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Abstract— A new on-line identification algorithm is presented 
in this paper based on a neuro-fuzzy model structure. The 
algorithm is developed based on the functional equivalence 
between a radial basis function (RBF) neural network and a 
fuzzy inference system (FIS). The developed algorithm utilizes a 
Weighted Rule Activation Record (WRAR) as a functional 
measure to monitor the modeling efficiency of the created rules. 
This measure evaluates the influence of each created rule with a 
time-based memory weight which puts more emphasis on the 
most recent input data. The proposed technique employs an 
Extended Kalman Filter(EKF) as a learning algorithm to adapt 
the antecedent and consequent parameters of the nearest rule. 
This algorithm benefits simple and understandable criteria to 
make it more attractive in practical applications. This leads to 
more efficient rule base with low created rules. Its low 
computational time makes it as an appropriate on-line 
identification approach. The performance of the proposed 
algorithm with some other new algorithms have been evaluated 
on a nonlinear dynamic system. Simulation results demonstrate 
the efficiencies of the proposed algorithm, resulting to the most 
simple rule structure with the lowest computational time.   
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I.  INTRODUCTION  
Considerable researches have explored the possibility of 

using different methodologies for modeling and identification 
of complex systems during the past decades. The conventional 
first principle modeling approach, which is based on mass and 
energy balances, often do not comply with many practical 
engineering problems, making its application a difficult or even 
impossible task. Furthermore, in most real-life situation, where 
the system dynamics are subject to perturbations, adaptive 
identification schemes have to be used to employ sequential 
input-output experimental data to adjust the estimated model 
automatically in real-time manner. 

Fuzzy Rule-Based (FRB) models have a significant impact 
in the identification community to represent complex nonlinear 
systems due to their computational efficiency and transparency. 
The main obstacle in the design of classical FRB approaches, 
however, corresponds to a priori knowledge to generate a 
proper, adequate and expedient model structure in terms of the 
rule-base and membership functions and their relevant free 
parameters. Another stumbling block is that fuzzy models     

are not adaptive. This hinders their applications to practical 
problems with changing dynamics.  

FRB approaches with on-line learning algorithm offer 
promising identification methodologies, incorporating inherent 
flexibility to adapt their consecutive model structure and 
parameters from experimental data, heuristic rules, or a 
combination of both. Many different FRB identification 
strategies have been proposed in the literature. Their learning 
algorithms can be broadly categorized into two general classes 
of batch and sequential learning schemes. In batch learning, the 
complete training data are assumed to be available a priori. 
Thus, the training involves cycling the data over a number of 
epochs to accurately adapt the identified model. However, this 
paper addresses on-line identification approaches in which the 
whole data are not available a priori, but arrive sequentially one 
by one in real-time manner. That is, learning should be able to 
start without a priori knowledge. This interesting feature makes 
the on-line learning approaches potentially very useful in 
autonomous and smart self-tuning control system applications.  

A self-constructing neural-fuzzy inference network has 
recently been proposed by Juang and Lin [1]. In this approach, 
the fuzzy rules are created on-line from the training data based 
on distance criterion between the new input data and the center 
of Gaussian membership functions, relating to the existing 
fuzzy rules. The approaches, however, does not pass any 
monitoring scheme to evaluate any inefficient rule once 
created. This may lead to a large rule base structure with high 
number of insignificant rules. Wu and Er [2] proposed a 
hierarchical on-line self-organizing learning algorithm for 
dynamic fuzzy neural networks, inspired by the ideas of adding 
and pruning hidden neurons to form a minimal Radial Basis 
Function (RBF) network given by Yingwei et al.[3].            
Leng et al. [4] presented another on-line self-organizing fuzzy 
neural network which includes a rule pruning method. These 
two algorithms, however, need all the past data received so far 
to process the pruning criteria, leading to a huge memory size 
requirement. Recently, Angelov and Filev [5] have proposed an 
on-line identification approach for an evolving Takagi-Sugeno 
(eTS) fuzzy model. The approach is based on a recursive 
potential clustering method responsible for model structure 
(rule-base) learning and an on-line recursive least square (RLS) 
algorithm for linear TS model parameter estimation. The 
algorithm utilizes two different potential monitoring criteria to 
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check for a new rule addition or modification of an old nearby 
rule based on potential magnitude of the new data with respect 
to the other existing rules. The proposed algorithm, however, 
has not included the capability to ignore already created rules 
which may become insignificant in the future. Rong et al.[6] 
have recently presented a Sequential Adaptive Fuzzy Inference 
System (SAFIS) based on the functional equivalence of a RBF 
network and a fuzzy inference system (FIS). The proposed 
algorithm uses the concept of rule influence to check for any 
rule addition or deletion based on the input data received so far. 
The rule influence has been defined as its statistical 
contribution to the overall output of SAFIS. However, the exact 
calculation of this measure is not practically feasible in a truly 
sequential learning scheme. Thus, another simplified 
alternative approach has been adopted in [6] which requires the 
probability density function of the input data space. The 
algorithm, however, assumes a uniform distribution for the 
input data space to simplify the resulting formulation. 

