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Abstract— This paper carries out the design and real time 
implementation of an Internal Model Controller (IMC) to control 
the speed of an induction motor and precisely a squirrel cage 
type. The scheme in this paper is constructed using a model and a 
controller both being Artificial Neural Network (ANN) based. 
This ANN-based control scheme has been chosen because of its 
ability to handle the strong nonlinearities of the induction motor. 
The performance of the controller is tested by applying different 
types of input signals as well as load torque disturbances. 
Whether loaded or unloaded, the proposed internal model 
controller has proved to achieve high performance and accuracy. 
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I.  INTRODUCTION 
Recently, there has been a considerable interest in the area 

of nonlinear black-box modelling and dynamic system 
controllers with structures based on neural networks [1-2]. 
Furthermore, from a dynamic control system and especially 
adaptive control techniques perspective neural network can 
deal with substantially greater range of uncertainty than can be 
tolerated by algorithms for other adaptive systems [3-4]. 

Adaptive control techniques have been developed for 
systems that must perform over large ranges of uncertainties 
due to large variations in parameter values, environmental 
conditions, and signal inputs. These adaptive techniques 
generally incorporate a second feedback loop, which is outside 
the first feedback loop. An example is the internal model 
control (IMC) in which there is emphasize on the role of 
system forward and inverse models [5]. IMC has been 
thoroughly examined and shown to yield robustness and 
stability [6].  Moreover, IMC extends readily to nonlinear 
control systems [7]. 

One way of improving the performance of nonlinear 
systems is to combine the powers of adaptive, nonlinear, and 
intelligent controllers using internal model control structures. 
Examples can be found in [8-11]. The key characteristic of this 
type of control strategy is having the inverse controller and the 
internal model. Using this internal model, the effect of 
uncertainties can be suppressed with the generated feedback 
signal. 

One of the important nonlinear systems widely used by the 
industry is the induction motor, especially the squirrel-cage 

induction motor, which enjoys several inherent advantages like 
simplicity, ruggedness, low cost, reliability and compactness 
[12]. The main problem with this motor is that it’s a highly 
coupled, nonlinear dynamic plant, and in addition, many of its 
parameters vary with time and operating condition [13]. 

The aim of this paper is to design robust induction motor 
speed controller that uses the internal model control structure 
based on neural network forward and inverse models. This will 
take care of the nonlinearities of the induction motor and adapt 
the system for parameter variations and perturbations. 

II. INTERNAL MODEL CONTROL 
In internal model control, the system model is placed in 

parallel with the real plant as shown in Fig. 1. Here, the 
nonlinear operators denoted by P, M and C are the plant, plant 
model, and controller respectively. 
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Figure 1.  General block diagram of an IMC system. 

The difference between the plant and model outputs pmε   is 
used for feedback purposes and given by 

 ( ) ( ) ( )tytyt m
pm −=ε  (1) 

 ( ) ( ) ( )tdtyty p +=  (2) 

where ( )td  is the disturbance. 

This feedback signal is then processed by the controller 
subsystem in the forward path. Thus the real error IMCε  which 
should be controlled is 

 ( ) ( ) ( )ttrt pmIMC εε −=  (3) 

The properties of IMC dictate that this part of the controller 
should be related to the inverse model of the real plant. Given 



 

         

the forward and inverse network models, the realization of IMC 
using neural networks will be straightforward [14]. In this 
structure, the relationship between the inputs and outputs is: 
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A. IMC filter  
The discussion so far has considered only the idealized case 

of a perfect model, leading to perfect control. In practice, 
however, a perfect model can never be obtained. In addition, 
the infinite gain required by a perfect controller would lead to 
sensitivity problems under model uncertainty. The filter F is 
introduced to alleviate these problems. By suitable design, the 
filter can be selected to reduce the gain of the feedback system, 
thereby moving away from the ideal controller. Fig. 2 shows 
the IMC diagram with the filter. Here, the controller is Ĉ : 

 FCC =ˆ  (5) 
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Figure 2.  IMC with a filter block diagram. 

