

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Design and Real-Time Implementation of an Internal
Model Speed Control for an Induction Motor

Haider A. F. Mohamed, S. S. Yang, M. Moghavvemi
Centre for Research in Applied Electronics (CRAE)

University of Malaya
50603 Kuala Lumpur, Malaysia

haider@um.edu.my

Abstract— This paper carries out the design and real time
implementation of an Internal Model Controller (IMC) to control
the speed of an induction motor and precisely a squirrel cage
type. The scheme in this paper is constructed using a model and a
controller both being Artificial Neural Network (ANN) based.
This ANN-based control scheme has been chosen because of its
ability to handle the strong nonlinearities of the induction motor.
The performance of the controller is tested by applying different
types of input signals as well as load torque disturbances.
Whether loaded or unloaded, the proposed internal model
controller has proved to achieve high performance and accuracy.

Keywords—ANN, system identification, inverse model,
induction motor speed control

I. INTRODUCTION
Recently, there has been a considerable interest in the area

of nonlinear black-box modelling and dynamic system
controllers with structures based on neural networks [1-2].
Furthermore, from a dynamic control system and especially
adaptive control techniques perspective neural network can
deal with substantially greater range of uncertainty than can be
tolerated by algorithms for other adaptive systems [3-4].

Adaptive control techniques have been developed for
systems that must perform over large ranges of uncertainties
due to large variations in parameter values, environmental
conditions, and signal inputs. These adaptive techniques
generally incorporate a second feedback loop, which is outside
the first feedback loop. An example is the internal model
control (IMC) in which there is emphasize on the role of
system forward and inverse models [5]. IMC has been
thoroughly examined and shown to yield robustness and
stability [6]. Moreover, IMC extends readily to nonlinear
control systems [7].

One way of improving the performance of nonlinear
systems is to combine the powers of adaptive, nonlinear, and
intelligent controllers using internal model control structures.
Examples can be found in [8-11]. The key characteristic of this
type of control strategy is having the inverse controller and the
internal model. Using this internal model, the effect of
uncertainties can be suppressed with the generated feedback
signal.

One of the important nonlinear systems widely used by the
industry is the induction motor, especially the squirrel-cage

induction motor, which enjoys several inherent advantages like
simplicity, ruggedness, low cost, reliability and compactness
[12]. The main problem with this motor is that it’s a highly
coupled, nonlinear dynamic plant, and in addition, many of its
parameters vary with time and operating condition [13].

The aim of this paper is to design robust induction motor
speed controller that uses the internal model control structure
based on neural network forward and inverse models. This will
take care of the nonlinearities of the induction motor and adapt
the system for parameter variations and perturbations.

II. INTERNAL MODEL CONTROL
In internal model control, the system model is placed in

parallel with the real plant as shown in Fig. 1. Here, the
nonlinear operators denoted by P, M and C are the plant, plant
model, and controller respectively.

C P

M

()tr ()tu

()tym

()td()tIMCε

()tpmε

()ty p ()ty

Figure 1. General block diagram of an IMC system.

The difference between the plant and model outputs pmε is
used for feedback purposes and given by

 () () ()tytyt m
pm −=ε (1)

 () () ()tdtyty p += (2)

where ()td is the disturbance.

This feedback signal is then processed by the controller
subsystem in the forward path. Thus the real error IMCε which
should be controlled is

 () () ()ttrt pmIMC εε −= (3)

The properties of IMC dictate that this part of the controller
should be related to the inverse model of the real plant. Given

the forward and inverse network models, the realization of IMC
using neural networks will be straightforward [14]. In this
structure, the relationship between the inputs and outputs is:

 () ()MPC
MCr

MPC
PCy

−+
−+

−+
=

1
1

1
 (4)

A. IMC filter
The discussion so far has considered only the idealized case

of a perfect model, leading to perfect control. In practice,
however, a perfect model can never be obtained. In addition,
the infinite gain required by a perfect controller would lead to
sensitivity problems under model uncertainty. The filter F is
introduced to alleviate these problems. By suitable design, the
filter can be selected to reduce the gain of the feedback system,
thereby moving away from the ideal controller. Fig. 2 shows
the IMC diagram with the filter. Here, the controller is Ĉ :

 FCC =ˆ (5)

C P

MĈ

F
()tr ()tu

()ty m

()td()tIMCε

()tpmε

()ty p ()ty

Figure 2. IMC with a filter block diagram.

