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Abstract—This paper considers guaranteed cost control prob-
lem for systems with saturating actuators and input delays.
By using Razumikhin stability theorem, a linear state feedback
control law is found, ensuring not only the closed-loop system’s
stability but guaranteed cost index. And the problem of designing
the optimal guaranteed cost controller is converted to a convex
optimization problem within the framework of linear matrix
inequalities. Example is given to illustrate the effectiveness of
the proposed result.

Index Terms—LMI; Guaranteed cost control; Time delay;
Actuator saturation

I. INTRODUCTION

Nonlinear systems with time-delay constitute basic math-
ematical models of real phenomena, for instance, in circuits
theory, economics and mechanics. Not only dynamical systems
with time-delay are common in chemical processes and long
transmission lines in pneumatic, hydraulic, or rolling mill
systems, but computer controlled systems requiring numerical
computation have time-delays in control loops. The presence
of time-delays in control loops usually degrades system per-
formance and complicates the analysis and design of feedback
controllers. Stability analysis and synthesis of retarded systems
is an important issue addressed by many authors and for which
surveys can be found in several monographs, see [5], [7].
However, it is also desirable to design a controller which
guarantees not only stability but also an adequate level of
performance as well. One approach to this problem called
guaranteed cost control was firstly presented by Chang and
Peng [2]. This approach provides an upper bound on a given
performance index. Based on this work, many important results
have been proposed in the past fifteen years. However, such
systems have to be taken into account in the design of control
laws in order to avoid poor performances and even instability
of the control systems, see [11], [12]. Stability analysis and
synthesis of such systems is an important issue addressed by

many authors and some mature methods have been widely used
to deal with these problems, for details and references, see [13],
[14]. The design of controllers for time-delay systems leads to
complex problems lacking of analytical solutions; hence, linear
matrix inequality (LMI) techniques are often used to provide
computational solutions for continuous-time, see [3], [4] [10]
and discrete-time systems, see [6], [15]. In other hand, to deal
with time-delay problem, Rzaumikhin theorem is an effective
approach that be used extensively.

Another common, but difficult, control problem is to deal
with actuator saturation since all control devices are subject
to saturation (limited in force, torque, current, flow rate,
etc.). This non-linearity cause control systems have to operate
under constraints on the magnitude of the control input. These
limitations in terms of input constraints must be considered in
the controller design. Up to now, the analysis and synthesis of
controllers for dynamic systems subject to actuator saturation
have been attracting increasingly more attention (see, for
example, [1], [8]). And there exist some effective tools to
deal with it. However, actuator saturation, time delay are often
encountered in control systems. To deal with both problems
effectively, appropriate design methods are required.

As far as we know, however, little research has been focused
on the guaranteed cost control of systems subject to actuator
saturation and input delays. Motivated by the method of [9], we
transform the saturation non-linearity into a convex polytope
form. In this paper, for a class of saturate systems with delay
in states, a method of designing state feedback stabilizing
controller guaranteeing an upper bound on a quadratic cost
function is proposed. A procedure is given to select the
state feedback matrix gain which minimizing this bound. We
formulate the problem into a constrained optimization problem
with constraints given by a set of linear matrix inequalities.

This paper, divided into 5 sections, begins by formulating
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the problem and giving some preliminary result in Section 2.
We will present our main results in Section 3 and example
is given to illustrate design procedure and its effectiveness in
Section 4. The paper is concluded in Section 5.

Notation: The following notations will be used through-
out the paper. R denotes the set of real numbers, R+

denotes the set of non-negative real numbers, Rn denotes
the n dimensional Euclidean space and Rm×n denotes all
m × n real matrices. The notation X ≥ Y (respectively,
X > Y ), where X and Y are symmetric matrices, means
that X − Y is positive semidefinite (respectively, positive
definite). Cn,τ = C([−τ, 0], Rn) denotes the Banach space
of continuous vector functions mapping the interval [−τ, 0]
into Rn with the topology of uniform convergence. || · || refers
to either the Euclidean vector norm or the induced matrix 2-
norm; ||φ(t)||c = sup−τ≤t≤0||φ(t)|| stands for the norm of a
function φ ∈ Cn,τ .