The subsystem F is usually a linear filter which can be 
designed to introduce desirable robustness and tracking 
response to the closed-loop. The double lines used in the block 
diagram emphasize that the operators are nonlinear and that the 
usual block diagram manipulations do not hold. A second role 
of the filter is to project the signal IMCε  into the appropriate 
input space of the controller. The structure given in Fig. 2 has 
shown to have good robustness against uncertainties [6, 15]. 

To design the IMC filter, the IMC performance and system 
type have to be discussed first; 

B. IMC performance  
The sensitivity function ( )sρ  which relates the external 

inputs r and d to the feedback error IMCε  is given by 
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The complimentary sensitivity function ( )sσ , which 
determines the system robustness, is found by subtracting ( )sρ  
from unity as follows 
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When the model is exact (P=M), (6) and (7) reduce to 

 ( ) MCs −= 1ρ  (8) 

 ( ) MCs =σ  (9) 

Through the above IMC parameterization, the controller C 
is related to ( )sρ  and ( )sσ  in a very simple linear manner 
which make the design of C easy. The effect of the classical 
controller on sensitivity function ( )sρ  and complimentary 
sensitivity function ( )sσ  is more complex. 

C. Sensitivity and system types  
System types were defined in control system theory to 

classify the asymptotic closed–loop behavior [6]. Thus, for a 
system of type m the following should yield 

 ( ) 0lim
0

=
→ ks s

sρ , mk <≤0  (10) 

Using (4), this definition becomes: 

  ( ) 01
1
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−
→ ks sMPC
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Condition (9) is satisfied if and only if ( )MC−1  has m 
zeros at the origin which is the case if and only if: 
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From the internal model control theory [8], the controller C 
is determined such that the integral squared error (ISE) 

 ( )∫
∞

=
0

22
2 dttIMCIMC εε  (13) 

is minimized for a particular input u. 

For the ISE to be bounded, the error has to vanish as 
∞→t . This implies that the controller C for a well-trained 

model has to generate a type 1 system. For the system to be 
type 1, it should fulfill the following condition 

 1lim
0

=
→

MC
s

 (14) 

D. Filter design  
For robustness C has to be augmented by a low pass filter 

F. In principle both the structure and the parameters of F 
should be determined such that an optimal compromise 
between performance and robustness is reached.  To simplify 
the design task, the filter structure is fixed and small number of 
filter parameters (usually just one) is searched to obtain desired 
robustness characteristics. Here, it is logical to choose F such 
that the closed-loop system retains its asymptotic tracking 



 

         

properties.  For systems of type m, F has to satisfy (10). Thus, 
the new condition is 

 ( ) 01lim
0

=−
→

MCF
ds
d

k

k

s
, mk <≤0  (15) 

In addition, one filter parameter with unity steady state gain 
of the following form is used: 
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where λ  is the adjustable filter parameter, n is the order and 
selected large enough to make Ĉ  proper and iβ  is chosen to 
satisfy (15). 

The simplest filter of type 1 that has the form of (16) and 
satisfies (15) is 

 ( )
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=
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III. ARTIFICIAL NEURAL NETWORKS 
ANNs offer the advantage of performance improvement 

through learning using parallel and distributed processing.  

A. Network architecture 
It has been formally shown by [16] that artificial neural 

networks with at least one hidden layer and sufficient number 
of neurons are able to approximate a wide class of continuous 
nonlinear functions within an arbitrarily small error margin. 
Fig. 3 shows a typical two-layer artificial neural network.  
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Figure 3.  A two layer artificial neural network. 

Defining the following terms 

 ∑=
i

ijij uvH , , ...,h,  j= 21  (18) 

 ∑=
j

jkjk xwI , , ...,m,  k= 21  (19) 

where Hj is the combined or net input to hidden-layer unit j, 
while Ik is the net input to unit k of the output-layer.  

