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Abstract— A new method of solving the multiple real roots
of polynomial by neural networks is proposed in this paper.
This method combines the symbolic method with the numer-
ical method. Based on the complete discrimination system of
polynomial, the number and multiplicities of the distinct real
roots of polynomials can be explicit determined. According to the
number of the distinct real roots, a neural networks model for
finding the multiple real roots of polynomial is established. From
the description of the new model, it is not difficult to find that
the existent neural networks for finding real roots of polynomial
is the special case of the new one, where all of the real roots
are treated as different values. Through training the new model
by the gradient descent method, the approximate real roots of
polynomial can be obtained. From the simulation results, it is
shown that, comparing to the existent neural networks of finding
real roots, the new method is not only more effective, but also
can avoid the inequality between two or more equal real roots
after finishing to solve the polynomial.

I. INTRODUCTION

In many branches of science and engineering, the resolution
of a problem coming from practice is often reduced to the
search of a solution for an equation or a system of equations
modeling the considered problem [1]–[6]. So it is of theoretical
and practical significance to solve the equation or the system
of equations. Solving an equation or a system of equations can
be related to the existence or non-existence of complex or real
solutions, to the number of real or complex solution, to the
approximation of one or several solutions, etc. Determination
for the number of roots in a certain range of a polynomial
by an explicit criterion is of characteristic of symbolic com-
putation [7]–[9]. And the approximation solutions solving for
an equation or a system of equations belongs to the scope of
numerical computation.

Many numerical methods for solving equation have been
established, such as the Newton iterating methods, and recur-
sive method, etc. However, the difficulties of accuracy and high
processing speed were encountered by all of these methods [2],
because these methods need a large amount of iterating time
when the degree of polynomial become greater.

The application of neural networks to solving equation is a
novel research topic. A neural network model was presented
to solve the real roots of polynomials with great degree in

[10], [11]. This neural networks have solved some polynomials
effectively. However, when there exists some multiple real
roots in polynomial, the results obtained by this model will
be confusable about these multiple real roots, because all the
real roots arrived at will be different from each other. Thus we
should begin our study of another effective numerical method
for solving the polynomial with multiple real roots .

The classification for the roots of polynomial was once
an interesting issue, but was always a difficult and tough
problem for the polynomial with degree greater than 4. If
the numbers and multiplicities of the distinct real/imaginary
roots for polynomials can be settled, solving the approximate
real roots will go easier. The complete discrimination system
of polynomial presented by Yang. et al. [7]–[9] is a perfect
result for the determination of the numbers and multiplicities of
the real/imaginary roots for polynomials with symbolic coeffi-
cients, which proposed an explicit criterion of the classification
for the roots of polynomial with arbitrary degree.

Based on the complete discrimination system of polyno-
mial, a new method of solving multiple real roots for polyno-
mial by neural networks is presented in this paper. The number
and the multiplicities of distinct real roots will be determined
firstly, and a neural network model of finding multiple real
roots (RRFNN) will be constructed in terms of the number of
distinct real roots in the next place, and then some training
steps will be carried into execution on the new model, and
finally, the approximate real roots will be obtained. The results
can be derived that the existent neural networks model of real
roots finding (RFNN) [10], [11] is the special case of the
new one, where all of the real roots are treated as different
values. From the simulations, it is easy to find that comparing
to the existent neural networks of finding roots, the new one
presented in this paper is not only more effective, but also can
avoid the inequality between two or more equal real roots after
finishing to solve the polynomial.

This paper is organized as follows. In Section II, some
preliminaries will be presented. The complete discrimination
system of polynomial will be expanded in Section III, which
is the basis of the method presented in this paper. In Section
IV, the new model for finding the multiple real roots by neural
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networks and the corresponding algorithm based on the com-
plete discrimination system of polynomial will be proposed.
Simulation will be illumined in Section V. Conclusions will
be given in Section VI.

II. PRELIMINARIES

A. Problem Presentation

Let f(x) be a polynomial with n order described by:

f(x) = a0x
n + a1x

n−1 + · · · + an−1x + an, (1)

where n ≥ 2, a0 �= 0. In this paper, the n roots of polyno-
mial (1) is supposed as real numbers, which is denoted by
w1, w2, · · · , wn.

The purpose of this paper is how to find the multiple real
roots of polynomial (1) more effectively and faster.