The subsystem F is usually a linear filter which can be
designed to introduce desirable robustness and tracking
response to the closed-loop. The double lines used in the block
diagram emphasize that the operators are nonlinear and that the
usual block diagram manipulations do not hold. A second role
of the filter is to project the signal IMCε into the appropriate
input space of the controller. The structure given in Fig. 2 has
shown to have good robustness against uncertainties [6, 15].

To design the IMC filter, the IMC performance and system
type have to be discussed first;

B. IMC performance
The sensitivity function ()sρ which relates the external

inputs r and d to the feedback error IMCε is given by

 () ()s
MPC

MC
d
y

rd
IMC ρ

ε ∆
=

−+
−==

− 1
1 (6)

The complimentary sensitivity function ()sσ , which
determines the system robustness, is found by subtracting ()sρ
from unity as follows

 () ()s
MPC

PC
r
y σ

∆
=

−+
=

1
 (7)

When the model is exact (P=M), (6) and (7) reduce to

 () MCs −= 1ρ (8)

 () MCs =σ (9)

Through the above IMC parameterization, the controller C
is related to ()sρ and ()sσ in a very simple linear manner
which make the design of C easy. The effect of the classical
controller on sensitivity function ()sρ and complimentary
sensitivity function ()sσ is more complex.

C. Sensitivity and system types
System types were defined in control system theory to

classify the asymptotic closed–loop behavior [6]. Thus, for a
system of type m the following should yield

 () 0lim
0

=
→ ks s

sρ , mk <≤0 (10)

Using (4), this definition becomes:

 () 01
1

1lim
0

=
−+

−
→ ks sMPC

MC , mk <≤0 (11)

Condition (9) is satisfied if and only if ()MC−1 has m
zeros at the origin which is the case if and only if:

 () 01lim
0

=−
→

MC
ds
d

k

k

s
, mk <≤0 (12)

From the internal model control theory [8], the controller C
is determined such that the integral squared error (ISE)

 ()∫
∞

=
0

22
2 dttIMCIMC εε (13)

is minimized for a particular input u.

For the ISE to be bounded, the error has to vanish as
∞→t . This implies that the controller C for a well-trained

model has to generate a type 1 system. For the system to be
type 1, it should fulfill the following condition

 1lim
0

=
→

MC
s

 (14)

D. Filter design
For robustness C has to be augmented by a low pass filter

F. In principle both the structure and the parameters of F
should be determined such that an optimal compromise
between performance and robustness is reached. To simplify
the design task, the filter structure is fixed and small number of
filter parameters (usually just one) is searched to obtain desired
robustness characteristics. Here, it is logical to choose F such
that the closed-loop system retains its asymptotic tracking

properties. For systems of type m, F has to satisfy (10). Thus,
the new condition is

 () 01lim
0

=−
→

MCF
ds
d

k

k

s
, mk <≤0 (15)

In addition, one filter parameter with unity steady state gain
of the following form is used:

 () ()
()n

m
m

s
sssF

1
111

1
1

+
+++= −

−
λ

ββ (16)

where λ is the adjustable filter parameter, n is the order and
selected large enough to make Ĉ proper and iβ is chosen to
satisfy (15).

The simplest filter of type 1 that has the form of (16) and
satisfies (15) is

 ()
()ns

sF
1

1
+

=
λ

 (17)

III. ARTIFICIAL NEURAL NETWORKS
ANNs offer the advantage of performance improvement

through learning using parallel and distributed processing.

A. Network architecture
It has been formally shown by [16] that artificial neural

networks with at least one hidden layer and sufficient number
of neurons are able to approximate a wide class of continuous
nonlinear functions within an arbitrarily small error margin.
Fig. 3 shows a typical two-layer artificial neural network.

Hidden
layer

j

Input
layer

i

Output
layer

k
v ji wkj

∑ ∑

Hidden neuron Output neuron

Bias Bias

iu ky

jx ky

Figure 3. A two layer artificial neural network.

Defining the following terms

 ∑=
i

ijij uvH , , ...,h, j= 21 (18)

 ∑=
j

jkjk xwI , , ...,m, k= 21 (19)

where Hj is the combined or net input to hidden-layer unit j,
while Ik is the net input to unit k of the output-layer.

