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Abstract—The majority of neurons in primary visual cortex
(V1) of brain are orientation-selective. Both the classical receptive
field (CRF) and the non-classical receptive field (NCRF), which
modulates the CRF and mainly yields inhibition, could be
orientation-selective and may obtain different tune. For a single
neuron, the response is determined by the interaction of its CRF
and NCRF. And the horizontal connections play an important
role when forming inhibition. Inspired by those visual cortical
mechanisms, a modified inhibition model, called orientation
selectivity of NCRF, is introduced to improve the performance of
contour detectors. The orientation saliency is determined by the
energy, the output of a Gabor Energy filter, in each direction.
And the inhibition term is taken based on the saliency of the
orientation. This proposed method could selectively retain the
object contours and suppress texture edges effectively, which is
demonstrated by the processing of several natural images.

Keywords—contour detection, orientation selectivity, non-
classical receptive field, inhibition, texture, Gabor energy, hor-
izontal connecting.

I. I

Contour detection is one of the most important task in object
recognition in computer vision and is a fundamental operation
in image processing. For the past two decades, a large number
of edge detection algorithms have been proposed, some of
which are quite remarkable [1]. And research on edge detection
is still a fertile activity. But the traditional operators can not
distinguish the edges generated from texture and objects. Since
a contour, unlike edges which can be generated by texture,
represents a line delimiting the object in a scene. It makes the
detection more difficult. However, Human visual system was
the mechanisms to extract this feature rapidly and effectively.

Evidence have been found by psychophysicists and neu-
rophysiologists [2] that: Visual neurons receive signal inputs
from their receptive fields (RF or Classical RF), The area be-
yond receptive fields (integration field, IF or NCRF), although
being unresponsive to visual stimulation, exerts modulatory
effects on the cell activities elicited by RF stimulation. Most of
the cortical IFs are inhibitory, showing selectivity to stimulus
parameters. The interaction between RF and IF provides the
neuronal basis for the detection of various texture contrast,
the perception of relative speed between moving object and

background and the generation of visual illusions. Li’s work [4]
shows that the extent of the IFs is most frequently 2-5 times of
the size of RFs. The tuning properties of IFs, for most cells, are
similar to, but broader than, the tuning of RF. When stimulus
features are similar within the RF and IFs, the inhibition
goes to the maxima. But when stimulus pattern differs in
RF and IF, the inhibition decreases or even disappears. This
phenomena suggests the IFs associated with RFs, not just
affect the excitatory of RF, but to form a feature detector.
The horizontal connections of the neurons play an import
role in forming the inhibition of NCRF, and the effect of
horizontal input is state-dependent, with the size and sign
of the laterally evoked response changing according to the
balance of converging inputs [6], [7].

A recent model proposed by Grigorescu et al. [9] utilized
the non-classical receptive field inhibition to reduce texture
edges and to extract isolated contours in real images. However,
the model did not explain the source of NCRF inhibition. In
this paper, we took the horizontal connections of V1 neurons
as the derivation of inhibition, and introduced a modified
inhibition model, in which isotropic and anisotropic inhibition
are both taken into account in this model.

The rest of the paper is organized as follows: Section II
describes the computational model of V1 neurons. Several
parameters that determine the inhibition strength of NCRF
are also discussed. In section III we verified the model with
natural images and evaluated the performance of our model
by comparing to other detectors. Finally, section IV summa-
rizes the main conclusions of this work and discusses further
improvements.

II. C D

A. Excitatory Response

Gabor functions are used to simulate the V1 neurons in a lot
of works [8], [10], [11]. Gabor energy, the response modulus
of orthogonal pairs of Gabor filters, can capture typically
fundamental characteristics of complex cells [12]. Thus, in this
paper, Gabor energy filter is chosen to simulate the response
of complex cells. Two-dimensional Gobor filter is given as [9]:
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g(x, y; θ) = e−
x̃2+γ2 ỹ2

2σ2 cos(2π
x̃
λ
+ ϕ) . (1)

where x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ. ϕ determines
the ellipticity of the CRF. CRF’s size is determined by σ,
the standard deviation of Gaussian. Parameter λ determines
the wavelength, and σ/λ determines the spatial frequency
bandwidth. θ is an angle parameter to determine the prefer
orientation of a single V1 neuron, θ ∈ [0, π). ϕ is a phase offset,
determining the symmetric of g(x, y; θ), ϕ = 0 and ϕ = π refer
to symmetric while ϕ = − π2 and ϕ = π2 refer to asymmetric.

