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Abstract—This paper presents a novel edge following 
technique for image segmentation designed to segment the left 
ventricle in cardiac magnetic resonance (MR) images. This is a 
required step to determine the volume of left ventricle in a 
cardiac MR image, which is an essential tool for cardiac 
diagnosis. The traditional method for extracting them from 
cardiac MR images is by human delineation. This method is 
accuracy but time consuming. So a new ventricular segmentation 
technique is proposed in order to reduce the analysis time with 
similar accuracy level compared to doctors’ opinions. Our 
proposed technique can detect ventricle edges in MR images 
using the information from the vector image model and the edge 
map. We also compare the proposed segmentation technique with 
the active contour model (ACM) and the gradient vector flow 
(GVF) by using the opinions of two skilled doctors as the ground 
truth. The experimental results show that our technique is able to 
provide more accurate segmentation results than the classical 
contour models and visually close to the manual segmentation by 
the experts. The results evaluated using a numerical measure by 
mean of the probability of error in image segmentation also 
confirm the visual evaluation. 
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I. INTRODUCTION  
Magnetic resonance imaging (MRI) is a non-invasive tool 

that can be used to measure the deformation of hearts and to 
diagnose the presence of heart diseases by analyzing the heart 
function throughout the cardiac cycle [1],[2]. Left ventricular 
segmentation of a cardiac magnetic resonance (MR) image is 
challenging due to poor image contrast and high noises. 
Finding the correct segmentation of a cardiac MR image is a 
difficult task. The accurate detection of boundaries from the 
MR images plays a key role in many applications and essential 
to many diagnostic and treatment procedures such as the 
congestive heart failure and the cardiac hypertrophy. Usually 
doctors have to draw contours manually, slice by slice, in order 
to calculate volume information of the left ventricle. This is a 
tedious work and delays the whole diagnosis procedures. So 

reducing the variability and time constraints inherent in manual 
segmentation is an essential tool for cardiac diagnosis. 

Many automated segmentation algorithms have been 
developed. However, to delineate the structures of interest and 
discriminate them from the background automatically poses 
considerable challenges. All conventional edge detection 
techniques, e.g., Roberts, Sobel, Prewitt, Laplacian, and Canny, 
are all based on the difference of gray levels [3]-[8]. However, 
they fail to extract the correct boundaries in MR images. 
Several methods have also been developed to process the 
acquired images and identify features of interest such as 
intensity-based method and region-growing methods [9]. 
Intensity-based methods identify local features such as edges 
and texture in order to extract regions of interest. Region-
growing methods start from a seed-point (usually chosen by a 
user) on image and perform the segmentation task by clustering 
neighborhood pixels using a similarity criterion. 

Active contour models (ACM) also known as snakes are 
curves defined within an image domain that can be moved 
under the influence of internal energy and external energy [10]-
[12]. The internal energy is designed to keep the model smooth 
during deformation. The external energy is defined to move the 
model toward an object boundary or other desired features 
within an image. The snake has weakness and limitations of 
small capture range and difficulties progressing into concave 
boundary regions. The gradient vector flow (GVF) or the GVF-
snake is an active contour model with a new external energy 
[13],[14]. This new external energy was computed as a 
diffusion of gray-level gradient vector of a binary edge map 
derived from the image. The resultant field has a large capture 
range and forces active contours into concave regions. The 
snake model has attracted many researchers attention due to the 
good performance [15]-[17]. However, most snake models for 
finding the optimal edges have difficulties in medical images in 
which ill-defined edges are encountered. 

To remedy the problem, we propose a method for 
segmenting ventricle boundaries in cardiac MR images using a 
novel edge following. The proposed edge following technique 
is based on the vector image model and the edge map. The 



         

vector image model provides a more complete description of an 
image in which both directions and magnitudes of image edges 
are considered. From the vector image model, a derivative-
based edge operator is applied to yield the edge vector field 
[18],[19]. The proposed edge vector field is generated by 
averaging magnitudes and directions in the vector image. The 
edge map is derived from the Law’s texture features [20],[21] 
and the Canny edge detection. The vector image model and the 
edge map are used to select the best edges. 