In this paper, a new on-line identification approach is 
presented based on a neuro-fuzzy model structure. In contrast 
to SAFIS, the proposed approach does not impose any 
restriction on the statistical nature of the input data space. It 
presents a new idea based on weighted rule significant 
measure, defined as Weighted Rule Activation Record 
(WRAR). The proposed measure incorporates a weighted 
forgetting factor to make a time-based discrimination between 
the activation effect of the individual created fuzzy rules in 
their past time record. This puts more emphasis on the most 
recent contribution of each existing rule to the modeling 
performance during the learning procedure. The algorithm 
presents another measure to evaluate the adequacy of the 
overall existing fuzzy rules to maintain a desired low model 
accuracy limit in terms of output error. However, to avoid from 
any inaccurate decision based on instantaneous model 
evaluation, resulting from impact of new input data, a 
Weighted Root Mean-Square (WRMS) error is proposed in this 
work. The proposed algorithm makes benefits of these two 
informative measures to decide on any model structure 
adaptation by adding or replacing rules during the learning 
phase. The identification procedure utilizes an EKF parameter 
learning algorithm to update the model parameters of the rule 
selected by the new input data on the basis of winner rule 
strategy as the closest rule. 

The proposed identification methodology is evaluated on a 
nonlinear dynamic system as the simulation case study. The 
obtained results are compared with the several alternative well-
known approaches. The results demonstrate the superiority of  
the proposed algorithm in providing acceptable training and 
testing accuracies with much simplicity in the identified model 
structure and computational complexity. 

The paper contents are organized as follows. Section II 
presents a new adaptive neuro-fuzzy identification 
methodology, including the proposed model structure, learning 
procedure and the EKF parameter learning algorithm. The 
comparative performance evaluation of the proposed 
methodology is tested on a nonlinear dynamic system with 
other alternative well-known approaches in Section III.  
Section IV summarizes the resulting conclusions. 

II. A NEW ADAPTIVE NEURO-FUZZY IDENTIFICATION 
METHODOLOGY 

The nonlinear dynamic system which will be the focus on 
this research work can be described by the following frequently 
used Nonlinear Auto-Regressive with eXogenous input 
(NARX) regressive model: 

  )]1(),...,();1(),...,([)1( +−+−=+ mkukunkykyfky            (1)  
 

where (.)f  indicates a nonlinear functional relation, k  denotes 
the discrete-time instant, m and n represent model orders,  is   
the system output and u is the system input. 
Eqn. (1) can be written more conventionally as:  

                                ))(()1( kXfky =+                                     (2) 
 

where the regression vector,         , is given by: 
 
        )]1(),...,();1(),...,([)( +−+−= mkukunkykykX                (3)  

The main idea underlying the use of rule-based fuzzy 
models for identification of nonlinear systems is to 
approximate the system dynamics by a collection of local fuzzy 
rules of the following form: 

ith rule:                                                                                     (4)   

where T
Nxxx ],...,,[ 21 represents the regression vector ( X ), 

),...,1( NjAji = denotes the membership value of the jth input 
variable, ai is the constant consequent parameter in the ith rule, 
H is the number of created rules and )(ˆˆ xfy =  indicates the 
identified model output.  

The presented approach uses a neuro- fuzzy model structure, 
depicted in Fig.1, to realize the identification algorithm. 

 
Fig.1. Neuro-fuzzy model structure 

The main identification goal is to minimize the error between 
the actual output )(ky  and the estimated model output )(ˆ ky   
(i.e., )(ˆ)( kyky − ). 
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A. Neuro-fuzzy model structure 
The neuro-fuzzy model structure includes the following 5 

layers to realize the set of identified fuzzy rules, described by 
Eqn. (4): 

• Layer 1: This layer allocates one node to each input 
variable to transmit the incoming signal to the next 
layer. 

• Layer 2: This layer implements the membership 
functions corresponding to individual input variables 
through its nodes. In this work, the Gaussian functions 
of the following form are utilized for this purpose: 
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where       and      indicate the center and the width of 
the pth Gaussian function for the jth input variable, 
respectively. 