The Gabor filter response e(x, y; θ), also mentioned as
simple cell response [10], is computed by convoluting g(x, y; θ)
with I(x, y) at the point (x, y), where I(x, y) denotes the input
image.

e(x, y; θ) = I(x, y) ∗ g(x, y; θ) . (2)

Then the complex cell’s response,Gabor energy, is given as:

E(x, y; θ) =
√

e2
0(x, y; θ) + e2

− π2 (x, y; θ) . (3)

where e0(x, y; θ) and e− π2 (x, y; θ) are the output of symmetric
and asymmetric Gabor filters, respectively.

Thus a group of orientation selective complex cells can
simulate by a group of Gabor energy filter E(x, y; θ) with
different orientation θi.

θi =
iπ
Nθ
, i = 0, 1, . . . ,Nθ − 1. (4)

where Nθ is the orientation number.

B. Inhibition Terms

NCRF and CRF together form a feature detector [2] and the
horizontal connection of neurons compose a great part when
forming inhibition [7], [16]. Horizontal connection intensity of
neurons is determined by the distance and orientation contrast
between NCRFs and CRFs. We hypothesize that: (a) Inhibition
pattern can be divided into two types, orientation selective
inhibition and disorientation selective inhibition, by the Ga-
bor energy distribution on orientations, referred as Inhibition
Orientation Saliency; (b) Both orientation and disorientation
inhibitions interact within neuron response. Thus we compose
the inhibition terms as follow.

1) Distance Influence: Intrinsic connections exist between
neurons and others around them and the intensities are distance
related. Difference of Gaussian function (DOG), used to sim-
ulate the receptive field [14], can describe neuron connection
strengths in distance. As the connection strengths can not be
negative, The non-negative DOG function DOG+(x, y) is given
as:

DOG+σ1,σ2
(x, y) =

∣∣∣∣∣∣∣∣∣
1√

2πσ2
2

e
− x2+y2

2σ2
2 − 1√

2πσ2
1

e
− x2+y2

2σ2
1

∣∣∣∣∣∣∣∣∣

+

. (5)

where σ2 and σ1 are the standard divisions of two Gaussian
functions, denoting the size of NCRF and CRF, respectively.
Since NCRF’s size is 2-5 times bigger than CRF, we set σ2 =

4σ1 and σ1 = σ. |x|+ denotes an operation that: |x|+ = x while

x > 0 and |x|+ = 0 while x � 0. The weight function based on
distance can be written as:

wd(x, y) =
DOG+σ1,σ2

(x, y)

‖DOG+σ1,σ2
(x, y)‖ . (6)

where ‖ · ‖ denotes the L1 norm. The distance based inhibition
term id(x, y; θ) is computed as a convolution with E(x, y; θ):

id(x, y; θ) = E(x, y; θ) ∗ wd(x, y). (7)

2) Orientation Contrast: Most of NCRFs have orientation
selectivity and their prefer orientations may not the same as
CRFs [13]. Thus the orientation contrast between CRF and
NCRF would impact the inhibition strength [15]. We compute
the orientation contrast ioc(x, y; θ) as:

ioc(x, y; θ) = cos[∆θ]+. (8)

where ∆θ is the difference of the prefer orientations of CRF,
θc(x, y), and NCRF ,θn(x, y). [∆θ]+ denotes an operation:

[∆θ]+ = [θc − θn]+ =

{
∆θ, |∆θ| < π/2;
π − ∆θ, |∆θ| � π/2. (9)

while the prefer orientations θc and θn are determined by the
maxima Gabor energy of all orientations as follow:

θc(x, y) = arg max{Eλ,σ,θ(x, y) | θ = 0, π/Nθ, . . . , (Nθ − 1)π/Nθ};
θn(x, y) = arg max{id,θ(x, y) | θ = 0, π/Nθ, . . . , (Nθ − 1)π/Nθ}.

