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Abstract— The convergence of background neural networks
with two identical, unstructured subnetworks that inhibit each
other is studied. The convergence properties include global
attractivity and complete stability analysis. Furthermore, it shows
that shifting the background level affects the existence and
stability of the equilibrium point. Adding noise to the networks,
it will fluctuate around an equilibrium point.

I. INTRODUCTION

When we need to remember a phone number announced on
the radio, some neural process in the brain enables our short-
term memory; without the context information indicating that
it is important to store it, the same number vanishes promptly
from the mind. Clearly, context determines whether a motor
responses or not. The background model of neural networks
was proposed in [6]. The neural activity evoked by artificial
stimulation which would normally have a strong impact on the
perceptual decision, has no effect when it is produced slightly
earlier or later relative to the normal sequence of events. It
shows that small changes in this background input level may
shift a network from a relatively quiet state to some other state.
Thus we can see that the background may act as a switch that
allows networks to be turned on or off. In this paper, we use the
model which have two identical, unstructured subnetworks that
inhibit each other and discuss the background neural networks
in which a uniform background input may determine whether a
random network has one or two stable firing levels. All neurons
in a subnetwork could fire at a approximately firing rate, with
the interaction between two groups.

Among the dynamical properties of the neural networks,
the convergence analysis of neural networks is very important
in some practical applications [1], [2], [3], [7]. Convergence
analysis for neural networks has been extensively studied
recently in [4], [5], [8], [9]. In [10], it was analyzed that the
dynamical of the background neural networks with one group.
In this paper, we consider two subnetworks that inhibit each
other. This means that they decrease each other’s gain. If one
of the rates is constant, the dynamics of the other is the same
as those discussed in [10].

Using theoretical analysis and computer simulations, we
show that a uniform background plays an important role in
the background neural networks. Specifically, we discuss the
convergence of the coupled systems, including the existence

of equilibrium point, global attractivity and complete stability
analysis. Global attractivity is very useful for determining
the final behavior of network’s trajectories. Complete stability
describes a kind of convergence characteristics of networks.

The rest of paper is organised as follows. In Section II,
preliminaries and some basic definitions are given. Global
attractivity using inequalities analysis is discussed in Section
III. Complete stability is studied in Section IV. In Section
V, simulations are presented. Finally, Section VI gives the
conclusions.

II. PRELIMINARIES

Consider two identical, unstructured subnetworks that in-
hibit each other. Here unstructured means constant or random
synaptic weights, and each subnetwork is described by a
uniform rate.


τ

dR1

dt
= −R1 +

(wR1 + h1)2

s + υN(R2
1 + R2

2)

τ
dR2

dt
= −R2 +

(wR2 + h2)2

s + υN(R2
1 + R2

2)

(1)

for t ≥ 0, where R1, R2 represents the firing rate of each
subnetwork respectively. τ > 0 is a time constant and υ > 0 is
the synaptic connection strength. s > 0 is a saturation constant
and N is the total number of neurons. h1 ≥ 0 and h2 ≥ 0 are
the background inputs. And the total synaptic input w ≥ 0 to
all neurons is the same.
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for i = 1, 2 and t ≥ 0. The proof is completed.
Definition 1: The network (1) is bounded if each trajectory

is bounded.
Definition 2: Let S be a compact subset of Rn. Denote

the ε−neighborhood of S by Sε. The compact set S is called
a global attractive set of a network if for any ε > 0, all
trajectories of that network ultimately enter and remain in Sε.

Definition 3: The neural network (1) is called completely
stable, if each trajectory of (1) converges to an equilibrium
point.

Denote a vector norm in R2 by
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Denote a matrix norm in R2×2 by
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for any wij ∈ R2×2.

III. GLOBAL ATTRACTIVITY

In this section, boundedness and global attractivity of the
network (1) will be studied.

Theorem 1: The network (1) is always bounded. Moreover,
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is a global attractive set of the network (1).
Proof: By Lemma 1, it holds that
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for i = 1, 2 and t ≥ 0. This shows that the network (1) is
bounded. Next, it will prove that S is the global attractivity of
the network (1).

Suppose

lim
t→+∞ supRi(t) = ξi, (i = 1, 2).

