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Abstract—Identifying network traffic anomalies accurately 

and rapidly is very critical to efficient operation of computer 
network. In this paper, to improve the existing anomaly 
detection, we propose a novel multi-resolution network traffic 
anomaly detection approach based on S Transform with self-
adjusting scale. By introducing S Transform, we can decompose 
network traffic signal into a group of different frequency sub-
bands according to the traffic signal’s characteristics. By means 
of self-adjusting reconstruction of the signal from different 
frequency sub-bands, our method is able to confirm the anomaly 
characteristics and enhances the reliability of detection. By 
means of self-adaptive window selection, we are able to determine 
the length of detection window according to the spectrum 
characteristics of the corresponding signal. The simulation results 
prove that the method can detect the network traffic anomaly 
efficiently and rapidly, and excels the existing multi-resolution 
anomaly detection methods. 

Keywords—traffic anomaly detection, multi-resolution 
analysis, S Transform, deviation scoring 

I. INTRODUCTION 
Network traffic anomaly refers to the status that traffic 

behaviors depart from the normal behaviors. Many reasons, 
such as the misuse of network equipments, network 
maloperation, flash crowd, network intrusion, etc, could cause 
network traffic anomaly. One characteristic of anomaly traffic 
is that it breaks out without any omen and brings a breakdown 
to networks and computers in a short time. Therefore, detecting 
traffic anomaly rapidly and accurately is one of the 
preconditions of ensuring the efficient network operation. 

Many schemes are proposed for network traffic anomaly 
detection, such as the case-based reasoning approach, the limit 
state machine approach, the mode matching approach, the 
statistical analysis approach, the Hurst parameter analysis 
approach and subspace analysis, etc. These approaches can 
somewhat satisfactorily detect anomalies, but because of the 
great complexity of network traffic, they are often inaccurate 
and can not meet the real-time need. 

Researchers have found that almost all the traffic time-
varying signals are of multi-scales [1], and the time-varying 
signals of the normal network traffics and that of the abnormal 
network traffics were different in frequency ranges. Namely, 
the power difference of anomalous traffics and background 
traffics varies with frequency bands. In certain frequency 
bands, the energy of anomalous traffics is rather high in 
proportion to the total energy, which will make the anomaly 
detection easier. Being able to distill the signal's characteristics 

from arbitrary time and frequency range, the multi-resolution 
analysis method is good at detecting signal anomaly, and has 
lately become a worldwide hotspot. In 2000, V.Alarcon-
Aquino presented an algorithm based on undecimated discrete 
wavelet transform and bayesian analysis [2]. This algorithm is 
able to detect and locate subtle changes in variance and 
frequency in the given time series, but its decomposition scale 
is limited and the algorithm is complicated. Anu Ramanathan 
presented a WADeS (Wavelet based Attack Detection 
Signatures) mechanism [3] based on wavelet analysis to detect 
the DDoS attack, which conducts wavelet transform on the 
traffic signals, then computes the variance of the wavelet 
coefficients to estimate the attack points. However, MALLAT 
based wavelet can only decompose the low frequency 
components and works well on low frequency signal, but 
works poor on medium and high frequency components. 

Researchers then proposed wavelet packet analysis based 
anomaly detection algorithms. Their key advantage over 
MALLAT decompose is that, they are able to decompose high 
frequency band as well as low frequency band, so the 
algorithms are able to overcome MALLAT wavelet's 
shortcoming. Nevertheless, some problems do exist. First, it is 
hard to determine a good decomposition strategy and 
decomposition level count in particular. Second, the binary 
decomposition of MALLAT wavelet and the binary 
decomposition tree of wavelet packet analysis are both fixed 
scale decomposition. It takes great computational cost to make 
their decomposition deep enough to focus on certain frequency 
range, and their decomposition levels are very much limited by 
the detection window length. Such factors make the wavelet 
packet based detection algorithm unstable and may cause high 
false alarm rate. 

In this paper, a self-adjusting multi-resolution network 
anomaly detection method based on S Transform is proposed 
aiming at the previous mentioned problems. By means of this 
method, the decomposition is able adjust itself to the spectrum 
characteristics of both normal and anomalous traffic signals. 
By reconstructing time series from different frequency band 
and using deviation scoring algorithm, we are able to confirm 
traffic anomalies. Using a double-threshold mechanism, we are 
able to enhance the reliability of anomaly detection. By means 
of self-adaptive detection window selection, we are able choose 
different window length according to different frequency scale. 
Finally, the simulation results show that the method proposed 
in this paper acquires good performance on anomalies of 
various frequency bands, and excels the existing multi-
resolution network traffic anomaly detection methods. 



