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Abstract—The specifics of process manufacturing have a great 
influence on production management, and the focus of process-
production control is to maintain stable and cost-effective 
production within given constraints. The synthesis of production-
control structures is thus recognized as one of the most important 
design problems in process-production management. This paper 
proposes a closed-loop control structure with the utilization of 
production-performance indicators (pPIs) as a possible solution 
to this problem. pPIs represent the translation of operating 
objectives, such as the minimization of production costs, to a 
reduced set of control variables that can then be used in a 
feedback control. The idea of production-feedback control using 
production PIs as referenced, controlled variables was 
implemented on a procedural model of a production process for a 
polymerization plant. Some preliminary results demonstrate the 
usefulness of the proposed methodology.  

Keywords—Production control; Productivity, Closed-loop 
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I.  INTRODUCTION 
Competitiveness in the global economy has changed the 

basic method of production from planned production to order-
driven production. This has introduced new demands related to 
flexible production, increased production efficiency, fast 
responses to customer demands, and a high and uniform quality 
of products and services [1], [2]. 

Production is a complex process, consisting of several 
operations, interconnected by material, energy and information 
flows, and restricted by the time available as well as 
organizational, technological and other constraints. At the 
production-management level at least two essential activities 
are performed: 

(i) the transformation of a company’s objectives into results 
and 

(ii) the optimization of production. 

To fulfill these two basic tasks successfully, a production 
manager's decisions must be based on accurate and online 
information. A production manager makes decisions on the 
basis of online production data (plans, the availability of 
technological equipment, human resources and materials, 

capacity, the consumption of energy, stocks, quality assurance, 
and ecological measurements), as well as on the basis of a 
subjective assessment and experience. However, the quality of 
the manager’s decision making is limited because of the need 
to adopt a decision in real time, the availability and accuracy of 
existing production data, insufficient knowledge of the 
requirements, and the restrictions dictated by the production 
environment. Of course, this still omits the cost-benefit aspect 
of production, the inability to make the right decision in terms 
of long-term benefits, subjective decisions, etc. All this may 
result in non-optimal decisions, differing management 
strategies, and non-optimal production control from the point 
of view of optimization of the overall operation of a company. 

 The problem of reliable production control is given greater 
exposure in the process industries than in the assembly 
industries, i.e., the process industry has several specifics 
compared to the discrete industry [3], [4]. These specifics make 
process manufacturing both complex and uncertain [5], [4]. 
The complexity of the production process arises primarily from 
the required linking of various sub-processes, each of which 
affects the quality of the final product. The uncertainty of the 
process industry is expressed above all in actual product quality 
and achieved production rate. The non-uniformity of the 
quality of basic raw materials, chemical reactions involved, 
deviations in process parameters, failures of technological 
equipment, outages in energy supply, and often also 
combinations of various indeterminate reasons render any 
prediction of the level of both quality and production rate a 
risky job. 

During the past ten years, or even longer, a number of 
information-technology products have been developed to 
collect and process a vast amount of production data. Today, 
online production data, by various MES (Manufacturing 
Executive Systems), are available to a production manager for 
use in cost-effective production control. In 2001, reference [6] 
discussed the need for information flow and the redistribution 
of management responsibility among all the management-
structure entities in order to achieve highly efficient levels of 
production. The first research results on Decision Support 
Systems (DSS) for the production-management level began to 
appear after 2000. Reference [7] proposes and discusses a 



         

methodology for the conceptual design and implementation of 
a production DSS, and place this system in the context of an 
overall enterprise-management structure. Reference [8] in 
2002 defines the principal measurements used to indicate 
current short-term production efficiency. In the past few years, 
articles describing implemented DSS have also appeared. 

However, the production-management-level functions are 
covered only partially (e.g. production quality and energy 
consumption). The problems regarding a production 
manager’s decision-making process that still remain are: 

• how to extract the relevant information from a vast 
amount of disposable production data in order to make 
the correct decision; 

• how to design a plant-wide production-control system 
that is capable of maintaining near-optimal production 
and eliminating a production manager’s/operator’s 
subjective assessments. 