Since each Ri(t) ≥ 0(i = 1, 2) is upper bounded, then ξi <
+∞, (i = 1, 2). It will prove that
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For the sake of convenience in the subsequent
discussion, and without loss of generality, assume that

ξl = max1≤j≤2 {ξj}. Suppose (3) is not true, i.e.,
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By the basic property of the upper limit, there exists a t1 ≥
0 such that

Ri(t) ≤ ξi + ε ≤ ξl + ε, (i = 1, 2)

for all t ≥ t1.
We will prove that there exists a t2 ≥ t1 such that

Ṙi(t) < 0 (5)

for i = 1, 2 and t ≥ t2. If (5) is not true, there exists a
t3 > t1 such that
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for i = 1, 2, which is a contradiction, thus (5) is true. By (5),
it shows that Ri(t) is monotonically decreasing. Thus the limit
of Ri(t)(i = 1, 2) exists, that is,
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for i = 1, 2 and t ≥ 0. This shows that S is a global attractive
set of the network (1). The proof is completed.

Theorem 2: The network (1) is always bounded. Moreover,
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is a global attractive set of the network (1).
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The equivalent vector form of the network (1) is

τṘ(t) = −R(t) + Wh (6)

for t ≥ 0, and R(t) = (R1(t), R2(t))
T . The solution of the

network (1) is represented as
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for i = 1, 2 and t ≥ 0. Then,
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This shows that S globally attracts the network (1). The proof
is completed.

IV. COMPLETE STABILITY

In this section, the complete stability of (1) will be studied.
Theorem 3: The network (1) is completely stable.

Proof: Constructing an energy function
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for all t ≥ 0. Clearly, since R(t) = (R1(t), R2(t))
T is

bounded, E(t) is also bounded. It follows that
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]
= −τ‖Ṙ(t)‖2
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for all t ≥ 0. Thus E(t) is monotonically decreasing. Since
E(t) is bounded, there must exist a constant E0 such that

lim
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Since R(t) is bounded, from the network (6), it follows
that Ṙ(t) is bounded. Then, R(t) is uniformly continuous
on [0, +∞). Again, from (6), it follows that ‖Ṙ(t)‖2 is also
uniformly continuous on [0, +∞). Thus, it must hold that

lim
t→+∞ ‖Ṙ(t)‖2 = 0.

Since R(t) is bounded, every subsequent of R(t) must
contain convergent subsequence. Let R(tm) be any of such
a convergent subsequence. There exists a R∗ ∈ R2 such that

lim
t→+∞R(tm) = R∗.

Then, from the network (6), we have
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Clearly, R∗ must be an equilibrium point. The proof is com-
pleted.
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Fig. 1. Convergence of (1) with h1 = h2 = 8.5.

V. SIMULATIONS

In this section, an example is provided to illustrate the above
theory.

Let us consider the network (1) with w = 1.154, υN =
0.0295, τ = 1, s = 40.

Taking h1 = h2 = 8.5, by Theorem 1, the network (1) is
bounded. By simple calculations, the global attractive set is
given by

S = {R|0 ≤ ‖R‖ ≤ 46.9492},
which globally attracts all the trajectories of the network.
By Theorem 3, this network is completely stable. Thus each
trajectory of (1) must converge to a stable equilibrium point.
By simulation we can see that firing rate is about 4 spikes per
second.

Taking h1 = h2 = 10.15, the boundedness and global at-
tractivity of the network (1) can also be obtained by Theorems
1 and 2. There are two stable steady states, each with a low and
a high rate around 3 and 30 spikes per second, respectively,
and an unstable point as disappearance. The global attractive
set is given by

S = {R|0 ≤ ‖R‖ ≤ 47.7185}.
Figures 1 and 2 show the simulation results for completely

stability of the network (1). As time is increasing, all the
trajectories converge to a stable equilibrium point or two
stable equilibrium points. Figures 3 and 4 show that projection
trajectories of the network (1) on phase plane. They show that
global attractivity and completely of the network (1).

VI. CONCLUSIONS

In this paper, convergence of the background neural net-
works has been studied. The background neural networks
are composed of two subnetworks which have uniform firing
rate and background input. Three basic dynamical problems
are addressed for the kind of network: boundedness, global
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Fig. 2. Convergence of (1) with h1 = h2 = 10.15.
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Fig. 3. Projection trajectories of (1) on phase plane with h1 = h2 = 8.5.
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Fig. 4. Projection trajectories of (1) on phase plane with h1 = h2 = 10.15.



attractivity, and complete stability. Simulations are used for
illustrating.
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