         

II. S TRANSFORM 
Generally speaking, the energy of power spectral density 

(PSD) of normal traffic in each frequency band is relatively 
well-proportioned, but the energy of the anomalous traffic is 
concentrated in certain frequency bands. Researchers used 
multi-resolution analysis to detect anomaly just based on the 
differences between normal and anomalous traffic signals in 
the frequency domain. Since the scale of the present detection 
algorithms based on multi-resolution analysis is binary and 
fixed, the frequency resolution is relatively poor in high 
frequency. However, traffic anomalies can be caused by many 
reasons, and as a result, the anomalies traffic signal may occur 
in low frequency band as well as in high frequency band. 
Therefore, these approaches cannot detect anomaly traffic of 
various frequency bands effectively. 

Aiming at this problem, this paper proposes a detection 
algorithm based on S Transform. S Transform is able to adjust 
the decomposition scale to meet various needs, and enables us 
to adjust analysis scales according to anomaly characteristics. 

S Transform is a time-frequency analysis approach. It is an 
extension of both wavelet transform and Short-Time Fourier 
Transform (STFT). The STFT of signal h(t) is defined as 
follows: 
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In (1), g(t) is a window function. When time τ changes, the 
window specified by g(t) shifts on t-axis, and the signal h(t) is 
analyzed gradually. With g(t) being a normalized Gaussian 
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Coefficient σ defines the window length. In order to 
implement high frequency resolution for low frequency band 
and high time resolution for high frequency band, we let 

f/1=σ , and rewrite (1) as follows: 
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Equation (3) is the very representation of S Transform of 
signal h(t). 

In order to confirm the detection results, the decomposed 
components of S spectrum indicating anomalies have to be 
reconstructed into time series. The inverse of S Transform is 
able to implement a lossless reconstruction of time series using 
the following equation: 
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S Transform possesses the strongpoint that STFT and 
wavelet transform possess, and is free of their shortcomings, 
thus has now become a hotspot on signal processing. S 
Transform has the following advantages over STFT and 
wavelet transform: (1) the resolution of S Transform is relative 
to the frequency scale; (2) the result of S Transform is directly 
related to Fourier Transform; (3) the original signal can be 
reconstructed from several frequency band of S spectrum, and 
the reconstructed signal is free of spectrum leak; etc. Besides, S 
Transform has a key advantage over wavelet and wavelet 
packet decomposition as well: the S spectrum could be 
decomposed to arbitrary scale, that is, the frequency analysis 
scale and decomposition strategy is not fixed and can be 
arbitrary. Therefore, we are able to distill and focus on certain 
frequency band among the enormous background traffic flow. 

III. SCALE SELF-ADJUSTING MULTI-RESOLUTION 
NETWORK TRAFFIC ANOMALY DETECTION METHOD 

A. Self-Adjusting Decomposition and Reconstruction Based 
on S Transform 
As illustrated in Fig. 1, the detection consists of flour 

elements: Network Traffic Sampling, S Transformation on 
sampled signal, Decomposition and Reconstruction of sub-
band time series, and Anomaly Detection. 

First, we acquire the S spectrum matrix by applying S 
Transform to the sampled signal. Second, we apply the self-
adjusting decomposition to the S spectrum matrix. Finally, we 
can process the reconstructed signal using the deviation scoring 
algorithm. 

The traffic signal can be virtually characterized by its 
power spectrum. On this basis, we can have the decomposition 
adjust to the traffic’s power spectrum, and can enhance the 
detection efficiency and accuracy. Thus in this paper, we 
decompose the S spectrum into components that equal by 
power. 

In order to control the decomposition level, this paper 
introduces a Double-Threshold mechanism. This mechanism 
defines an alarm threshold α and a decomposition threshold 
β ( α > β ). When the detection result of the current 
decomposed component is above α, alarm is to be generated 
and further decomposition on this component is not needed. 
When detection result is between α and β, possible anomaly 
exists and further decomposition should be applied. When 
detection result is below β, there is no anomaly and no need to 
perform further decomposition either. The decomposition is to 
be carried out recursively on the basis of the Double-Threshold 
mechanism, until either alarm is produced or no anomaly is 
confirmed. Combining this mechanism and the randomicity of 
S spectrum decomposition, we can have the decomposition 
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Figure 1. S Transform based network traffic anomaly detection model
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scale and depth be self-adjusting, and can acquire remarkable 
results. 