(10)
3) inhibition Orientation Saliency: We define the inhibition

orientation saliency as a ratio of the maxima intrinsic inhibition
in all directions divided by the mean energy. Two threshold are
set to determine whether the inhibition should be isotropic or
anisotropic. The function is given as:

i∗s(x, y) =
max{id(x, y; θ)}

(
∑

id(x, y; θ))/Nθ
. (11)

And the saliency coefficient is(x, y) is determined as:

is(x, y) =


1 i∗s(x, y) � th;
i∗s(x,y)−tl

th−tl
tl � i∗s(x, y) < th;

0 i∗s(x, y) < tl.
(12)

Where th is the upper threshold that determine whether the
inhibition pattern is orientation selective or not. And tl is the
lower threshold that determine whether the inhibition pattern
is disorientation selective or not. As can be seen the is(x, y)
is fixed into is(x, y) ∈ [0, 1]. Associated with the orientation
saliency coefficient, the orientation saliency ios(x, y) based
inhibition intensity is determined by:

ios(x, y) =

{
max{id(x, y; θ)} is(x, y) > 0 ;
(
∑

id(x, y; θ))/Nθ is(x, y) = 0 .
(13)

Equation (13) means that if inhibition pattern is orientation se-
lective, then the inhibition input is the energy on the preferred
orientation. When the pattern is disorientation selective, the
inhibition input is an average of energies on all orientation.



4) Interaction of CRF and NCRF: The response of a
complex cell r∗(x, y), after the orientation selective interaction
with NCRF, is defined as below:

r∗(x, y; θ) = E(x, y; θ) − α1 · ios(x, y) · is(x, y) · ioc(x, y; θ). (14)

Since the disorientation selective inhibitions are ubiquitous in
V1 cortex [17], We add an disorientation selective inhibition
term after the orientation selective inhibition. And the output
becomes:

r(x, y; θ) = |r∗(x, y; θ) − α2 · (1 − is(x, y)) · ios(x, y)|+. (15)

Where | · |+ is defined in (5), α1 and α2 denote the intrinsic
connection strengths. Operator | · |+ is used here, because the
neuron response can not be negative. We give the final output
of the detector as:

r(x, y) = max{r(x, y; θ)|θ ∈ [0, π)}. (16)

This operator will respond to lines and bars that have dif-
ferent orientations with the texture. The suppression intensity
is co-determined by the orientation saliency of NCRF, and the
orientation contrast between CRF and NCRF. As the textures
are thought to retain the similar orientations and object’s
contour presents, mostly, in different orientations with texture
edge, the texture edge would be strongly suppressed.

We don’t use the curve saliency operator to wipe off non-
contour elements [18]. Thus, the results will contain some short
edges and small pieces. Non-max suppressing and hysteresis
thresholding [1] are used to generate binary maps.

III. E R

To verify our contour detection model, several natural
images are employed (some images with ground truth contours
are download from website: http://www.cs.rug.nl/∼image).In
order to get some comparison we employed Canny [1] detector
and bar detector [9] in the experiments.

A. Contour Extraction

We set the parameters of our detector as: Nθ = 12,
σ = [1.8, 2.0], ϕ = 0.5, σ/λ = 0.56, α1 = [1.2, 1.6, 2.0, 2.4],
α2 = [0.6, 1.0, 1.4]α1, th = [2.5, 3.0, 3.5, 4.0], tl = [1.5, 2.0].
The percentage of candidate edge pixels p is set to p =
[0.1, 0.2]. For the Canny edge detector and bar detector we use
the same scales set, and the inhibition strength of bar detector
is set to α = [1.0, 1.2] as same as the value in paper [9].

Figure 1(a) shows a picture of a chair, backgrounded with
grass, and the results of canny edge detector, bar detector and
our model are shown in Fig. 1(b), Fig. 1(c) and Fig. 1(d),
respectively. We can see that the Canny edge detector does
not distinguish between contour edges and texture edges, thus
the output of Canny detector obtained a lot texture noise and
with a large parameter, σ = 2.2, the contours are more smooth,
which makes the result hard to distinguish. Bar detector and
our detector suppress textures, but in our model more textures
are suppressed while keeping similar object contours. Fig. 2
is a test of a gazelle image with the ground truth given in
Fig. 2(b). The result of canny detector, as discussed above, is

(a) (b)

(c) (d)

Fig. 1. A test of Chair where: (a) is the original image, (b) is the result of
canny edge detector; (c) is the output of bar detector; The output of our model
is presented in (d). All the detectors use the same parameter σ = 2.2. And
for the bar detector, the parameter α is set to α = 1.0. For our detector, the
rest parameters are set as: α1 = 1.2, α2 = 2.2α1, p = 0.1 and the orientation
saliency parameter are set to th = 3.0, tl = 1.5.

hard to recognise the object while bar selector and our model’s
outputs easily exhibit the object of gazelle. Meanwhile, the
grass edges, at the bottom of the picture, are more suppressed
by our detector, which can be seen in Fig. 2(e). Some more
examples with similar results are shown in Fig. 3 and Fig. 4.

