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Abstract—Based on kinematic and kinetic analyses of the 3-Degree 

of Freedom differentially driven wheels mobile robot, we proposed a 

nonlinear mathematical model with uncertain disturbance. This 

model was transformed into linear control systems through an 

approximate linearization algorithm, which is based on balanced 

flow pattern. After that, we designed a partial feedback H∞ robust 

controller based on LMI for the robots. The efficiency of our method 

received supports from the simulation results.  
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I. INTRODUCTION 

Since 1980’s, mobile robots are widely used in lots of 

dangerous and heavy jobs, including the transportation of nuclear 

waste, fire control, lunar exploration etc. They are becoming more 

and more important and valuable for us. Therefore, considerable 

research attention has been attracted to this area. In control field, 

researchers have focused on establishing mathematical models 

(including kinematics models and kinetics models) and designing 

appropriate controllers. The kinetics models proposed in the 

literature [1][2] are too complicated and it is very difficult to 

implement effective control. Literature [3] applied UKF 

arithmetic in mobile robot control and gained better control effect, 

but its complexity limits its practical application. Literature [4][5] 

introduced intelligent arithmetic in this filed and avoided 

establishing the precise mathematical models, but the design of 

control rules are highly dependent on personal experience, and its 

preciseness and stability are not satisfactorily addressed and need 

to be further examined. 

In this paper, based on kinematic and kinetic analysis for the 

AS-R 3-Degree of Freedom differential wheeled mobile robot, a 

nonlinear mathematical model with uncertain disturbance is 

established. An approximate linearizing algorithm based on 

balanced flow pattern is proposed to transform the model to linear 

control system. Then, based on LMI, a partial feedback H∞ 

controller is designed. Finally, simulation is performed and the 

result shows the efficiency of the method. 

II. PROBLEM DESCRIPTION 

It is composed of three modules, including drive module, 

control module, and sensor module. The three components are 

connected and fixed through bolts. The robot keeps its balance by 

three wheels: two front wheels (body 1 and 2) are driving wheels 

and one rear wheel (body 3) is steering wheel. The geometrical 

model is schematically depicted in Fig.1. 

 
Fig. 1. Geometrical model of the mobile robot 

Point F is the projection of the mass center C of the robot; 

Point P is the center of the two front wheels axle; 2b denotes the 

distance between the two front wheels; r is the radius of the 

wheels; l is the distance between point P and point F; β is the 

heading angle of the robot; 1θ and 2θ  are the angles of the right 

and left driving wheels respectively; Vp denotes the speed of point 

P. Then kinematics equations can be expressed as:
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T1 and T2 are driving torque of the left and right front wheels 

respectively. f1, f2 and f3 denote the friction pressed on body 1, 2, 3 

respectively. α is spin angle of the robot. J and Jm are the 

moment of inertia of the wheels and the robot respectively. M and 

m are the mass of the robot and the wheels respectively; h denotes 

the distance between point F and steering wheel. Then kinetics 

equations can be expressed as: 
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The parameters of the mobile robot are showed in Table 1. 

TABLE I. THE PARAMETERS OF THE MOBILE ROBOT 

Symbol Parameter Value Unit 

m mass of front wheel 0.5 kg 

r radius of front wheel 0.105 m 

J moment of inertia of front wheel 0.0014 kg.m2 

M mass of robot 25 kg 

Jm moment of inertia of robot 0.5512 kg.m2 

2b distance between the two front wheels 0.41 m 

h distance between F and steering wheel 0.1965 m 

L distance between point P and point F 0.09 m 

Driving motors of the AS-R robot are RE36 Model made by 

the Maxon Company. They are hollow-cup-rotor DC electrical 

machines. u1 and u2 are input voltage of the left and right driving 

motors respectively. The parameters of the driving motors are 

showed in Table 2. 

TABLE II. THE PARAMETERS OF THE DRIVING MOTORS  

Parameter Value Unit 

Rated power 70 W 

Rated voltage 24 V 

No-load speed 6610 rpm 

Block torque 730 mNm 

Speed/torque slope 9.23 rpm/mNm 

Resistance  0.628 Ω 

Rated efficiency 84 % 

Speed constant  375 rpm/V 

Rotor inertia 60.2 g.cm2 

According to the mechanical characteristic plot, we can obtain the 

following formula[6]: 
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The state variable 

 ( )1 2 3 4 5 6
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is used to describe the position and stance of the mobile robot. 

The six variables denote the X axis displacement, Y axis 

displacement, angular displacement, X axis speed, Y axis speed 

and angular speed of the mobile robot in the world coordinates. 

Input vector u=[u1 u2]T denotes input voltage of the left and right 

driving motors respectively; Uncertain disturbance vector ω=[ω1 

ω2 ω3]T denotes the friction between the mobile robot and ground. 

Let 
rA
Jq

= , mathematical model with uncertain disturbance is 



 

established as: 
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III MODEL APPROXIMATE LINEARIZATION 

From Section 1, we obtained the mathematical model of AS-R 

mobile robot. It is a complicated nonlinear coupling system, so 

that we cannot easily analyze and control the robot. In this section, 

we introduced an approximate linearizing algorithm[7] based on 

balanced flow pattern to transform the model to linear control 

system. 
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IV. PARTIAL FEEDBACK H∞ CONTROLLER DESIGN 

For the facility application in engineering situation, we 

reduced the order of original system to 4 by the method 

introduced by [8](Stability is also proved in [8]). 
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If there exists matrix X=XT and matrix W, satisfied the 

following linear matrix inequality: 
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Then, a state feedback robust H∞ controller u=WX-1x can be 

obtained to guarantee the local feedback system(as shown in Fig 

2.) progressive stability[9]. 

 

Fig.2. The frame of local feedback control system 

Use LMI tool box in Matlab, we can get suited matrix X and 

matrix W:  
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Then, a proper local feedback H∞ controller is obtained:  
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V. SIMULATION RESULT 

Applying the local feedback H∞ controller represented in 

Section 4 to the target mobile robot, a local closed loop control 

system is formed, as shown in Fig.2. When providing a unit step 

signal, we generated the simulation results shown in Fig.3. 

 

 

 

 

 

 
Fig.3.Unit step response graph 
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From the simulation results, the mobile robot keeps constant 

speed or approximate constant speed after an accelerated process 

in the initial 3 seconds. And the whole system is stable and robust 

with the uncertain disturbance. 

VI. CONCLUSIONS 

In this paper, based on the kinematic and kinetic analysis for 

the AS-R 3-DOF differential wheeled mobile robot, a 

mathematical model for such robots is proposed. Choosing 

voltage as inputs made the control more direct and simple. Based 

on model reduction, a partial output feedback H∞ robust controller 

is designed via LMI. Simulation results shows the whole system 

is reasonably stable. Our results can be extended to nonlinear 

systems widely existing in engineering situations. 
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