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Abstract— In this paper we develop a batch learning algorithm
for semi-blind extraction of a desired source signal with temporal
structure from linear mixtures. By studying the discrete time
algorithm, an invariant set is obtained so that the non-divergence
of the algorithm can be guaranteed. In the invariant set, the
local convergence of the algorithm is analyzed. It is proven that
the trajectories of the algorithm starting from the invariant set
will converge to the desired source signal which is the most
autocorrelated for an specific delay. The simulations verified the
results.

I. INTRODUCTION

There has been increased interest in blind signal process-
ing, with special attention to independent component analy-
sis (ICA) and instantaneous blind source separation (BSS).
Assuming that the source signals have been linearly mixed
and that these mixed sensor signals are available, BSS finds
in a blind manner a linear combination of the mixed signals
that recovers the original source signals, possibly rescaled and
randomly arranged in the outputs.

However, extracting all the source signals from a large
number of sensors, for example, a magnetoencephalographic
(MEG) measurement, which may output hundreds of record-
ings, could take a long time. Thus, it would be important for
the user to extract only one or some desired signals instead
of all sources. A similar problem arises in the cocktail party
problem, where one needs to rearrange speech signals extracted
in different frequency bands so that they could recover a given
speech signal[1, 2]. This fact implies a semiblind kind of
source separation.

Blind source extraction (BSE) is such a kind of technique
that is able to extract only the signals of interest by using
some priori information. Compared to BSS , BSE has many
advantages and has received wide attention in various fields
such as biomedical signal analysis, data mining, speech and
image processing, and so on [3, 4, 5].

Many source extraction algorithms can extract a specific
signal as the first output by using some priori information ,
such as non-Gaussianity [6], smoothness or linear predictabil-
ity [5, 7], sparseness [8], generalized autocorrelations of the
desired source signals [9], etc.

A generalized autocorrelation functions of the desired
source is proposed and a fixed-point algorithm is derived in
[9], the algorithm needs to be normalized after each step. In

this paper, we transform the constrained optimum problem
presented in [9] to a unstrained one and derive a new algorithm
which need not be normalized. By studying the proposed
algorithm, invariant set is obtained so that the non-divergence
of the algorithm can be guaranteed. In the invariant set, the
local convergence of the trajectories is analyzed.

This paper is organized as follows. Some preliminaries and
the proposed algorithm will be presented in Section 2. In
Section 3, invariant sets and convergence of the algorithm will
be studied. Simulation results will be provided in Section 4.
Finally, conclusions will be drawn in Section 5.

II. THE ALGORITHM

Assume that the observed signals v(k)(k = 1, 2, · · · ) are
described by the matrix equation

v(k) = As(k) (1)

where A is an n × n unknown mixing matrix and s(k) =
(s1(k), · · · , sn(k))T is a vector of unknown zero-mean and
unit-variance primary sources.

Provided that the signals v have already been followed
by an n × n whitening matrix V such that the compo-
nents of x(k) = V v(k) are unit variance and uncorrelated,
i.e. E{x(k)xT (k)} = I . It follows that E{x(k)xT (k)} =
(V A)(V A)T = I , which means that the matrix V A is
orthogonal, so s(k) = (V A)T x(k).

A linear single neuron network described by

y(k) = wT x(k), y(k − τ) = wT x(k − τ) (2)

will be used to extract the desired source. Where w is the
weight vector and τ is a delay in time. In [9], the following
constrained maximization problem based on generalized auto-
correlation functions of the desired source has been presented:

max
‖w‖=1

Ψ(w) = max
‖w‖=1

E{G(y(k))G(y(k − τ)}
= max

‖w‖=1
E{G(wT x(k))G(wT x(k − τ)}.(3)

Where G is a differentiable function, examples of choices are
G(u) = u, G(u) = u2, G(u) = u3 or G(u) = log cosh(u).

The maximization can be easily transformed to the follow-
ing unconstrained optimization:

min{−Ψ(w) + (‖w‖2 − 1)2}. (4)
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From (4), the following gradient descent algorithm can be
easily derived:

w(k + 1) = w(k) + ηa(1 − ‖w(k)‖2)w(k)
+ηbE{g(y(k))G(y(k − τ))x(k)
+G(y(k))g(y(k − τ))x(k − τ)}, (5)

where η is a constant learning rate, a > 0, b > 0 are constants
to adjust the learning parameters more conveniently.

In the following, we will study the behavior of (5) when
G(u) = u. i.e. the source signals have linear autocorrelation.

Assume the ith source signal is the desired source signal
to be extracted from the observed signals, it is the most linear
autocorrelated signal for a specific time delay τ , i. e.