B. Statistical Detection Algorithm 
The statistical detection algorithm is a modified version of 

the deviation scoring algorithm [6] proposed by P. Barford. 
Two windows, HisWin and DetWin, are applied to the 
deviation scoring algorithm, as shown in Fig. 2, both of which 
slide and update with time. At time t, we compute the variance 
V in the historical window (t - HisWin, t), and the variance U in 
the detection window (t - DetWin, t). If the traffic is anomalous 
in the detection window, there must be an increase in the 
magnitude of ratio = U / V. We can apply deviation scoring 
algorithm to the reconstructed time series, and compute the 
ratio defined above, and the ratio is what is used to confirm 
anomaly. 

There are three key coefficients that should be determined 
in advance: 

a) HisWin. In order to determine the length of the 
historical window, the system resource consumption and the 
detection sensitivity should both be taken into account. 
Anomalies are sudden and temporary, whereas normal traffics 
are time-lasting and relatively stable. As a result, the longer 
the historical window is, the closer to normal traffic the 
behavior can it characterize, and the less effected by 
temporary phenomenon it is. Nevertheless, longer window will 
consume more system resources, and is less sensitive to 
normal traffic's changes. 

b) DetWin. The algorithm works best when the detection 
window length is close to the duration of anomalies, which is 
never fixed and, most importantly, unknown. In order to 
determine the detection window length, we propose a self-
adaptive selection method on the basis of the signal’s 
frequency range, which will be discussed soon after. 

c) Confirmation threshold. We refer to historical traffic 
and select that σ3+= xratio threshold . x  refers to the mean 

value of traffic flow, and σ  refers to the deviation standard of 
traffic flow. 

C. The Self-Adaptive Selection of Detection Window Length 
Generally, it is hard to determine the detection window 

length. Selecting the window length at random won't bring in 
satisfying results. Therefore, we propose a window length 
selecting method based on the center frequency of the 
concerned frequency band. 

The signal to be detected is reconstructed from the 
decomposed component of S spectrum, thus it is easy to 

compute the center frequency cf  of the signal. Then we get 

the approximate period of the reconstructed signal: cfT /1= . 
Take it that the sampling rate of the signal is Δ, and then the 
number of samples within one period is: 

  ( )∆⋅=∆= cfTL /1/  (5) 

Let the window length be integer times of the signal period, 
and we get: 

  ( )∆⋅=⋅= cfkLkDetWin /  (6) 

As we can see, the window length computed based on 
signal's center frequency varies with frequency scale, that is, 
longer window for lower frequency band and shorter window 
for higher frequency band. On one hand, it is a feasible 
approach to compute the detection window length using (6). On 
the other hand, the window length determined using (6) varies 
with signal's center frequency, and can adjust to different 
frequency range. 

D. Anomaly Detection Flow 
The flow chart of anomaly detection is shown in Fig. 3. 

1. Apply S Transform to traffic signal, and compute its S 
spectrum. 

2. Decompose the S spectrum to the nth level. Divide the 
current frequency range of S spectrum into three 
components, that is, low frequency band, medium 
frequency band, and high frequency band, and their 
energy should be equal and each possesses one third of 
the current frequency range’s total energy. 

3. Reconstruct the time series of the sub-bands of the nth 
level, and apply the deviation scoring algorithm to them. 

4. When a sub-band's detection result is below 
decomposition threshold or above alarm threshold, stop 
further decomposition on this component. 

5. When a sub-band's detection result is above 
decomposition threshold and below alarm threshold, 
further decomposition should be applied to it. 

6. When several sub-bands alarm at a same time range, they 
may indicate a same anomaly. Put these sub-bands 
together and confirm the anomaly on the reconstructed 
signal once more. 