II. AVERAGE EDGE VECTOR FIELD MODEL  
We exploit the edge vector field to devise a new boundary 

extraction algorithm. The edge vector field is calculated 
according to the following equations [18],[19]: 
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Each component is the convolution between the image and 
the corresponding difference mask, i.e., 
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where ( , )f x y  is an input image, Gx and Gy are the difference 
masks of the Gaussian weighted image moment vector 
operator, i.e., 
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Edge vectors of an image indicate the magnitudes and 
directions of edges that form a vector stream flowing around an 
object. In an unclear image, the vectors may distribute 
randomly in magnitude and direction. Therefore we extend the 
capability of the previous edge vector field by applying a local 
averaging operation where the value of each vector is replaced 
by the average of all the values in the local neighborhood. 
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where rM  is the total number of pixels in the 
neighborhood N. 

 

    
 (a) (b) (c) 
Figure 1.  Vector fields of unclear images (a) Original image (b) Result from 

edge vector field  (c) Result from the proposed average edge vector field. 

An example of the derived edge vector field calculated by 
averaging both of direction and magnitude is shown in figure 
1(c). Figures 1(b) and 1(c) show that our proposed edge vector 
field yields more descriptive vectors along the object edge than 
that of the original edge vector field. 

III. EDGE MAP 
Edge map is edges of an image derived from Law’s texture 

features and the Canny edge detection. It gives information of 
image which is exploited in a decision for edge following.  

A. Law’s Texture 
The texture feature images are computed by convolving an 

input image with each of the masks. The 2-dimensional 
convolution masks typically used for texture discrimination are 
generated from the following set of 1-dimensional convolution 
masks of length five: 

- local averaging filter  L5=(1,4,6,4,1) 

- edge detector  E5=(–1,–2,0,2,1) 

- spot detector  S5=(–1,0,2,0,–1)  

- ripple detector  R5=(1,–4,6,–4,1)  

- wave detector  W5 =(–1,2,0,–2,1)  

If we multiply the column vectors and row vectors of the 
masks shown above, we obtain 25 Law’s masks. We can obtain 
the output image ( , )t i j  by convolving the input image with 
texture masks, i.e., 
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where ( , )l i j is the 2-D masks from Law’s texture and ( , )f i j  
is the input image. 

B. Canny Edge Detection 
The Canny approach to edge detection is optimal for step 

edges corrupted by white Gaussian noise. This edge detector is 
assumed to be the output of a filter that both reduces the noise 
and locates the edges. It is well described in the literature. 
Therefore, we briefly describe it here. The first step of Canny 
edge detection is to convolve the texture image with a Gaussian 
filter. The second step is to calculate the magnitude and 
direction of the gradient. The third step is nonmaximal 
suppression (nms) to identify edges. The broad ridges in the 
magnitude must be thinned so that only the magnitudes at the 
points of greatest local change remain. The last step is the 
double thresholding algorithm to detect and link edges. 

We try to apply the Canny edge detection to left ventricular 
in cardiac magnetic resonance images. An example of the edge 
map derived from the Law’s texture L5L5 and the Canny edge 
detection is shown in figure 2. 
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Figure 2.  (a) Original image (b) Result from edge map which derived from 
Law’s texture(L5L5) and Canny edge detection. 

 

IV. PROPOSED EDGE FOLLOWING TECHNIQUE 
The proposed edge following technique is based on the 

aforementioned vector image model and edge map. At the 
position ( , )i j  of an image, the 3×3 matrices Mij, Dij, and Eij 
are calculated as follows: 
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where ( , )M i j and ( , )D i j  are the proposed average magnitude 
and direction of the edge vector field as shown in Eq. (8) and 
(9), respectively. ( , )E i j is the edge map from the Law’s 
texture and Canny edge detection. It should be noted that the 
values of each element in the matrices Mij, Dij, and Eij are 
ranged between 0 and 1. 

Another auxiliary matrix Lij corresponding to the position 
( , )i j  is defined as 

 ij ij ij ijα β ε= + +L M D E , (15) 

where α, β, and ε are the weight parameters that control the 
edge to flowing around an object. The larger value of an 
element in Lij indicates the stronger edge in the corresponding 
direction. The total value of all weight parameters are set to 1. 
In our experiments we set α = 0.6, β = 0.2, and ε = 0.2. 