Outputs computed by unit j of the hidden-layer and unit k of 
the output-layer are given by: 

 ( )jj Hfx = , , ...,h,  j= 21  (20) 

 ( )kk Ify = , , ...,m,  k= 21  (21) 

respectively, where f is an arbitrary, bounded, differentiable 
function (the activation function).  Therefore, unit k output yk 
will have the following expression:  
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B. Training algorithm 
Based on the iterative gradient algorithm method, the 

backpropagation training algorithm is designed to minimize the 
mean square error between the output of the feedforward 
network and the desired output [16-17]. In this method, errors 
are propagated backwards, layer by layer, with weights 
correction being made to the subsequent layer in an iterative 
manner, Fig. 4.  The process is repeated a number of times for 
each pattern in the training set until the error criterion is 
reached. For minimization, we calculate the predicted error. 
First, every iteration step s, the equivalent error δk of neuron k 
in the output layer is given by:  

 ( ) ( ) ( ) ( )sysyss kkkk ˆ−== εδ  (23) 

Then, the equivalent hidden layer error δj of neuron j is: 

 ( ) ( )[ ]
( ) ( )∑=

k
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j

j
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Then, weights connecting the hidden and output layers are 
adjusted according to: 
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where η  and β  are the learning rate and the momentum 
parameters respectively. While the weights connecting the 
input and hidden layer are corrected based on 
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Figure 4.  Backpropagation algorithm.  

C. Generalized inverse model 
Conceptually, the simplest approach to obtain the inverse 

model of the system is the generalized inverse modeling 
method shown in Fig. 5. Here, a synthetic training signal (the 
plant input) is introduced to the system.  The plant output is 
then used as input to the network.  The network output is 
compared with the training signal (the system input) and this 
error is used to train the network.  This structure will clearly 
force the network to represent the inverse of the plant. The 
resulting inverse model M will be controller C in Fig. 2. 
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Figure 5.  Generalized inverse plant modeling. 

Commonly, the first stage in this method is to collect a data 
set NZ  that covers the overall plant behavior.  Here NZ  is 

 [ ]NNN yuZ ,=  (27) 

where 

 ( ) ( ) ( )[ ]Nuuuu N ,,2,1=  (28) 

 ( ) ( ) ( )[ ]Nyyyy N ,,2,1=  (29) 

The objective with inverse plant modeling is to formulate a 
controller, such that the overall controller/plant architecture has 
a unity transfer function, i.e. if the plant can be described as  

 ( ) ( )[ ]θϕθ ,|ˆ tgty =  (30) 

where ŷ  denotes  the model output and g is a non-linear 
function parameterized by θ   which is a finite dimensional 
parameter vector (the weights of the network in our case) and 

( )tϕ  is the regressors vector. 

The inverse network is trained as the inverse of the plant 
model, i.e. 

 ( ) ( )[ ]θϕθ ,|ˆ 1 tgtu −=  (31) 

where û  is the output of the inverse model and also will be 
the control signal. 

However, modeling errors perturb the transfer function 
away from unity. Therefore, ( )[ ]θϕ ,ˆ 1 tg −  is used instead 
of ( )[ ]θϕ ,1 tg − . Thus 

 ( ) ( )[ ]θϕθ ,ˆ|ˆ 1 tgtu −=  (32) 

To obtain the inverse model in the generalized training 
method, a network is trained off-line to minimize the criterion: 

 ( ) ( ) ( )[ ]∑
=

−=
N

t

N
N tutu

N
ZW

1

2|ˆ1, θθ  (33) 

Once the modeling of the inverse plant is carried out, the 
model is applied as the controller for the system by inserting 
the desired output (the reference) instead of the system output.  

IV. IMC DESIGN FOR INDUCTION MOTORS  
The induction motor being used in this paper is a three 

phase squirrel-cage (380v, 50Hz, 4 -pole, 0.1 kW) and Y-
connected. The input to the plant is a voltage signal that will be 
converted through a voltage-frequency converter to give the 
desired speed of the motor. The rotor speed is read by a 
tachometer and presented as a voltage signal. 

A. Data collection and presentation 
The input data set is chosen randomly in the range from 0 to 

1390 rpm to fully excite the whole speed range which allows 
the network to recognize the system’s behavior. The input-
output data set is shown in Fig. 6. The data set will be divided 
into two sets; one for training and the other for validation. 

 ( ) ( ) ( ) ( )[ ]NyyNuuZ N ,,1;,,1=  (34) 
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Figure 6.  Input-output data set. 

B. Forward plant model 
The work of this paper is a continuation of a previous work 

published in [18]. Also, the data set used to train the inverse 
model is the same. 