• Layer 3: Each node in this layer realizes the if part of 
the extracted if-then fuzzy rules which is based on the 
following sum-product composition computation: 
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• Layer 4: This layer is used to compute the normalized 
contribution of each rule, given by: 
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• Layer 5: This layer consists of just one node to 
estimate the single system output as follows: 
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B. The proposed on-line identification algorithm  
1) WRAR as a global rule significance measure : To assets 

the overall significance of a rule in fuzzy modeling 
performance, a collective time-based record is more beneficial. 
In this paper, a new WRAR measure is presented to accomplish 
this task. Each created rule has a significance factor, 
demonstrating its instantaneous modeling contribution at the 
current time ( k ), given by: 
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Thus, it is possible to assess the significance of a rule based on 
this measure. This procedure, however, emphasizes the 
contribution of each rule in instantaneous modeling effect at 
each time instant, leading to fluctuation in rule assessment 

judgment in the long term. A more efficient rule activation 
measure is based on a global time-weighted rule activation 
record which puts more weight on the most recent rule 
activation in modeling process, defined by the following 
recursive equation: 

                             )(...)1()1()( 1
1

11 kkWRAR ll
k

l λγλγγ ++−= −          

              
1

1

1

)1(1
)(

)(
−−−

=⇒
q

k
kWRAR l

l γ
λγ                     (10) 

 
where 1γ  denotes forgetting factor ( 10 1 ≤< γ ) and )(ilλ ; 

ki ,...,1= indicates the lth rule at the ith time instant. 

2) Rule addition criteria: The identification algorithm 
begins with no a priori fuzzy rule. As new data input pairs      

)}(),({ kYkX become available sequentially during learning, 
new rules can be added based on the following three criteria: 

a) Distance criterion: The distance of any new input data 
is measured with respect to the nearest rule in the rule-base. 
This measure demonstrates the influence of the nearest rule on 
the new input data. 

b) Modeling error criterion: using instant output error 
measure to make decision on the rule addition, can lead to 
undesirable rule creation. To improve this deficiency, a time-
weighted root mean-squared (WRMS) error measure is 
presented as: 
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where N  indicates the length of time window, 2γ represents the 
forgetting factor and )(ˆ)()( jyjyje −=  denotes the 
instantaneous output error in the jth time iteration. 

c) Rule influence criterion expressed in terms of WRAR 
measure: Therefore, the rule addition mechanism obeys the 
following three criteria: 

 
      knr kkX εμ >− )()(  

     GNr WRARkWRAR >)(                        (12) 
     GWRMS EkE >)(  
 

where kε , GWRAR and GE  denote the decision thresholds, 
)(kX is the latest input data, and the subscript nr indicates 

nearest fuzzy rule to the input data (i.e., )(knrμ is the center of 
nearest fuzzy rule to )(kX ). GWRAR  and GE  represent the 
lowest acceptable model accuracy measures, specified in terms 
of the lowest accuracies expected from the nearest rule 
activation record and the WRMS output error, respectively. 
While, kε shows the lowest regional distance in which the 
nearest rule can have influence on the new input data. In this 
work, an exponential time varying relationship is presented for 

kε as : 

jpμ pσ



         

        ))/)2(exp(1)(( minmaxmax τεεεε −−−−−= kk                (13)  
where maxε and  minε  are the largest and smallest distance of 
the interest and τ denotes the decay constant of the 
exponential function. This time-varying function allows the 
learning procedure to start adaptation coarsely in the initial 
stage and then lets the model to finely be tuned at the end. 

3) The proposed Learning Algorithm : The proposed 
learning algorithm starts with no a priori rule and then 
continues with two parts of structural model improvement in 
terms of fuzzy rule addition or replacement and model 
parameter adjustment relating to the nearest rule premise and 
consequent parameters. Thus, given the threshold values     
(i.e., GWRAR , GE , maxε , minε ), the computational procedure 
can be summarized in the following steps for each sequential 
incoming data pair ( yx, ): 

1. Compute the overall estimated model output: 
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2. Find the nearest rule to the new input data. 
3. Calculate the measures relating to the rule addition  

criteria (i.e., WRMSE , kE , kε ). 
4. Check the rule addition criteria: 

If  
knr kkX εμ >− )()(  

  And if GWRMS EkE >)(  
     And if  GNr WRARkWRAR >)(  
      Allocate a new rule ( 1+H ) with the following 
      coordinates: 

     kH ea =+1  
     kH X=+!μ  
     

nrkH X μκσ −=+1
; (κ is overlap constant)       (15) 

    Else 
       Replace the nearest rule with the new rule, having 
       the following coordinates: 
       knr ea =  
     knr X=μ  
     nrknr X μκσ −=                                              (16) 
    End if 
  Else 
    Adjust the nearest rule free parameters  
    ( nra , nrμ , nrσ ) by an EKF estimation algorithm. 
  End if 
Else 
   Adjust the nearest rule free parameters by an EKF 
   estimation algorithm. 
End if 

C. Development of an EKF parameter estimation algorithm 
The proposed identification approach uses an EKF 

estimation algorithm for only updating the free parameters of 

the winner rule. The winner rule is defined as the rule that is 
nearest to the new input data. As a consequence, there is no 
need to update other rules parameters. This decreases the 
required computational burden and hence leads to a fast 
identification procedure. 