B. The Neural Networks of Real Roots Finding

A neural network model was used to solve the real roots
of polynomials with great order in [10], [11]. Assuming the
coefficient a0 of xn as 1, then the polynomial (1) can be
represented as:

f(x) = xn + a1x
n−1 + · · · + an−1x + an. (2)

Supposing that there exists n approximate real roots of
polynomial (2), which are denoted by wi’s, for i = 1, 2, · · · , n,
respectively, then polynomial (2) can be factorized as follows:

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

.=
n∏

i=1

(x−wi). (3)

The model [10], [11] is shown in Fig.1. There are three
layers consisting of two input nodes corresponding to ”1” and
x, n hidden nodes of representing the difference between the
input x and the connected weight wi’s, for i = 1, 2, · · · , n,
and one output node, which performs the operation the same
as (3).

The target of training this model is to modify the weights
wi’s, for i = 1, 2, · · · , n, between the input node “1” and the
hidden nodes, to the approximate real roots of polynomial (2).
At the mean time, the other weights will be fixed at value 1’s.

Some polynomials will be effectively settled by this model.
But when there exists some multiple real roots in polynomial
(2), the results obtained by this model will be confusable about
these multiple real roots, because the n real roots reached will
be different from each other. As a result, it is necessary to
search for another effective solving method.

x1

Fig. 1. The neural network model for finding real roots

III. THE COMPLETE DISCRIMINATION SYSTEM OF

POLYNOMIAL

A complete discrimination system (CDS) of polynomial
was presented by Yang. et al. [7]–[9]. Based on a CDS, an
explicit criterion for the determination of the numbers and
multiplicities of the real/imaginary roots for polynomials with
symbolic coefficients was proposed.

In this section, the complete discrimination system of
polynomial will be introduced. For more detail information,
see [7]–[9]. Based on this system, a new method to finding
real roots of polynomial will be presented in next section.

Definition 3.1: (discrimination matrix)
Given a polynomial (1) with general symbolic coefficients,

the following (2n + 1) × (2n + 1) matrix in terms of the
coefficients




a0 a1 . . . an

0 na0 . . . an−1

a0 . . . an−1 an

0 . . . 2an−2 an−1

. . . . . .

. . . . . .
a0 a1 . . . an

0 na0 . . . an−1

a0 . . . an−1 an




is called discrimination matrix of f(x), and denoted by
Discr(f).

By dk or dk(f) denote the determinant of the submatrix of
Discr(f), formed by the first k rows and the first k columns,
for k = 1, 2, · · · , 2n + 1. The discrimination matrix

{d1, d2, · · · , d2n+1},
is called the principal minor sequence.

Definition 3.2: (Discriminant Sequence)
Let Dk = d2k, for k = 1, 2, · · · , n. The n-tuple

{D1, D2, · · · , Dn}



is called the discriminant sequence of polynomial f(x).
Sometimes, the discriminant sequence can be denoted by a

more detailed notation to specify f(x):

{D1(f), D2(f), · · · , Dn(f)}.
Definition 3.3: (Sign List)
The list

{sign(D1), sign(D2), · · · , sign(Dn)}
is called sign list of a given sequence {D1, D2, · · · , Dn},
where

sign(x) =




1 if x > 0,
0 if x = 0,
−1 if x < 0.

Definition 3.4: (Revised Sign List)
Given a sign list [s1, s2, · · · , sn], a new list

[ε1, ε2, · · · , εn]

is called the revised list, which can be constructed as follows:
(1) If [si, si+1, · · · , si+j ] is a section of the given list, where

si �= 0; si+1 = si+2 = · · · = si+j−1 = 0; si+j �= 0,

then, we replace the subsection

[si+1, si+2, · · · , si+j−1]

by [−si,−si, si, si,−si,−si, si, si,−si, · · · ], i.e. let

εi+r = (−1)[
r+1
2 ] · si,

for r = 1, 2, · · · , j − 1.
(2) Otherwise, let εk = sk, i.e. no changes for other terms.
The following theorem is sufficient to determinate the

number of the distinct real or imaginary roots:
Theorem 3.1: Given polynomial (1) with real coefficients,

if the number of the sign changes of the revised sign list
of {D1(f), D2(f), · · · , Dn(f)} is ν, then, the number of the
pairs of distinct conjugate imaginary roots of f(x) equals ν.
Furthermore, if the number of non-vanishing members of the
revised sign list is l, then, the number of the distinct real roots
of f(x) equals l − 2ν.