At the position ( , )i j , the most likely direction linked to the 
next edge pixel can be calculated by 
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where k = 1, 2, …, 8, denotes the 8 directions as indicated by 
the arrows at the center of each mask shown in figure 3. The 
3×3 masks kC  are also shown in figure 3. The values of each 
element in each mask dictate the corresponding direction. The 
edge following is continued until there is no change in the list 
of edge pixels. 
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Figure 3.  The normal direction constraint. 

V. EXPERIMENTAL RESULTS 
We apply the proposed edge detection algorithm to segment 

the left ventricles in cardiac magnetic resonance images. The 
comparisons of the result of the proposed technique with two 
conventional edge detection methods, i.e., the active contour 
model (ACM) and the gradient vector flow (GVF)-snake are 
shown in figure 4. To make the comparison fair to all methods, 
their initial contours (snakes) are selected manually as shown 
in figure 4(a). We can see that the results from our proposed 
method are visually better than that from the ACM and the 
GVF-snake. 
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Figure 4.  (a) Original image and initial circle  (b)-(c)  Results from ACM 
and GVF-snake with 0.05, 0, 1, 1α β γ σ= = = = , (d) Results from the 

proposed technique. 

To further evaluate the efficiency of the proposed 
segmentation method, we compare the contours obtained using 
the ACM, the GVF-snake, and the proposed method with those 
manually drawn by a skilled doctor. Figure 5 shows the 
segmentation results on other two cardiac MR images. Again, 
our proposed method yields the contours that are very close to 
the expert’s opinions. 
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Figure 5.  (a) Original image (b) Doctor’s delineation (c)-(d) Results from 
ACM and GVF-snake (e) Results from the proposed technique. 

 



         

In addition to the visual inspection, we evaluate our 
segmentation method numerically using the probability of error 
in image segmentation  

 )|()()|()( BOPBPOBPOPPE += , (17) 

where )(OP and )(BP are a priori probabilities of objects and 
background in images. )|( OBP  is the probability of error in 
classifying objects as background. )|( BOP is the probability of 
error in classifying background as objects [22]-[25]. 

To also investigate the variation among doctors’ opinions 
on this problem, we ask another skilled doctor to delineate 
contours of ventricles in the MR images. The PEs on the 
segmentation by both doctors are depicted in Table I. They 
show that the experts can even have the disagreement by about 
13.6% on average. The PEs on the results from the proposed 
method, the ACM, and the GVF-snake compared to the two 
doctor’s opinions on 10 MR images are shown in Table II. 

TABLE I.  PROBABILITY OF ERROR IN IMAGE SEGMENTATION (PE) 
BETWEEN TWO SKILLED DOCTORS. 

MR Image PE of Doctor1 and Doctor2 

1 4.80% 
2 5.80% 
3 21.41% 
4 14.44% 
5 7.81% 
6 22.78% 
7 7.50% 
8 20.14% 
9 20.91% 
10 10.79% 

Average 13.63% 
 

TABLE II.  RESULTS ON MR IMAGE BY MEAN OF PROBABILITY OF 
ERROR IN IMAGE SEGMENTATION (PE). 

  

We see that the proposed method yields segmentation 
results much closer to both experts’ opinions than that of the 
ACM and the GVF-snake. Moreover, the disagreement 
between the proposed method and each of the doctors is less 
than the disagreement among both doctors themselves. 

VI. CONCLUSION 
In this paper, we propose a novel edge following technique 

and apply it to segment the left ventricle in cardiac magnetic 
resonance images. The proposed edge following technique 
incorporates a vector image model and the edge map 

information. Segmentation results from our proposed method 
are compared with doctors’ delineation. We also compare the 
proposed method with two popular methods for detecting ill-
defined edges, i.e., the active contour model and the gradient 
vector flow, using the doctors’ opinion as the ground truth. The 
experimental results show that the proposed method yields very 
effective edge detection performances and is better than the 
conventional counterparts on this particular problem. The 
proposed method can further be applied to any image 
processing problems in which the ill-defined edge detection is 
encountered. 
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