II. PROBLEM STATEMENT AND PRELIMINARIES
A. Problem Statement

Consider the time-delay system with actuator saturation
described in state-space form

ẋ(t) = Ax(t) + Bu(t) + Adx(t − τ) (1)

for t ∈ [0,∞) and with x(t) = φ(t) for t < 0.
In this description, A,Ad ∈ Rn×n, B ∈ Rn×m are constant

matrices, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control vector, and φ : [−τ, 0] → Rn is a continuous vector-
valued function specifying the initial state of the system.
Moreover, the control input u in system (1) is subjected to
the following constraints,

−ūi ≤ ui ≤ ūi (2)

so u(t) can be described by ūiσ(u) without loss of generality.
The function σ : Rm → Rm, is the standard saturation

function defined as follows:
σ(u) = [σ(u1) σ(u2) · · · σ(um)]T

σ(ui) = sign(ui)min{1, |ui|} i = 1, 2, · · · ,m

For system (1), consider the following cost function:

J =
∫ ∞

0

[xT (t)Qx(t) + uT (t)Rx(t)]dt (3)

where Q and R are given positive-definite symmetric matrices,
and if there exists a scalar V and a controller u(t) such that
J ≤ V , then V is called a guaranteed cost and the controller
u(t) is called a guaranteed cost controller.

B. Razumikhin Theorem

For stability analysis of systems with time-delay, the Rzau-
mikhin Theorem is used extensively. In what follows, we give
a brief summary of the theorems simplified to autonomous
systems.

Consider the retarded functional differential equation

ẋ(t) = f(xt), t ≥ 0
x(t) = ψ(t), t ∈ [−τ, 0] (4)

Assume that ψ ∈ Cn,τ and the map f(ψ) : Cn,τ 7→ Rn is
continuous and Lipschitzian in ψ and f(0) = 0. Also denote
the solution of the functional differential (4) with the initial
condition x0 ∈ Cn,τ as x(t, x0).

Definition 1: The trivial solution x(t) ≡ 0 of (4) is said to
be asymptotically stable if

1) for every δ > 0 there exists an ε = ε(δ) such that for any
ψ ∈ B(0, ε) the soluntion x(t, ψ) of (4) satisfies xt ∈ B(0, δ)
for all t ≥ 0.

2) for everyη > 0 there exists a T (η) and a v0 independent
of η such that ψ ∈ B(0, v0) implies that ||xt||c < η, ∀t ≥
T (η).

The Razumikhin Theorem give conditions for x(t) ≡ 0
to be asymptotically stable. The additional information is
incorporated in the following statement of the theorem.

Theorem 1: (Razumikhin Stability Theorem) Suppose that
u(s), v(s), w(s) and p(s) ∈ R+ → R+ are scalar, continuous
and nondecreasing functions, u(s), v(s), w(s) positive for s >
0, u(0) = v(0) = 0 and p(s) > s for s > 0. If there is a
continuous function V : Rn → R and a positive number ρ,
such that for all xt ∈ MV (ρ) := {ψ ∈ Cn,τ : V (ψ(θ)) ≤
ρ,∀θ ∈ [−τ, 0]}, the following conditions hold.

1) u(||x||) ≤ V (x) ≤ v(||x||)
2) V̇ (x(t)) ≤ −w(||x(t)||), if V (x(t + θ)) < p(V (x(t))),

∀θ ∈ [−τ, 0]

Then, the solution x(t) ≡ 0 of the system (4) is asymptot-
ically stable.

C. Some Mathematical Tools

Let fi be the i-th row of the matrix F . We define the
symmetric polyhedron,

L(F ) = {x ∈ Rn : |fix| ≤ 1, i = 1, 2, · · · ,m}

If the control u does not saturate for all i = 1, . . . ,m, that is
x ∈ L(F ), then the nonlinear system (1) admits the following
linear representation:

ẋ(t) = (A + BF )x(t) + Adx(t − τ).

Lemma 1: [8] Let ν be set of m × m diagonal matrices
whose diagonal elements are either 1 or 0. Then there are 2m

elements in ν. Suppose that each element of ν is labeled as
Di, i = 1, 2, . . . 2m and denote D−

i = I −Di. Clearly, D−
i is

also an element of ν if Di ∈ ν.
Let K,H ∈ Rm×n be given. For x(t) ∈ Rn, if ‖Hx‖∞ ≤

1, then

σ(Kx) ∈ co{DiKx + D−
i Hx : i ∈ [1, 2, · · · , 2m]}

where co{·} denotes the convex hull of a set.
Lemma 2: [12] For any x, y ∈ Rn and a matrix M > 0

with compatible dimensions, the following inequality holds

2xT y ≤ xT Mx + yT M−1y.