Outputs computed by unit j of the hidden-layer and unit k of
the output-layer are given by:

 ()jj Hfx = , , ...,h, j= 21 (20)

 ()kk Ify = , , ...,m, k= 21 (21)

respectively, where f is an arbitrary, bounded, differentiable
function (the activation function). Therefore, unit k output yk
will have the following expression:

 ()

== ∑ ∑

j i
ijikjkk uvfwfIfy (22)

B. Training algorithm
Based on the iterative gradient algorithm method, the

backpropagation training algorithm is designed to minimize the
mean square error between the output of the feedforward
network and the desired output [16-17]. In this method, errors
are propagated backwards, layer by layer, with weights
correction being made to the subsequent layer in an iterative
manner, Fig. 4. The process is repeated a number of times for
each pattern in the training set until the error criterion is
reached. For minimization, we calculate the predicted error.
First, every iteration step s, the equivalent error δk of neuron k
in the output layer is given by:

 () () () ()sysyss kkkk ˆ−== εδ (23)

Then, the equivalent hidden layer error δj of neuron j is:

 () ()[]
() ()∑=

k
kjk

j

j
j ws

sdH
sHdf

s δδ (24)

Then, weights connecting the hidden and output layers are
adjusted according to:

() () ()

() () () ()1

1

−∆+=∆

∆+−=

swsxssw

swswsw

kjjkkj

kjkjkj

βηδ
 (25)

where η and β are the learning rate and the momentum
parameters respectively. While the weights connecting the
input and hidden layer are corrected based on

() () ()

() () () ()1

1

−∆+=∆

∆+−=

svsussv

svsvsv

jiijji

jijiji

βηδ
 (26)

ydu
vji wkj

ki j

δδ∑

Desired
Output

Network
Output

Figure 4. Backpropagation algorithm.

C. Generalized inverse model
Conceptually, the simplest approach to obtain the inverse

model of the system is the generalized inverse modeling
method shown in Fig. 5. Here, a synthetic training signal (the
plant input) is introduced to the system. The plant output is
then used as input to the network. The network output is
compared with the training signal (the system input) and this
error is used to train the network. This structure will clearly
force the network to represent the inverse of the plant. The
resulting inverse model M will be controller C in Fig. 2.

+- PlantPlant
PM

Learning
Algorithm

Learning
Algorithm

()tu ()ty()tû

()tε

()ty

Figure 5. Generalized inverse plant modeling.

Commonly, the first stage in this method is to collect a data
set NZ that covers the overall plant behavior. Here NZ is

 []NNN yuZ ,= (27)

where

 () () ()[]Nuuuu N ,,2,1= (28)

 () () ()[]Nyyyy N ,,2,1= (29)

The objective with inverse plant modeling is to formulate a
controller, such that the overall controller/plant architecture has
a unity transfer function, i.e. if the plant can be described as

 () ()[]θϕθ ,|ˆ tgty = (30)

where ŷ denotes the model output and g is a non-linear
function parameterized by θ which is a finite dimensional
parameter vector (the weights of the network in our case) and

()tϕ is the regressors vector.

The inverse network is trained as the inverse of the plant
model, i.e.

 () ()[]θϕθ ,|ˆ 1 tgtu −= (31)

where û is the output of the inverse model and also will be
the control signal.

However, modeling errors perturb the transfer function
away from unity. Therefore, ()[]θϕ ,ˆ 1 tg − is used instead
of ()[]θϕ ,1 tg − . Thus

 () ()[]θϕθ ,ˆ|ˆ 1 tgtu −= (32)

To obtain the inverse model in the generalized training
method, a network is trained off-line to minimize the criterion:

 () () ()[]∑
=

−=
N

t

N
N tutu

N
ZW

1

2|ˆ1, θθ (33)

Once the modeling of the inverse plant is carried out, the
model is applied as the controller for the system by inserting
the desired output (the reference) instead of the system output.

IV. IMC DESIGN FOR INDUCTION MOTORS
The induction motor being used in this paper is a three

phase squirrel-cage (380v, 50Hz, 4 -pole, 0.1 kW) and Y-
connected. The input to the plant is a voltage signal that will be
converted through a voltage-frequency converter to give the
desired speed of the motor. The rotor speed is read by a
tachometer and presented as a voltage signal.

A. Data collection and presentation
The input data set is chosen randomly in the range from 0 to

1390 rpm to fully excite the whole speed range which allows
the network to recognize the system’s behavior. The input-
output data set is shown in Fig. 6. The data set will be divided
into two sets; one for training and the other for validation.

 () () () ()[]NyyNuuZ N ,,1;,,1= (34)

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

Samples

O
ut

pu
t S

ig
na

l (
rp

m
)

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

In
pu

t S
ig

na
l (

rp
m

)

The Input-Output Data Set.

Figure 6. Input-output data set.

B. Forward plant model
The work of this paper is a continuation of a previous work

published in [18]. Also, the data set used to train the inverse
model is the same.