The weakness of today’s form of production control is 
often in the subjective perception of global production aims, 
the subjective decision making, and also in the vast amount of 
data that are not properly classified according to their 
importance in the decision-making process. The indefinite 
current status of production and the lack of unambiguous 
reference values for significant measures of production 
efficiency, production-plant productivity, mean product 
quality, etc., mean that the production-control activity is still 
influenced by a strong human-factor impact. The main 
problem lies in the fact that the most important global 
production objectives (such as profitability, production 
efficiency, plant productivity, and product quality) are often 
so-called implicit objectives (as they can usually only be 
expressed implicitly as functions of the measurable and 
manipulable variables) and they cannot be directly estimated 
from current production data. 

 For this reason their translation into a set of output 
production-process variables should be provided. The 
transformation of implicitly expressed global production 
objectives into measurable output production-process variables 
(subsequently termed “production-performance indicators”, 
pPIs), the definition of their reference values and the proper 
choice of a set of input (manipulable) production-process 
variables are the bases of the design of an efficient production-
control system. To enable near optimal production, a model of 
the production incorporating a-priori knowledge about the 
behavior of the production process is of great help. As 
profitability is usually the most important production 
parameter a model should incorporate both the cost aspects of 
production as well as production-process dynamics and 
constraints. 

This paper is organized as follows: Section 2 briefly 
describes the basics of the pPI methodology and presents a 
closed-loop paradigm of production management. Section 3 
describes the proposed concept for utilizing pPIs in production 
management in the process industries using the case study of a 
polymerization production process and gives some preliminary 

simulation results of closed-loop MPC-based production 
control. Section 4 presents the conclusions. 

II. DESIGN OF A PRODUCTION CONTROL  SYSTEM 
A production process involves several business and 

technical activities on and around the factory floor. Its 
effectiveness can be assessed using information hidden in a set 
of current and historical production data. The problem of 
extracting the relevant information from a vast amount of 
production data for fast and accurate decision-making can be 
solved by introducing production-performance indicators 
(pPIs) as a reduced set of production parameters, calculated 
from directly measurable production-process outputs, which 
show a relevant, current production status.  

Recently, a balanced set of general pPIs for the production-
management level was introduced [9] and five principal pPIs 
for process-oriented productions were defined: 

(i) Safety and environment: number of accidents at work, 
number of hazardous alarms, fresh-water consumption, wastes 
generated before recycling and number of penalties due to 
releasing waste into the environment. 

(ii) Production efficiency: efficiency of emplo-
yees/infrastructure, raw materials used, energy consumption, 
unit production time, quality of internal and external services, 
and production shutdowns. 

(iii) Production quality: percentage of final products/raw 
materials that do not meet quality criteria, production losses, 
and quality of internal and external services. 

(iv) Production-plan tracking: percentage of production 
orders finished late, number of penalties and percentage of 
production orders finished ahead of time. 

(v) Employees' issues: complete job satisfaction of employees, 
lost workdays due to injury and illness, turnover rate, and 
employees' proposals for improvements and innovations. 

As was already stated, the weakness of the enhanced role 
of the production manager is in the subjective perception of 
global production goals and in the large amount of production 
data that are not properly defined with regard to their 
importance for the decision-making process. 

To resolve this problem it is necessary to define uniform 
global production goals derived from actual production plans 
and strategy [10]. The global production objectives can be 
defined as the reference values cs for significant measures c 
(pPIs) of, e.g., plant efficiency, production-plant productivity, 
mean product quality and others (see Figure 1). 

The controlled variables c are often called implicit as they 
usually can be expressed only implicitly as functions of the 
measurable variables [10].  