E{si(k)si(k − τ)} > E{sj(k)sj(k − τ)} ≥ 0,

for all j �= i, where k is the time index. {sp(k), sp(k − τ)}
and {sq(k), sq(k − τ)}(∀p �= q) are mutually independent, i.
e. E{s(k)s(k − τ)T } is diagonal.

If G(u) = u, (5) can be transformed as

w(k + 1) = w(k) + ηa(1 − ‖w(k)‖2)w(k)
+ηbE{y(k − τ)x(k) + y(k)x(k − τ)}. (6)

Before the convergence analysis, a transformation is given
first. Let z(k) = (V A)T w(k), it follows that y(k) =
z(k)T s(k) and

z(k + 1) = [1 + ηa − ηa‖z(k)‖2 + ηb(E{s(k)s(k − τ)T }
+E{s(k − τ)s(k)T })]z(k). (7)

That is, the convergence analysis of algorithm (6) can be
transformed to an analysis of the convergence of the algorithm
(7).

III. ALGORITHM ANALYSIS

In this section, we will study the behavior of (7).
Some trajectories of (7) may diverge. Consider a one-

dimensional example. From (7), it follows that

z(k + 1) = [1 + ηa − ηaz2(k) + 2ηbE{s(k)s(k − τ)}]z(k).

If

z2(k) >
2 + ηa + 2ηbE{s(k)s(k − τ)}

ηa
,

it holds that

[1 + ηa − ηaz2(k) + 2ηbE{s(k)s(k − τ)}]2 > 1.

Consequently,

z2(k + 1) > z2(k).

So, if

z2(0) >
2 + ηa + 2ηbE{s(k)s(k − τ)}

ηa
,

it holds that

lim
k→∞

z2(k) = ∞.

The example above shows (7) may diverge. A problem to
address is therefore to find out the conditions under which the
algorithm can be bounded. Next, we will prove an interesting
theorem, which gives an invariant set of (7). The trajectories,
thus, can be guaranteed to be bounded.

A. Invariant sets

Definition 1: A compact set S ⊂ Rn is called an invariant
set of (7), if for any z(0) ∈ S, the trajectory of (7) starting
from z(0) will remain in S for all k ≥ 0.

An invariant set is interesting since it provides a method to
guarantee non-divergence of trajectories.

The following lemma [10] will be useful.
Lemma 1: Suppose that D > 0, E > 0, it holds that

[D − Eh]2h ≤ 4D3

27E

for all 0 ≤ h ≤ D
E .

Theorem 1: Denoted by

S1 =
{

z|z ∈ Rn, ‖z‖2 <
1 + ηa

ηa

}
.

If

ηb‖E{s(k)s(k − τ)T }‖ ≤ 1
4
(1 + ηa), ηa ≤ 0.32,

then S1 is an invariant set of (7).
Proof: From (7), it follows that

‖z(k + 1)‖
= ‖[1 + ηa − ηa‖z(k)‖2 + ηb(E{s(k)s(k − τ)T }

+E{s(k − τ)s(k)T })] · z(k)‖ (8)

for all k ≥ 0. The norm of the vector and matrix in (8) are
‖ · ‖2 and ‖ · ‖F respectively. According to the compatibility
of the two norms, it can be easily derived that

‖z(k + 1)‖ ≤ [|1 + ηa − ηa‖z(k)‖2|
+2ηb‖E{s(k)s(k − τ)T }‖] · ‖z(k)‖.

Thus, there must exist α(k) so that

‖z(k + 1)‖ = α(k)[|1 + ηa − ηa‖z(k)‖2|
+2ηb‖E{s(k)s(k − τ)T }‖] · ‖z(k)‖

for all k ≥ 0, where 0 < α(k) ≤ 1. If

‖z(k)‖2 <
1 + ηa

ηa
,

it holds that

‖z(k + 1)‖2

= [α(k)(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖)
−α(k)ηa‖z(k)‖2]2 · ‖z(k)‖2

≤ max
0≤‖z(k)‖2≤ξ

{
[α(k)(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖)

−α(k)ηa‖z(k)‖2]2 · ‖z(k)‖2
}
,



where

ξ =
1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖

ηa
.

Let D = α(k)(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖), E =
α(k)ηa, h = ‖z(k)‖2, from Lemma 1, it follows that

‖z(k + 1)‖2

≤ 4[α(k)(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖)]3
27α(k)ηa

≤ 4(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖)3
27ηa

.

If

ηb‖E{s(k)s(k − τ)T }‖ ≤ 1
4
(1 + ηa), ηa ≤ 0.32,

it follows that

4(1 + ηa + 2ηb‖E{s(k)s(k − τ)T }‖)3
27

≤ 1
2
(1 + ηa)3

< 1 + ηa.