IV. SIMULATION RESULTS 

A. Simulation Background 
In our simulation experiments, we adopt the data [7] as the 

background traffic, which were gathered by Lawrence Berkeley 
lab in University of California, Berkeley Institute; According to 
the principle of DDoS attack, we simulate 8 data sources as 
attack sources, which send a huge volume of traffic to a victim 
at the same time. The simulation topology is shown in Fig. 4. 
Ax(x = 1 ~ 8) are the data sources of DDoS attack, V is the 
victim host and R is the router before the Victim host. We use 

 

Figure 2.  Two detection windows are applied to the deviation scoring 
algorithm 
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Figure 3.  The flow chart of anomaly detection 
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the DDoS attacks as anomalous traffics, which were generated 
using NS2. The 8 attack hosts start low-frequency, middle-
frequency and high-frequency attacks to the victim randomly 
within 100ms. Attack 1 (starting time: 30-34s) added the 
background traffic is low-frequency attack, attack 2 (starting 
time: 80-82s) medium-frequency, and attack 3 (starting time: 
160-161s) high-frequency. The time interval of sampling is 
10ms and the traffic data are shown in Fig. 5(a). If we detect 
traffic anomaly using deviational numeric (picking 30 from the 
detection window) of traffic signal in time domain traffics, we 
can only detect low-frequency attack whose last time is the 
longest and whose amplitude is the greatest. The result is 
shown in Fig. 5(b). Background traffic and attack power 
spectrum are shown in Fig. 5(c)(d)(e)(f). It can be seen from 
the illustration that background traffic has wide frequency 
domination and well-distributed energy, while the frequency of 

attack flow is relatively narrow 
and the energy centralizes in 
certain ranges. All the 
simulation experiments in this 
paper are carried out on a 
computer with 2.4GHz 
Pentium 4 processor and 512M 
memory. 

B. Detection Result 
The threshold value in each 

scale is determined through the 
research of historical traffic before detection. 

1. Decompose the traffic signal into three sub-bands, VH for 
high frequency band, VM for medium frequency band, and VL 
for low frequency band. Apply the initial anomaly detection 
one by one to the three sub-bands. The deviation score of the 
signal reconstructed from sub-band VL reaches the alarm 
threshold at point 3000 ~ 34000, as shown in Fig. 6(a), which 
indicates that the Attack 1 that added into the background 
traffic has been detected out and alarm should be generated. 
The deviation score of VM reaches decomposition threshold at 
point 8000 ~ 8200, as shown in Fig. 6(b), so VM needs further 
decomposition. VH reaches the decomposition threshold at 
point 16000 ~ 16100 too, as shown in Fig. 6(c), and needs 
further decomposition as well. 

2. Decompose VM to 2nd level, and we acquire three more 
sub-bands, VMH, VMM and VML. VMM reaches the alarm 
threshold at point 8000 ~ 8200, as shown in Fig. 7(b), and it is 
the Attach 2 that added into the background traffic. The 
deviation scores of VMH and VML are below decomposition 
threshold, as shown in Fig. 7(a)(c), which means there is no 
anomaly component in these two sub-bands. 

3. Decompose VH to 2nd level, and acquire three more sub-
bands, VHH, VHM and VHL. VHL reaches the alarm threshold at 
point 16000 ~ 16100, as shown in Fig. 7(d), and it is the Attach 
3 that added into the background traffic. The deviation scores 
of VHM and VHH are below decomposition threshold, as shown 
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in Fig. 7(e)(f), which means there is no anomaly in these two 
sub-bands. 

The decomposition goes to the 2nd level when we 
successfully detected out the three attacks that are added to the 
background traffic. 

C. Comparison with CWT 
Literature [9] proposed that Adaptive threshold or 

Cumulative sum can be adopted to detect traffic signals 
roughly to find out suspicious anomaly time as much as 
possible, and a precise detection on continuous wavelet 
transform coefficient of anomaly time point found during the 
rough detection is then performed. Fig. 8 shows the results 

detected in the way proposed in literature [8]. To reduce the 
influence of rough detection on the final results, all of the 
results of rough detection are alarmed, i.e. analyzing 
continuous wavelet transform coefficient at each time point 
during the precise detection. The figure above is the analyzing 
results of CWT coefficient of original traffic, and the below is 
the detecting results added by the same anomaly traffic 
mention in this paper. Shown as the red area in the figure, 
maximum coefficient of attack 1 with a wide band is increased 
when attack is added while those of attack 2 and 3 with narrow 
bands change little, which are even less than the maximum 
coefficient got at some time in original traffic, which is shown 
in green area in the figure. Therefore, the following threshold 
division can’t distinguish normal traffic and anomaly traffic. 

