_UDMA

Figure 2. The result of experiment

Length=8. B_UDMA< B_IVMA< B_Apriori

0

500

1000

1500

2000

2500

3000

0.07 0.24 0.5 0.7 1.2 2.4 6 12 24

MinimumSupport(%)

E
x
e
c
u
t
e
d
T
im

e
(
m
i
l
l
i
s
e
co

n
d
)

B_Apriori

B_IVMA

B_UDMA

Figure 3. The executed time of three algorithms as changing of support

0

500

1000

1500

2000

2500

3000

10 8 7 6 5 4 3 2

Length(Item)

Ex
ec

u
te

d
Ti

me
(
Mi

ll
i
se

c
on

d)

B_Apriori

B_IVMA

Figure 4. The executed time as changing of length

0

50

100

150

200

250

300

10 8 7 6 5 4 3 2

Length(item)

E
xe

c
ut

ed
Ti

me
(
mi

ll
is

ec
o
nd

)
B_IVMA

B_UDMA

Figure 5. The executed time as changing of length

VI. CONCLUSIONS
The algorithms of association rules mining based on binary

have been presented in order to easily generate candidate
frequent itemsets and fast compute support of itemsets. This
paper proposes an algorithm of up-down association rules
mining based on the notion of Apriori denoted by B_UDMA,
which is suitable for mining long frequent. Another algorithm
of increasing value association rules mining denoted by
B_IVMA is different from the basic notion of Apriori, which
is more efficient than B_Apriori and is more suitable for
mining relative short frequent itemsets. It is two key ways of
innovation to use the method of increasing value to generate
candidate frequent itemsets and use digital character to reduce
the number of scanned transactions in database. The
experiment indicates two kinds of algorithms are fast and
efficient for mining corresponding to character database.

ACKNOWLEDGMENT

This work was fully supported by a grant from the S&T
Foundation of Chengdu Sci.&Tech. Bureau. (Project No.
06GGYB801GX-032).

REFERENCES
[1] R.Agrawal, T.Imielinski, A.Swami1. Mining association rules between

sets of items in large databases. ACM SIGMOD Int’l Conf. Management
of Data, Washington, D. C., 1993.

[2] R.Bayardo. Efficiently mining long patterns from databases. In:
L.M.Haas, A.Tiwary, eds. Proc. of the ACM SIGMOD Int’l Conf.
Management of Data. New York: ACM Press, 1998. 85~93.

[3] Lin D, Kedem ZM. Pincer-Search: A new algorithm for discovering the
maximum frequent set. In: H.J.Schek, F.Saltor,I. Ramos et al. eds. Proc.
of the 6th European Conf. Extending Database Technology. Berlin:
Springer-Veriag, 1998. 105~119.

[4] Agrawal, R Srikant. Fast algorithms for mining association rules. In:
Proc. Of the 20th Int’l Conf. Very Large Data Bases
(VLDB’94).1994.487-499.

[5] Feng Yu-Cai, Feng Jian-Lin. Incremental updating algorithms for
mining association rules. Journal of Software, 1998,9(4):301-306.

[6] Lu SF, Lu ZD. Fast mining maximum frequent itemsets. Journal of
Software, 2001, 12(2):293−297.

[7] Song YQ, Zhu YQ, Sun ZH, Chen G. An algorithm an its updating
algorithm based on FP-Tree for mining maximum frequent itemsets.
Journal of Software, 2003,14(9):1586−1592.

[8] Chen Geng, Zhu Yuquan, Yang Hebiao, Study of Some Key Techniques
in Mining Association Rule, Journal of Computer Research and
Development 2005,42 (10) : 1785～1789.

[9] Wang Lizhen, Zhou Lihua, A Greedy Algorithm for Discovering
Frequent Itemsets, Journal of Computer Engineering and Applications
2001,13 86-88.

[10] JI Gen-Lin, YANG Ming. SONG Yu-Qing. SUN Zhi-Hui. Fast Updating
Maximum Frequent Itemsets. Chinese Journal of Computers,
2005,28(1):128−135.

[11] FAN Ping, LIANG Jia-rong, LI Tian-zhi, GONG Jian-min, Association
rules mining algorithm based on binary. Journal of Application
Research of Computers 2007,24(8): 79-81.