Consequently,

‖z(k + 1)‖2 <
1 + ηa

ηa
.

So, S1 is an invariant set of (7).
Since ‖w(k)‖ = ‖z(k)‖ for all k ≥ 0, the following

theorem can be easily obtained.
Theorem 2: Denoted by

S =
{

w|w ∈ Rn, ‖w‖2 <
1 + ηa

ηa

}
.

If

ηb‖E{s(k)s(k − τ)T }‖ ≤ 1
4
(1 + ηa), ηa ≤ 0.32,

then S is an invariant set of (6).

The theorem above shows any trajectory of algorithm (6)
starting from w(0) will remain in S. This guarantees the non-
divergence of the algorithm. In next section, we will study the
convergence behavior of (7) in the invariant set.

B. Local analysis

Lemma 2: Assume the desired source signal si satisfies
1) E{si(k)si(k − τ)} > E{sj(k)sj(k − τ)} ≥ 0, ∀j �= i,
2) E{s(k)sT (k)} = I, E{s(k)s(k − τ)T } is diagonal.
If

ηb‖E{s(k)s(k − τ)T }‖ ≤ 1
4
(1 + ηa), ηa ≤ 0.32, z(0) ∈ S1,

then it holds that

lim
k→∞

zj(k) = 0, ∀j �= i.

Proof: Since E{s(k)s(k− τ)T } is diagonal, from (7), it
holds that for all q,

zq(k+1) = [1+ηa−ηa‖z(k)‖2+2ηbE{sq(k)sq(k−τ)}]zq(k).
(9)

From Theorem 1, it follows that

‖z(k)‖2 <
1 + ηa

ηa

for all k ≥ 0. Thus,

1 + ηa − ηa‖z(k)‖2 + 2ηbE{sq(k)sq(k − τ)} > 0, ∀q, k.

Since

z2
j (k + 1)

z2
i (k + 1)

=
[
1 + ηa − ηa‖z(k)‖2 + 2ηbE{sj(k)sj(k − τ)}
1 + ηa − ηa‖z(k)‖2 + 2ηbE{si(k)si(k − τ)}

]2

×z2
j (k)

z2
i (k)

,

and E{si(k)si(k − τ)} > E{sj(k)sj(k − τ)}, ∀j �= i, it
follows that

z2
j (k + 1)

z2
i (k + 1)

<
z2

j (k)
z2

i (k)
.

Consequently,

lim
k→∞

z2
j (k)

z2
i (k)

= 0, ∀j �= i.

Since

‖z(k)‖2 <
1 + ηa

ηa

for all k ≥ 0, it follows that

lim
k→∞

z2
j (k) = 0, ∀j �= i.

From (9), it follows that the sign of the zq(k)(∀k ≥ 0) is the
same as that of zq(0) in the invariant set S1, thus

lim
k→∞

zj(k) = 0, ∀j �= i.

Definition 2: A point z∗ ∈ Rn is called an equilibrium
point of (7), if and only if

z∗ = [1 + ηa − ηa‖z∗‖2 + ηb(E{s(k)s(k − τ)T }
+E{s(k − τ)s(k)T })] · z∗. (10)

Theorem 3: Assume the desired source signal si satisfies
1) E{si(k)si(k − τ)} > E{sj(k)sj(k − τ)} ≥ 0, ∀j �= i,
2) E{s(k)sT (k)} = I, E{s(k)s(k − τ)T } is diagonal.
If

ηb‖E{s(k)s(k − τ)T }‖ ≤ 1
4
(1 + ηa), ηa ≤ 0.32, z(0) ∈ S1,

then it holds that the trajectories of (7) will converge to

z∗ =

(
0, · · · ,±

√
ηa + 2ηbE{si(k)si(k − τ)}

ηa
, · · · , 0

)T

.

Proof: From Theorem 1, S1 is an invariant set of (7).
From Lemma 2, it follows that in S1,

lim
k→∞

zj(k) = 0, ∀j �= i.



So we only need to discuss the stability of the equilibrium
points of (7) such as z∗ = (0, · · · , z∗i , · · · , 0)T in S1 . From
(10), it can be easily derived that all the kind of equilibrium
points are:

z∗ = (0, · · · , 0, · · · , 0)T ,

z∗ =

(
0, · · · ,±

√
ηa + 2ηbE{si(k)si(k − τ)}

ηa
, · · · , 0

)T

.