Since implicit variables c are not directly measurable, the 
estimation of their current values using the disposable 
production process variables y should be provided. These 
output production-process variables y should have the 
following properties [11]: 



         

(i) They should be more easily measurable; 

(ii) It must be possible to maintain their set-point values by 
proper adjustments of manipulable production process 
variables u; 

(iii) When maintained at the desired optimal set-points through 
the feedback-control subsystem, they should inherently 
contribute to the overall profitability of a production process. 

 

 
 

Figure 1: Optimal production-control system with separate layers for 
optimization and control [12] 

 

Neither pPIs c, nor their reference values cs are static; the 
reference values need to be re-evaluated on the optimization 
layer according to modifications in the production processes or 
production strategy [13], [14. 

An evolution of the general production-control system 
scheme from Figure 1 is given in Figure 2. 

To improve the behavior of the production-control system 
two models are included into the control scheme. As the 
profitability is usually the most important production 
parameter the production-cost model CM calculates the current 
production costs.  

The second model, called the process model M, is used for 
calculations of the parameters of the production-control 
algorithm. Both the production-cost model and the process 
model can be constantly improved by using current production 
data. 
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Figure 2. General scheme of a model-based production-control system 

 

III. THE CASE STUDY 

A. Polymer-Emulsion Production Process 
The polymer-emulsion batch-production process is a 

typical representative of process-oriented production. The 
production effectiveness, to a large extent, relies on the quality 
of the production-control system. The production layout 
consists of several reactors, dosing vessels, storage tanks and 
equalizers, which are used for the production of different 
products.  

The technological process is defined with a recipe, i.e., the 
sequence of operations that have to be performed for the 
production of a particular product. Installed DCS and SCADA 
systems handle the safety, regulatory control and monitoring 
functions successfully, but often the non-uniform quality of 
raw materials, the chemical reactions involved, process down-
time due to failures, prolonged operation at non-optimum 
points, long periods of switch-over from one mode of 
operation to another, prolonged operation with off-spec 
products, a mismatch between the business production plans 
and those achieved by the plant, make the final product 
quality, yield and duration of a single batch variable, which 
renders the entire production process non-optimal.  

The production proceeds in successive batches on different 
equipment where at each batch stage intermediate products 
appear and have to be used in successive stages as soon as 
possible. In each step some physical actions (heating, 
blending) or chemical reactions are involved that have a 
significant influence on the final quality of the product. If the 
production speed is increased, some of the phases need to be 
shortened, which is usually reflected in a lower product 
quality. If the quality of the raw material is low or variable, or 
if the production process is not stable (due to energy failures 
or inadequate regulation) then the quality parameters of the 



         

product achieved may not satisfy the prescribed quality 
requirements and the product may need to be recycled in 
subsequent batches or eliminated. 

A procedural model for the case-study production process 
has been developed to facilitate experimentation and 
verification of the closed-loop control structure ([15], see also 
Figure 3). The model was designed in the academically 
established Matlab, Simulink and Stateflow simulation 
environments. The simulated data are stored in a MS Access 
database and are available for various forms of online and 
offline processing. 
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Figure 3: The structure of the procedural model of producton 

B. Closed-loop production control 
For the case study of the polymer-emulsion batch-

production process the chosen production-performance 
indicators (pPIs)  were Productivity (also denoted as the actual 
production rate or production yield), Product Quality and 
Production Costs.  

These three pPIs represent the output (controlled) variables 
K in Figure 2. None of them are directly measurable, but an 
estimation of their current values can be made using a 
combination of the directly measurable production-process 
variables y (e.g., production rate, temperature profiles, quantity 
of final products, number of production stops, etc).  

Maintaining the predefined set points K* for the chosen 
pPIs K can be achieved by the proper adjustment of some 
process variables u, which in this case were Raw Material 
Quality, Production Speed and Batch Schedule (all direct 
inputs in the production process).  

The cost model CM was used to calculate the current 
production costs, while the process model M, which 
incorporates the case study’s production-process dynamics and 
constraints, was used for the adjustments of the model-
predictive-control algorithm’s parameters. 