C. Inverse plant model
The system is a single-input single-output (SISO) system.

To obtain the inverse plant model in the generalized method,
the output y(t) is fed to the training algorithm as the input and
u(t) as the output. The regressors are chosen so that the inverse
model will be of a second order. This is done by choosing two
past inputs and two past outputs. The regressor vector is as
follows

 () () () () ()[]2,1,2,1 −−−−= tututytytϕ (35)

The network structure is a two-layer hyperbolic tangent
sigmoidal feedforward architecture (one hidden layer with a
tanh activation function and one output layer with a linear
activation function).

D. Training the Network
The weights for both the hidden layer and the output layer

are initially randomized around the values of -0.5 and +0.5
before the training. This is useful so that the training would fall
in global minima rather than local minima [19]. The training
showed good results using five hidden neurons and 3000
samples as a training set.

The aim now is to obtain ()[]θϕ ,ˆ 1 tg − that represents the
inverse model and produces the control action ()θ|ˆ tu ,

 () ()[]θϕθ ,ˆ|ˆ 1 tgtu −= (36)

During the back propagation iteration, the Sum of Squared
Errors (SSEs) are calculated as follows:

 () ()[]∑
=

<−=
N

i

tutuSSE
1

2ˆ α (37)

where α is the criterion threshold.

The results of the inverse plant model training algorithm are
shown in Fig. 7 where α was chosen as 1. The network
architecture contains one hidden layer with six neurons and a
hyperbolic tangent (tanh) activation function and one output
layer with a linear activation function.

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

SS
E

(1
:5

0)

The Sum Squared Error During The Training Process.

0 50 100 150 200 250 300 350 400 450
1

1.02

1.04

1.06

SS
E

(5
1:

48
8)

Iterations
Figure 7. Sum of squared errors during training process.

V. EXPERIMENTAL RESULTS
To implement the IMC scheme, the controller is

programmed using the C++ programming language. The
control action in the program is performed during the interrupt
service routine. This is done at each sampling time.

The following sections describe the step, load disturbance,
and tracking responses of the real time experimentation:

A. Step response and disturbance rejection performance
A unit step reference signal representing 1390 rpm is fed to

the controller while a load torque step signal of 2 N.m. (full
load) is applied to the shaft during the period of 4 to 8 seconds.
The results are shown in Fig. 8.

0 2 4 6 8 10 12
0

500

1000

1500

Time (sec)

Sp
ee

d
(r

pm
)

IMC Speed Response under Load Torque Condition

0

1

2

3

T
or

qu
e

(N
.m

.)

Figure 8. Unit step speed response under IMC scheme.

It can be seen from the figure that speed of the induction
motor followed the reference signal with an acceptable steady
state error equals to 0.2878%. The transient response shows a
maximum overshoot of 1430rpm. In addition, the internal
model controller could recover from the disturbance caused by
the applied load torque and the induction motor speed followed
the reference signal after a short time.

B. Speed tracking performance
To check the controller’s performance over different types

of speed reference signals, sine, ramp, and square wave signals
are fed to the system and the results are recorded in Figs. 9, 10,
and 11 respectively.

0 2 4 6 8 10 12 14 16
0

500

1000

1500

Time (sec)

Sp
ee

d
(r

pm
)

IMC Sine Wave Speed Response

Figure 9. Speed response to a sine-wave reference signal.

0 2 4 6 8 10 12 14 16
0

500

1000

1500

Time (sec)

Sp
ee

d
(r

pm
)

IMC Ramp-Wave Speed Response

Figure 10. Speed response to a ramp wave reference signal.

0 2 4 6 8 10 12 14 16
0

500

1000

1500

Time (sec)

Sp
ee

d
(r

pm
)

IMC Square-Wave Speed Response

Figure 11. Speed response to a square wave reference signal.

From these reference tracking plots, Table I is constructed
to show the maximum and the minimum errors recorded for
each of the three reference signals.

TABLE I. STEADY STATE ERROR ANALYSIS

Steady State Error Reference
Signal Minimum Error Maximum Error

Sine -0.59% +0.57%

Ramp -0.53% +0.14%

Square -0.06% +0.06%

From Table I, small steady state errors can be noticed for all
three responses. These errors are considered to be acceptable
since the maximum and minimum errors are around ±0.6% of
the reference signal. The overshoot also shows acceptable
values where the maximum overshoot is 3% for the square
waveform signal.