Definition 3.5: (Multiple Factor Sequence)
Let M = Discr(f), the discrimination matrix of an n-degree

polynomial f(x). By Mk denote the submatrix formed by the
first 2k rows of M , for k = 1, 2, · · · , n; and M(k, i) denote the
submatrix formed by the first 2k−1 columns and the (2k+i)-th
column of Mk, for k = 1, 2, · · · , n, i = 0, 1, · · · , n − k, then,
construct polynomials

∆k(f) =
k∑

i=0

det(M(n − k, i))xk−i,

for k = 0, 1, · · · , n − 1. The n-tuple

{∆0(f), ∆1(f), · · · , ∆n−1(f)}

is called the multiple factor sequence of f(x).
Lemma 3.1: If the number of the 0’s in the revised sign

list of the discriminant sequence of f(x) is k, then, ∆k(f) =
g.c.d.(f(x), f ′(x)). Thus, the g.c.d.(f, f ′) is always in the
multiple factor sequence of f(x).

Definition 3.6: (Complete Discrimination System)
By U denote the union of

{f(x)}, {∆k(f)}, {∆j(∆k(f))}, {∆i(∆j(∆k(f)))}, · · · ,

etc., that is, all the multiple factor sequences at different levels.
Every polynomial of U has a discriminant sequence, and all of
them form a Complete Discrimination System of f(x), denoted
by CDS (f).

IV. THE NEURAL NETWORKS OF FINDING MULTIPLE REAL

ROOTS BASED ON THE COMPLETE DISCRIMINATION

SYSTEM OF POLYNOMIAL

For the convenience of view, in this paper, we take the
polynomial (2) with real coefficients and real roots into ac-
count. Using of the complete discrimination system mentioned
in Section III, the number and the multiplicities of distinct real
roots will be determined. Then, a neural network model for
finding multiple real roots will be constructed in terms of the
number of distinct real roots for polynomial (2).

Assuming that there exist s distinct real roots denoted
by w1, w2, · · · , ws, and the multiplicities of which are
r1, r2, · · · , rs, respectively, where r1 + r2 + · · · + rs = n.

In order to avoid the inequality between two or more equal
real roots after finishing to solve the polynomial arising in [10],
[11], a neural network model for finding multiple real roots is
presented, which is shown in Fig.2.
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Fig. 2. The neural network model for finding multiple real roots

In this model, there are two input nodes corresponding to
the terms of 1 and x, and s hidden nodes, where the number
of hidden nodes is just the number of distinct real roots in
polynomial (2), and one output node.

The connected weights between the input node 1 and the
hidden nodes are denoted by wi, for i = 1, 2, · · · , s, which



represent the s distinct real roots of polynomial (2). The
weights between the input nodes of x and the hidden nodes
are set to 1’s, so do the weights between the hidden nodes and
the output node either.

The training samples are selected from x ∈ (−1, 1) by
average sampling, and the sampling number is denoted by
P . That is, there are P training patterns (xp, yp), for p =
1, 2, · · · , P , where yp = f(xp).

In the training process, for the p’th learning pattern, the
state of the i’th hidden nodes is defined by:

ui = xp − wi · 1 = xp − wi, (4)

for i = 1, 2, · · · , s, where w is the weights vector, the i’th
component of which is the weight between the input node “1”
and the i’th hidden node, that is the i’th root of the polynomial
(2).

Then, the output of the i’th hidden node is defined by

oi = fi(ui) = uri

i , (5)

for i = 1, 2, · · · , s, where ri is the multiplicities of the i’th
root.

The output of the output node is defined by

op =
s∏

i=1

oi =
s∏

i=1

uri

i , (6)

for p = 1, 2, · · · , P.

Let Ep = yp − op, the error cost function of the model in
Fig.2 can be defined by

E =
1

2P

P∑
p=1

E2
p =

1
2P

P∑
p=1

(yp − op)2. (7)

On the foundation of the gradient descent method, we arrive
at conclusion as follows:

Theorem 4.1: For the neural networks of finding multiple
real roots in Fig.2, when the error cost function is defined by
(7), the error E will descend in each iteration step on the basis
of the learning rule as follows:

∆wi = − η

P

P∑
p=1

δpi · op, (8)

δpi = ri(yp − op) · (xp − wi)−1, (9)

where η > 0 is the learning rate.
Proof : The gradient of E with regard to wi is

∂E

∂wi
=

1
P

P∑
p=1

[
ri(yp − op)(xp − wi)−1op

]
.