 

         

C. Inverse plant model 
The system is a single-input single-output (SISO) system. 

To obtain the inverse plant model in the generalized method, 
the output y(t) is fed to the training algorithm as the input and 
u(t) as the output. The regressors are chosen so that the inverse 
model will be of a second order. This is done by choosing two 
past inputs and two past outputs. The regressor vector is as 
follows 

 ( ) ( ) ( ) ( ) ( )[ ]2,1,2,1 −−−−= tututytytϕ  (35) 

The network structure is a two-layer hyperbolic tangent 
sigmoidal feedforward architecture (one hidden layer with a 
tanh activation function and one output layer with a linear 
activation function). 

D. Training the Network 
The weights for both the hidden layer and the output layer 

are initially randomized around the values of -0.5 and +0.5 
before the training. This is useful so that the training would fall 
in global minima rather than local minima [19]. The training 
showed good results using five hidden neurons and 3000 
samples as a training set.  

The aim now is to obtain ( )[ ]θϕ ,ˆ 1 tg −  that represents the 
inverse model and produces the control action ( )θ|ˆ tu ,  

 ( ) ( )[ ]θϕθ ,ˆ|ˆ 1 tgtu −=  (36) 

During the back propagation iteration, the Sum of Squared 
Errors (SSEs) are calculated as follows: 

 ( ) ( )[ ]∑
=

<−=
N

i

tutuSSE
1

2ˆ α  (37) 

where α is the criterion threshold.  

The results of the inverse plant model training algorithm are 
shown in Fig. 7 where α was chosen as 1. The network 
architecture contains one hidden layer with six neurons and a 
hyperbolic tangent (tanh) activation function and one output 
layer with a linear activation function.  
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Figure 7.  Sum of squared errors during training process. 

V. EXPERIMENTAL RESULTS  
To implement the IMC scheme, the controller is 

programmed using the C++ programming language. The 
control action in the program is performed during the interrupt 
service routine. This is done at each sampling time. 

The following sections describe the step, load disturbance, 
and tracking responses of the real time experimentation: 

A. Step response and disturbance rejection performance 
A unit step reference signal representing 1390 rpm is fed to 

the controller while a load torque step signal of 2 N.m. (full 
load) is applied to the shaft during the period of 4 to 8 seconds. 
The results are shown in Fig. 8.  
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Figure 8.  Unit step speed response under IMC scheme. 

It can be seen from the figure that speed of the induction 
motor followed the reference signal with an acceptable steady 
state error equals to 0.2878%. The transient response shows a 
maximum overshoot of 1430rpm. In addition, the internal 
model controller could recover from the disturbance caused by 
the applied load torque and the induction motor speed followed 
the reference signal after a short time.  

B. Speed tracking performance 
To check the controller’s performance over different types 

of speed reference signals, sine, ramp, and square wave signals 
are fed to the system and the results are recorded in Figs. 9, 10, 
and 11 respectively. 
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Figure 9.  Speed response to a sine-wave reference signal. 
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Figure 10.  Speed response to a ramp wave reference signal. 
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Figure 11.  Speed response to a square wave reference signal. 

From these reference tracking plots, Table I is constructed 
to show the maximum and the minimum errors recorded for 
each of the three reference signals.  

TABLE I.  STEADY STATE ERROR ANALYSIS 

Steady State Error Reference 
Signal Minimum Error Maximum Error 

Sine -0.59% +0.57% 

Ramp -0.53% +0.14% 

Square -0.06% +0.06% 

 

From Table I, small steady state errors can be noticed for all 
three responses. These errors are considered to be acceptable 
since the maximum and minimum errors are around ±0.6% of 
the reference signal. The overshoot also shows acceptable 
values where the maximum overshoot is 3% for the square 
waveform signal.  

VI. CONCLUSION  
In this paper, nonlinear black-box inverse modeling of an 

induction motor is carried out using the back propagation 
training algorithm. Half of the experimentally collected data 
was employed for ANN training and the other half was used for 

model validation. The obtained ANN inverse model cascaded 
with a filter is then used together with an ANN forward model 
from a previous work to construct an internal model control 
structure. The real time implementation of the neural network 
internal model control scheme has been presented and its 
performance has been tested over different types of reference 
signals and applied load torques. The controller tracked the 
given reference signals and overcame the applied disturbance.  
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