VI. CONCLUSION
In this paper, nonlinear black-box inverse modeling of an

induction motor is carried out using the back propagation
training algorithm. Half of the experimentally collected data
was employed for ANN training and the other half was used for

model validation. The obtained ANN inverse model cascaded
with a filter is then used together with an ANN forward model
from a previous work to construct an internal model control
structure. The real time implementation of the neural network
internal model control scheme has been presented and its
performance has been tested over different types of reference
signals and applied load torques. The controller tracked the
given reference signals and overcame the applied disturbance.

REFERENCES
[1] B.Karanayil, M. F. Rahman and C. Grantham, “Implementation of an

on-line resistance estimation using artificial neural networks for vector
controlled induction motor drive”, IECON '03 29th Annual Conf. of the
IEEE Industrial Electronics Society, Vol. 2, pp. 1703-1708, 2003.

[2] R. S. Toqeer and N. S. Bayindir, “Neurocontroller for induction motors”,
ICM 2000. Proc. 12th Int. Conf. on Microelectronics, pp. 227-230, 2000

[3] L. Ljung and J. Sjoberg, “A system identification perspective on neural
nets”, Technical Repor, No. LiTH-ISY-R-1373 at
www.control.isy.liu.se, 1992.

[4] B. Bavarian, “Introduction to neural networks for intelligent control”,
IEEE Control Systems Magazine, Vol. 8(2). pp. 3-7, 1988.

[5] C. E. Garcia and M. Morari, “Internal model control: a unifying review
and some new results”, Ind. Engineering Chemistry Process Des.
Dev.,Vol. 21, pp. 308-323, 1982.

[6] M. Morari and E. Zafiriou, “Robust process control”, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[7] C. G.Economou, M. Morari and B. O. Palsson, “Internal model control:
extension to nonlinear systems”, Ind. Engineering Chemistry Process
Des. Dev., Vol. 25, pp. 403-411, 1986.

[8] Han-Xiong Li and Hua Deng, “An approximate internal model-based
neural control for unknown nonlinear discrete processes”, IEEE Trans.
Neural Networks, Vol. 17(3), pp. 659-670, 2006.

[9] S. Bel Hadj Ali, A. El Abed-Abdelkrim, and M. Benrejeb, “An internal
model control strategy using artificial neural networks for a class of
nonlinear systems”, IEEE Int. Conf. Systems, Man and Cybernetics, Vol.
5, pp. 4-7, 2002.

[10] I. Rivals and L. Personnaz, “Nonlinear internal model control using
neural networks: Application to processes with delay and design issues”,
IEEE Trans. Neural Networks, Vol. 11(1), pp. 80-90, 2000.

[11] A. Fink and O. Nelles, “Nonlinear internal model control based on local
linear neural networks”, IEEE Int. Conf. Systems, Man and Cybernetics,
Vol. 1, pp. 117-122, 2001.

[12] P. Mehrotra, J. E. Quaicoe and R. Venkatesan, “Development of an
Artificial Neural Network Based Induction Motor Speed Estimator”,
PESC '96 IEEE Power Electronics Specialists, Vol. 1, pp. 682-688,
1996.

[13] P. Mehrotra, J. E. Quaicoe and R. Venkatesan, “Induction motor speed
estimation using artificial neural networks”, IEEE Canadian Conf.
Electrical and Computer Engineering, Vol. 2, pp. 607-610, 1996.

[14] K. J. Hunt and D. Sbarbaro, “Neural networks for nonlinear internal
model control”, Proc. IEE Pt. D., Vol. 138, pp. 431-438, 1991.

[15] G. Lightbody and G. W. Irwin, “Nonlinear control structures based on
embedded neural system models”, IEEE Trans. Neural Networks, Vol.
8(3), pp. 553-567, 1997.

[16] T. Fukuda and T. Shibata, “Theory and application of neural networks
for industrial control systems”, IEEE Trans. on Ind. Electronics, Vol.
39(6), pp. 472-489, 1992.

[17] M. Weber, P. B. Crilly and W. E. Blass, “Adaptive noise filtering using
an error-backpropagation neural network”, IEEE Trans. on Instrum.
Meas., Vol. 40(5), pp. 820-825, 1991.

[18] H. A. F. Mohamed and S. Yaacob, “Direct inverse speed control of
induction motor using artificial neural networks”, MS2006 Proc. Int.
Conf. Modeling and Simulation, pp. 125-130, 2006.

[19] D. W. Patterson, “Artificial neural networks: theory and applications”,
Prentice Hall, Simon and Schuster (Asia) Pte. Ltd., Singapore, 1996.