 

 
Figure 4. Production costs in relation to Productivity and Product quality pPIs 

for a fixed batch schedule 
 

The results obtained from the production-cost model CM in 
Figure 4 show how Production costs pPI are related to 
Productivity and Product quality pPIs. In the Figure 4, the 
global minimum, where the production costs are a minimum, 
can be identified. While the dependence of the Production 
costs on the other two production pPIs for a chosen type of 
production schedule is known a priori (from the cost model 
CM), a production manager can define exact reference values 
K* for Productivity and Product quality pPIs that have to be 
maintained by the production controller (the inner control 
loop). 

The inner production-control loop is based on the model 
predictive controller. Model predictive control (MPC) is well 
suited to solving this constraint problem [17] and [18] and 
multivariable process control using MPC has been thoroughly 
studied [19] and [20].  

The process model M was identified and analyzed using 
input-output data, gained from several simulation runs. It was 
supposed that the process is linear. In this situation an approach 
where one input is tested while another one is fixed can be 
used.  

In the first experiment the Raw materials quality was fixed 
and the influence of Production speed on the outputs of the 
system (Productivity and Product quality) was studied. The 
same experiment was repeated, but in this case Production 
speed was fixed and the influence of Raw materials quality was 
studied.  

The model-parameter estimation was made using the 
identification method, where the least-square criterion was 
minimized. The input-output dependencies were given with 
first-order models (equation 3.1). 
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where the sampling time was 5 hours. 

This multivariable model was then used to design the MPC 
controller using the MPC Toolbox in the Matlab environment 
[16]. 

The main challenge was to tune the obtained MPC 
controller in order to achieve multiple objectives. The MPC 
toolbox supports the prioritizations of the outputs. In this way, 
the controller can provide an accurate set-point tracking for the 
most important output, sacrificing others when necessary, e.g., 
when it encounters constraints. In our case the controller had to 
consider both the input and output constraints (equation 3.2). 
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Different weights were used to prioritize the input and 
output variables. To solve the optimization problem, a 
prediction horizon of 75 hours and a control horizon of 20 
hours were used. The MPC toolbox uses a Quadratic 
Programming solver to solve the optimization problem, where 
the bounds of the constraints are finite [16].  

The closed-loop control was tested in several simulation 
runs. Figure 5 presents the results of a simulation run where 
both the set points for Productivity and Product quality were 
changing inside the period of approximately 20 days. The 
increase in the Productivity pPI set point was reflected most in 
the related increase of Production costs pPI, as seen in Figure 
4. 

 
Figure 5. Batch schedule, input and output variables for a single simulation 

run. 

IV. CONCLUSIONS 
The ideal plant-wide control system should ensure that the 

production process is constantly working in an optimal 
manner. As a result of the plant-wide focus, a plant-wide 
control problem possesses certain characteristics that are not 
encountered in the design of control systems for single units, 
such as the following [10]: 

(i) The variables to be controlled by a plant-wide control 
system are not as clearly or as easily defined as for single 
units; 

(ii) Local control decisions, made within the context of single 
units, may have long-range effects throughout the plant; 

(iii) The size of the plant-wide control problem is significantly 
larger than that for the individual units, making its solution 
considerably more difficult. 
 

This paper proposes an approach to measuring and 
presenting the achieving of production objectives in the form 
of introducing production-performance indicators as a reduced 
set of control variables that are further used in a feedback 
control.  

Using this approach the implicit production objectives can 
be translated into measurable and controlled values. In this 
way the production-control concept and the role of the 
production manager are slightly changed; instead of 
monitoring and controlling several tens and hundreds of 
process variables at a low production level, the production 
manager monitors and controls only a few major production 
pPIs with the aim of achieving the most important implicit 
production objectives, e.g., predefined product quality, high 
productivity and minimal production costs. 
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