As a result, the modified formulas of weight ∆wi, for i =
1, 2, · · · , s can be obtained, which is listed by equations (8)
and (9).

The proof is complete.
In order to avoid the large output value in output layer,

two schemes to transform the formula (6) can be taken into
account.

(1) When the sigmoid function

g(z) =
1

1 + e−z
,

is considered, the following equation can be obtained:

op = g(op) =
1

1 + eop
.

Then, it is not difficult to arrive at the learning algorithm
as follows:

∆wi = − η

P

P∑
p=1

δpi · op,

δpi = ri(yp − op)(1 − op)op(xp − wi)−1,

where
yp =

1
1 + eyp

.

(2) The logarithmic function g(z) = ln |z| can be taken as
the transformation function either, thus the following equation
can be obtained:

op = g(op) = ln |op|.
And the corresponding learning algorithm follows that:

∆wi = − η

P

P∑
p=1

ri(yp − op)(xp − wi)−1,

where
yp = ln |yp|.

From the description of the neural networks of finding
multiple real roots mentioned above, it can be seen that the
neural networks of real roots finding is just the special case of
the neural networks for finding multiple real roots, where all
of the real roots are treated as different values.

V. SIMULATION AND DISCUSSIONS

Some examples will be shown to explain the effectiveness
and feasibility of the neural networks of finding multiple real
roots in this section.

Example 5.1: Give a 4-order polynomial as

f1(x) = x4 − 4x3 + 6x2 − 4x + 1,

by using the complete crimination system, it can be determined
that there exists one distinct real roots 1.0, which multiplicities
is 4. We solve the equation f1(x) = 0 by the neural networks
of real roots finding and the neural networks of finding multiple
real roots, respectively.

Let the learning rate η = 0.01, and the learning error limit
ε = 10−35, the convergent value of weight is w = 1.00000000
by RRFNN after 3000 iterations, which is equal to the true



values. However, with the parameters η = 0.02, ε = 10−35,
the convergent values of weights are w1 = 1.12006234, w2 =
0.93855331, w3 = 0.94885331, w4 = 0.99842871 by RFNN
after 3000 iterations. It indicated that the RRFNN is more
effective than the RFNN.

The curves of converging errors for the neural networks of
real roots finding(RFNN) and the neural networks of multiple
real roots finding(RRFNN) are shown in Fig.3. From Fig.3, the
results showed that the RRFNN is of faster convergent speed
than the RFNN.
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Fig. 3. The learning error curves by two methods in Example 5.1

Example 5.2: [10] Give a 8-order polynomial as

f2(x) = x8 − 10x6 + 33x4 − 40x2 + 16, (10)
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Fig. 4. The learning error curve for Example 5.2

we use the neural networks for finding multiple real roots to
solve all of the real roots. According to the complete crimi-
nation system, it can be obtained that the distinct real roots
are −1.0, 1.0,−2.0, 2.0, respectively, and the corresponding
multiplicities of which are all 2.

Let the parameters η = 0.00122, and the learning error
limit ε = 10−10, after 30000 iterations, the gained con-
vergent values of weights are w1 = −2.00151853, w2 =
−0.99971236, w3 = 1.00028649, w4 = 1.99848643, respec-
tively. That is, the approximative real roots of polynomial (10)
can be arrived at by the RRFNN. The corresponding learning

error curve is shown in Fig.4, where (a) is the whole curve of
learning error, and (b) is the partial amplification of (a), and
the learning curves for the four weights are shown in Fig.5.
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Fig. 5. The learning curves for the four weights of w1, w2, w3, w4 in
Example 5.2

VI. CONCLUSION

A neural networks model for finding all of the real roots
of polynomials with multiple real roots has been derived in
this paper, which is the generalized method of the existent
neural networks for finding real roots. Results shows that the
new method can solve the polynomial with multiple real roots
more effectively than the neural networks of real roots finding.

However, both models will encounter the problems of
convergent speed and wrong convergence when the degree of
polynomial gets greater, which is just the intrinsical defect
of the gradient descent method. For the sake of overcoming
the difficult mentioned above, constrained learning method had
been used in the neural networks of real roots finding [10],
[11], which made the learning procedure following the right
direction. Therefore, a new clue is illumined for improving the
method proposed in this paper, that will be the basis of further
generalization of the method presented in this paper.
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