III. MAIN RESULT

In this section, we will consider the problem of designing
a state feedback guaranteed cost controller and the procedure
of selecting the controller minimizing the guaranteed cost for
the linear time-delay system with saturation.

Theorem 2: For system (1), if there exists a scalar function
V (x(t)), V (0) = 0 with continuous derivative, and a continu-
ous nondecreasing function w(s), u(s), v(s) and p(s) > s for
s > 0 such that

1) V (x) > 0, for any x 6= 0.
2) V (x) → ∞, when ||x|| → ∞.
3) u(||x||) ≤ V (x) ≤ v(||x||)
4) xT (t)Rx(t) + uT (t)Qu(t) + V̇ (x(t), t) ≤ −w(||x(t)||),
if V (x(t + θ)) < p(V (x(t))),∀θ ∈ [−τ, 0].
Then the closed system is asymptotically stable and

V (x(0)) is a guaranteed cost, where x(0) ∈ Rn is the initial
state.
Proof: We get conditions 1, 2, 3 from the Razumikhin Stability
Theorem mentioned above. From condition 4, we have that if

V (x(t + θ)) < p(V (x(t))),∀θ ∈ [−τ, 0],

then

V̇ (x(t), t) ≤ −w(||x(t)||) − xT (t)Rx(t) − uT (t)Qu(t)
≤ −ŵ(||x(t)||)

(5)
Considering condition 1, 2, 3 and Razumikhin theorem it

can be concluded that the closed system is asymptotically
stable.

Integrating both sides of the inequality (5) from 0 to ∞,
we have ∫ ∞

0
V̇ (x(t))dt = V (x(∞)) − V (x(0))
≤ −

∫ ∞
0

[xT (t)Rx(t) + uT (t)Qu(t)]dt
−

∫ ∞
0

w(||x(t)||)dt
≤ −

∫ ∞
0

[xT (t)Rx(t) + uT (t)Qu(t)]dt

(6)

considering that asymptotically stability leads to x(∞) → 0,
we obtain∫ ∞

0

[xT (t)Rx(t) + uT (t)Qu(t)]dt ≤ V (x(0))

This completes the proof.
Now we will give a way to find the form of controller which

makes system (1) not only asymptotically stable but satisfies
cost function (3).

Theorem 3: For the linear time-delay system with satura-
tion (1). Consider the set Ω(P, ρ) := {x ∈ Rn : xT Px ≤ ρ}.
P ∈ Rn×n is a symmetric positive definite matrix and
ρ ∈ R+. If there exist positive definite symmetric matrices
G,X ∈ Rn×n and V ,W ∈ Rm×n such that

G − X ≤ 0 (7)[
1 vi

vT
i G

]
≥ 0 (8)[

1 xT
0

x0 G

]
≥ 0 (9)

 Γ G WT

G −ρQ−1 0
W 0 −ρR−1

 < 0 (10)

where
Υ = AG + Būi(DiW + D−

i V )
Γ = Υ + ΥT + G + AdXAT

d

and vi is the i-th row of the matrix V .
Then

u(t) = WG−1x(t)

is a guaranteed cost control law of system (1) satisfies perfor-
mance index (3) and J ≤ ρ.
Proof: Given P > 0, consider a quadratic Lyapunov function
candidate V (x) = xT Px. First, we have

α1||x||2 ≤ V (x) ≤ α2||x||2

where
α1 = λmin(P ), α2 = λmax(P ).

Let u(t) = Kx(t), the derivative of V is

V̇ (x(t)) = 2x(t)T PAx(t) + 2xT (t)PAdx(t − τ)
+2xT (t)PBσ(Kx(t))

By Lemma 1, saturation non-linearity can be substituted by
a convex polytope if

Ω(P, ρ) ⊂ L(H)

which is equal to
ρhiP

−1hT
i ≤ 1,

hi is the ith row of matrix H . Utilizing Schur complement,
we get [

1 hi(P
ρ )−1

(P
ρ )−1hT

i (P
ρ )−1

]
≥ 0 (11)

which can be rewritten as (8) by taking V = ρHP−1. Thus
for every x(t) ∈ Ω(P, ρ)

σ(Kx) ∈ co{DiKx + D−
i Hx : i ∈ [1, 2, · · · , 2m]}.