B. Performance Evaluation

We adopt the method proposed by Grigorescu et al. to
evaluate the performance of this model [9]. Let EGT and BGT

be the set of edge pixels and background pixels of the ground
truth edge image, respectively, and ED and BD be the set of
edge pixels and background pixels of the operator-detected
edge image, respectively. The set of correctly detected edge
pixels is E = ED ∩ EGT , false negatives are given by the set
EFN = EGT ∩ BD, and the false positives are given by the
set EFP = ED ∩ BGT . The performance of edge detectors are
defined as:

P =
card(E)

card(E) + card(EFP) + card(EFN)
. (17)

where card(x) denotes the number of elements of set x. p
is the percentages of correctly detected edge pixels, e f n =

card(EFN)/card(GT ) and e f p = card(EFP)/card(E) denote the
percentages of false negatives and false positives, respectively.
Human-marked images are used as ground truth. Comparison
of Canny, Bar detector and out model are shown in Table I.

From those data in Table I we can see that our detector
can obtain better result by suppressing texture edges more



(a) (b)

(c) (d)

(e)

Fig. 2. A test of Gazelle where: (a) is the original image, (b) a hand-draw
ground truth of object’s contours; (c) is the result of canny edge detector; (d)
is the output of bar detector; The output of out model is presented in (e). All
the detectors use the same parameter σ = 2.2. And for the bar detector, the
parameter α is set to α = 1.2. For our detector, the rest parameters are set as:
α1 = 2.2, α2 = 1α1, p = 0.2 and the orientation saliency parameter are set to
th = 3.0, tl = 1.5.

effectively. Our detector contributes a smaller e f p or e f n and a
higher P, comparing to canny edge detector and bar detector.

IV. C

Human visual system can process vision information rapidly
and correctly. Contour extraction is one of the most important
operation in low-level vision procession. A better contour
detection will supply more useful and correct information
to the postprocess. Thus, it plays a key role in information
compressing and data coding in computer vision system. The
model developed in this paper will response to lines and
bars that in different orientations. Edges with the same or
similar orientation will be treated as texture and be suppressed.
The result of the non-meaningful information of an image is
reduced, and it’s a preparation for further process, such as
coding, pattern recognition et al..

In this paper, we proposed a new inhibition model, which

(a) (b)

(c) (d)

(e)

Fig. 3. A test of Basket where: (a) is the original image, (b) a hand-draw
ground truth of object’s contours; (c) is the result of canny edge detector; (d)
is the output of bar detector; The output of our model is presented in (e). All
the outputs are the best ones by traversing the parameters set.

is mostly based on orientation selectivity, to improve the
performance of contour detector. Compared to the bar detector,
we put more attention to the orientation information and
built some dynamic connection strength mechanism based on
the horizontal connections that co-determine the inhibitions.
And we combined the anisotropic and isotropic inhibition.
The results show that these modifications make a saliency
improvement.

However, this model still leaves future work to be done:
(1) The vertical connection of V1 neurons play an important
part in forming the NCRF, and the modulations are somehow
facilitation. This mechanism suggests that when processing
vision information, human visual system are trying to interfuse
the similar features. When doing the contour or edge detection,
this mechanism can be adopted to link edges or distinguish
edges from texture and objects; (2) Our model in this paper
was several parameters. To gain a better output, the optional
parameters need to be found. But human visual system can do
the work effectively. Thus, some self-adaptation mechanisms



(a) (b)

(c) (d)

(e)

Fig. 4. A test of Tire where: (a) is the original image, (b) a hand-draw ground
truth of object’s contours; (c) is the result of canny edge detector; (d) is the
output of bar detector; The output of our model is presented in (e). All the
outputs are the best ones by traversing the parameters set.

should be introduced to determine the parameters automati-
cally.
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