Clearly, these three points all belong to the invariant set S1.
In the following, we will compute the eigenvalue of Jaco-

bian matrix at each equilibrium point.
The Jacobian matrix of (7) at z∗ = (0, · · · , z∗i , · · · , 0)T is

∇|(0,··· ,z∗
i ,··· ,0)T = diag(J1, . . . , Jn),

where

Ji = 1 + ηa + 2ηbE{si(k)si(k − τ)} − 3ηa(z∗i )2,

Jj = 1 + ηa + 2ηbE{sj(k)sj(k − τ)} − ηa(z∗i )2, ∀j �= i.

If z∗ = (0, · · · , 0, · · · , 0)T , it follows that |Jp| > 1, p =
1, . . . , n. Thus, this equilibrium point is unstable.

If

z∗ =

(
0, · · · ,±

√
ηa + 2ηbE{si(k)si(k − τ)}

ηa
, · · · , 0

)T

,

from the conditions in this theorem, it can be easily derived
that

|Ji| = |1 − 2ηa − 4ηbE{si(k)si(k − τ)}| < 1,

|Jj | = |1 + 2ηb(E{sj(k)sj(k − τ)} − E{si(k)si(k − τ)})| < 1,

∀j �= i. So, these two equilibrium points are stable.
From above discussion, we can conclude that in the invari-

ant set S1, (7) will converge to

z∗ =

(
0, · · · ,±

√
ηa + 2ηbE{si(k)si(k − τ)}

ηa
, · · · , 0

)T

.

After convergence, the output of the network is y(k) =
(z∗)T s(k) = csi(k), where

c = ±
√

ηa + 2ηbE{si(k)si(k − τ)}
ηa

.

So the ith source signal is extracted. That is, (7) can extract
the most linear autocorrelated source signal.

Fig. 1. Original images 1-3 and sources 1-3

Fig. 2. Mixtures 1-3

IV. EXPERIMENTAL RESULTS

In this section, an experiment will be carried out to confirm
the convergence analysis derived in Theorem 3.

In the experiment, we have selected three statistically in-
dependent 128×128 images shown in Fig.1, with two natural
images and one i.i.d Gaussian noise. After normalization, the
three images are used as source signals. Randomly mixed
images are shown in Fig.2.

The algorithm (6) is used to extract the most autocorrelated
source signal. For finding the appropriate delay τ , we calculate
the autocorrelation ζ(f) = E{xj(t)xj(t − f)} of the signals
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Fig. 3. Autocorrelation functions of the mixtures 1-3
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Fig. 5. Evolution of direction of w

x as a function of the time delay f and find the optimal time
delay at which the autocorrelation function has a peak [9].
The corresponding autocorrelation functions of the three mixed
images are shown in Fig.3. It can be easily seen that they
present several peaks and the peaks are similar. So, the optimal
time delay is chosen as τ = 128. The other parameters of the
algorithm are set as follows: ηa = 0.32, ηb = 1

4 (1 + ηa)/
√

3,
w(0) ∈ S. The evolution of the norm of w is shown in Fig.4.
Clearly, the norm changes in a certain range and will not go
to infinity.

To verify whether the direction of w converge or not, we
will compute the direction cosine between w and a reference
vector r = [1, 1, 1]T at each k as [11]:

DirectionCosine(k) =
wT (k) · r

‖w(k)‖ · ‖r‖
for all k ≥ 0. Fig.5 shows the evolution of DirectionCosine
from different initial values. Clearly, the curves eventually

Fig. 6. Extracted lenna

converge to two points. It is consistent with the results derived
in Theorem 3.

The converged signal corresponding to the positive value
is shown in Fig.6 (left). Fig.6 (middle) shows the normalized
signal. In order to measure the accuracy of extraction, we adopt
the performance index(PI) as [9]:

PI = −10Elog(s(t)− s′(t))2.

Where s is the source signal, s′ is the extracted image(both are
normalized to be zero-mean and unit-variance). The higher PI
is , the better the performance is. The experiment is indepen-
dently repeated 50 times using different random mixing matrix
A, the averaged PI of the extracted image is 73.5. Finally, we
transform the normalized extracted signal to original image as
follows. Suppose y is the normalized extracted image, m and
d are the expectation and variance of the original lenna image
respectively. Let y′ = y ×√

d + m, the image corresponding
to y′ is shown in Fig.6 (right).

V. CONCLUSION

In this paper, we have transformed the constrained optimum
problem presented in [9] to a unconstrained one and obtained
a new algorithm. The invariant set of the proposed algorithm
has been found and the dynamical behavior of the trajectories
in the invariant set has been studied. The experiments have
verified the results of Theorem 3 and the desired source signal
has been successfully extracted.
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