It follows that for every x(t) ∈ Ω(P, ρ), we have

V̇ (x(t)) = 2x(t)T P [A + Būiσ(DiF + D−
i H)]x(t)

+2xT (t)PAdx(t − τ)

From Lemma 2, we have

2xT (t)PAdx(t − τ)) ≤ xT (t)PAdMAT
d Px(t)

+xT (t − τ)M−1x(t − τ)

Let P ≥ M−1, we get

V̇ (x(t)) ≤ xT (t)[(A + B(DiK + D−
i H))T P

+P (A + B(DiK + D−
i H))

+PAdMAT
d P ]x(t) + V (x(t − τ))

By Razumikhin Theorem, to prove that Ω(P, ρ) is an
invariant set inside the domain of attraction, it suffices to show
that there exist an ε > 1 and a δ > 0 such that

V̇ (x(t)) ≤ −δV (x(t))



if V (x(t + θ)) < εV (x(t)) ∀θ ∈ [−τ, 0].

In the remainder of the proof, we will construct such ε and
δ and show that they satisfy the inequality above.

Suppose there exists a δ > 0 such that

Q + KT RK + (A + B(DiK + D−
i H))T P

+P (A + B(DiK + D−
i H))

+PAdMAT
d P + (1 + 2δ)P < 0,

Let ε = 1 + δ. Now suppose that V (x(t + θ)) <
εV (x(t)),∀θ ∈ [−τ, 0]. Then we have

xT Qx + uT Ru + V̇ (x) ≤ xT (Q + KT RK + (A
+B(DiK + D−

i H))T P + P (A + B(DiK + D−
i H))

+PAdMAT
d P + εP )x

< −δV (x(t)).

Let

Ψ = Q + KT RK + (A + B(DiK + D−
i H))T P

+P (A + B(DiK + D−
i H)) + PAdMAT

d P + P

system (1) will be asymptotically stable if Ψ < 0 and we get
ŵ = −λmax(Ψ). Multiplying Ψ < 0 by ρ

1
2 P−1 on the left and

on the right, respectively, and let G = ρP−1, W = ρKP−1,
V = ρHP−1, X = ρM , we obtain

Υ + ΥT + ρ−1GQG + ρ−1WT RW + AdXAT
d + G < 0

(12)
Utilizing Schur complement, we get (10). Inequality (7) can

be easily got from the condition P ≥ M−1, and inequality (9)
can be obtained from the condition xT

0 Px0 ≤ ρ by using Schur
complement.

Theorem 3 gives some condition for the existence of the
guaranteed cost controller with the guaranteed cost index J ≤
ρ. Now we would like to choose from all the ε(P, ρ) that
satisfy the condition such that the guaranteed cost minimized.
This problem can be formulated as

min ρ s. t. (7) − (10) (13)

If the above optimization problem has an optimal solution
ρ̃, X̃, G̃, W̃ , Ṽ , then u(t) = W̃ G̃−1x(t) is a guaranteed cost
control law of system (1) satisfies performance index (3) and
J ≤ ρ̃.

It is clear that (13) is a convex optimization problem
with LMI constraints. Therefore, the global minimum of the
problem can be reached if it is feasible, and it can be easily
solved by using the solver mincx in the LMI Toolbox of
MATLAB.

Remark 1: Note that the condition of Theorem 3 does not
include any information of time-delay, the theorem provides
a delay-independent condition for regional stability of linear
uncertain systems with time-delay and input saturation in terms
of the feasibility of several linear matrix inequalities.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Now consider an continuous-time system

ẋ(t) = Ax(t) + Bu(t) + Adx(t − τ)

with the following parameters:

A =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.2855 −0.707 1.3229

0 0 1 0



Ad =


0 0 0 0.3
0 0.1 0 0
0 0 0 0.1
0 0 0.2 0


B =


0.4422 0.1711
3.0447 −7.5922
−5.52 4.99

0 0


x0 =


1
1
1
1


−5 ≤ ui ≤ 5, i = 1, 2

The associated performance index of the system is

J =
∫ ∞

0

(xT Qx + uT Ru)dt

where

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R =
[
1 0
0 1

]

By applying Theorem 3 and solving the corresponding
optimization problem, we get the optimal guaranteed cost
controller

u(t) =
[
−6.588 −1.562 1.468 7.174
27.027 7.598 −5.450 −29.245

]
x(t)

and the guaranteed cost of the uncertain closed-loop system is
J∗ = 3.0669.

V. CONCLUSION

In this paper, we have presented an LMI-based approach to
the optimal guaranteed cost control problem via state feedback
control laws for a class of uncertain system subject to control
saturating actuators and input delays. By utilizing Razumikhin
Theorem and transforming the system with actuator saturation
non-linearities into a convex polytope of linear systems, we
obtain a effective approach to deal with the problem.
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