Literature [9] analyzed wavelet transformation coefficient 
of traffic signal at alert time, which can reduce error alarm of 
AT and CUSUM. But for precise detection is conducted only 
on traffic at alert time during rough detection, accuracy of the 
whole detection can then be guaranteed only if the rough 
detection has detection failure rate as low as possible. During 
the continuous wavelet transformation, decomposition scale of 
this method is (log2N -1) * 12, i.e. the traffic signal needs to 
decompose 168 times at one time when its length is 20000 
sampling points. While in our simulation, the same traffic 
signal is decomposed to the second level, and the number of 
decomposition is far less than CWT. So the computational 
complexity of our algorithm is much less than CWT. 
Simulation result also proves that the selection of detecting 
window in this paper can successfully detect attacks of all 
frequency, both wide and narrow.  

(a) The deviation score of VL (b) The deviation score of VM (c) The deviation score of VL 

Figure 7. The 2nd level decomposition and their detection results

(a) The deviation score of VML (b) The deviation score of VMM (c) The deviation score of VML 

(e) The deviation score of VHM (f) The deviation score of VHH (d) The deviation score of VHL 

Figure 6. The 1st level decomposition and their detection results
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Figure 8. The detection result using CWT



         

V. CONCLUSION 
In this paper, we propose a scale self-adjusting network 

traffic anomaly detection method based on S Transform. It can 
select different time-frequency resolution to decompose and 
adjust to the characteristics of traffic signal. According to the 
simulation results, this mechanism is proved to be feasible, and 
it possesses the following merits: (1) It can effectively detect 
the long-time durative anomalous traffic and the short-time 
sudden-changing one, as well as the middle/high frequency 
anomaly traffic which probably can’t be detected by the 
network traffic anomaly detection methods based on multi-
resolution analysis. (2) By means of self-adjusting selection of 
decomposition scale, and the Double-Threshold mechanism, 
our method can avoid the blindness of wavelet packet 
decomposition, and can also reduce computational complexity. 
(3) By means of self-adjusting reconstruction of different S 
spectrum sub-bands which contain anomalies, our method is 
able to confirm the characteristics of anomaly and enhance the 
reliability of detection. (4). Using the center frequency of 
different frequency band to compute the size of the 
corresponding detection windows, we have found out a 
solution to the problem of detection windows selection. 

ACKNOWLEDGMENT 
The work described in this paper was supported by NSFC 

(Project No.60572092), National Key Basic Research Program 
of China "973 Project" (2007CB307104 of 2007CB307100) 
and Program for New Century Excellent Talents in University. 

REFERENCES 
[1] B.R.Bakshi, “Multi-scale analysis and modeling using wavelets,” 

Journal of Chemometrics, 13, (3), 1999 
[2] V.Alarcon-Aquino, and J.A.Barria. “Anomaly Detection in 

Communication Networks Using Wavelets,” IEEE Proc-Commun, 
vol.148, No.6, December 2001. 

[3] Anu Ramanathan, “WADeS: A Tool for Distributed Denial of Service 
Attack Detection”, TAMU-ECE-2002-02, Master of Science Thesis, 
August 2002. 

[4] K Ramchandran, and M Vetterli. “Best wavelet packet bases in a rate-
distortion sense,” IEEE Trans on Image Processing, 1993,2(2):160-175. 

[5] R.G. Stockwell, L. Mansinha, and R.P. Lowe, “Localization of the 
complex spectrum: The S transform,” IEEE Trans. Signal Process. 44 
(1996) 998-1001. 

[6] P. Barford, J. Kline, D. Plonka, and A. Ron. “A signal analysis of 
network traffic anomalies,” In InternetMeasurement Workshop, 2002. 

[7] Lawrence Berkeley National Laboratory, The Internet Traffic Archive, 
http://ita.ee.lbl.gov/index.html. 

[8] Dainotti Alberto, Pescape Antonio, and Ventre Giorgio, “Wavelet-based 
Detection of DoS Attacks,” GLOBECOM '06. 

[9] A. Magnaghi, T. Hamada, and T. Katsuyama, “A Wavelet-based 
framework for proactive detection of network misconfigurations,” ACM 
SIGCOMM’04 Workshops, 2004. 