To develop the EKF parameter estimation algorithm, the 
gradients of the nonlinear identified model, i.e. )(ˆˆ Xfy = , 
should be derived with respect to the free parameters of the 
nearest fuzzy rule as follows: 
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where  
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The gradient vector is then obtained as [ ]Tnrnrnrnr a σμθ &&&& ,,= . 

Thus, the EKF algorithm can be formulated as follows to 
update the nearest rule parameters: 

1)]()1()()()[()1()( −−+−= kkPkkRkkPkK nrnr
T
nrnrnr θθθ &&&

   (22) 

                      )()()1()( kekKkk nrnr +−= θθ                      (23) 

                   )1()]()([)( −−= kPkkKIkP nr
T
nrnr θ&                   (24) 

where K is the Kalman gain, R denotes the modeling error 
covariance and nrP indicates the error covariance matrix of the 
nearest rule. 

III. SIMULATION STUDY 
The performance of the proposed on-line identification 

methodology is evaluated on a nonlinear dynamic system. The 
resulting performance will be compared with some other well-
known identification algorithms such as Minimum Resource 
Allocation Network (MRAN) studied in [3], eTS presented     
in [5] and SAFIS presented in [6]. 

The nonlinear dynamic system, considered in this 
simulation study, is given by [7] as: 

          )1(
)2()1(1

)5.0)1()(2()1()( 22 −+
−+−+
−−−−

= ku
kyky

kykykyky             (25) 

 
The input to the system is uniformly selected in the range  

[-1.5 , 1.5] and the test input is chosen as 
)25/2sin()( kku π= , as recommended in [7]. 5000 and 200 

observation data are produced to be used for the purpose of 



         

training and testing, respectively. Practical observations 
showed that the identification performance is not sensitive to 
the initial setting of some parameters. That is those parameters 
are not critically problem dependent. These parameters were 
predefined as 5000=τ (i.e., the number of training data), 
overlap factor 75.1=κ , length of time window 10=N , 
forgetting factors 997.021 == γγ and modeling error 
covariance=1. Other parameter values were set, based on the 
problem, to 7.0max =ε , 1.0min =ε , 1.0=GWRAR and 

1.0=GE to accomplish a desired model accuracy.  

    In all the studies, the tuning parameters of eTS, SAFIS 
and MRAN algorithms were set to the values recommended in 
[6] to obtain their best possible performances. 
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Fig.2. (a) Model testing result (b) Rule updating profile 

Fig.2 illustrates the resulting identification outcomes for the 
proposed algorithm in terms of the output response evaluation 
for the actual testing data set and the fuzzy rules adaptation 
profile corresponding to training experiment. The performance 
comparison of the proposed algorithm with the other alternative 
algorithms is summarized in Table. I. As shown, the proposed 
algorithm is able to demonstrate acceptable RMSE accuracies 
with superiority in model simplicity (i.e., lower number of 
created rules) and lower computational complexity. 

 

 

 

 

 

TABLE I.  RESULTS FOR DIFFERENT ALGORITHMS 

Methods  Number of 
Rules 

Training 
RMSE 

Testing 
RMSE 

WRAR 7 0.0506 0.0742 
SAFIS 17 0.0539 0.0221 
MRAN 22 0.0371 0.0271 

eTS( 610,8.1 =Ω=r ) 49 0.0292 0.0212 

 

IV. CONCLUSION 
In this paper, a new on-line identification methodology has 

been presented based on a neural-fuzzy structure. It proposes 
an innovative idea of WRAR measure for evaluating fuzzy rule 
significance. The method utilizes a weighted RMS measure of 
output error to evaluate identified model accuracy. The 
proposed method makes the benefits of these two informative 
new measures to decide on model structure adaptation via rule 
addition or replacing an old inefficient rule. The identification 
procedure utilizes an EKF parameter learning algorithm to 
update the parameters of the nearest rule to the input data to 
fulfill the model parameter adaptation. The simulation results 
on a nonlinear dynamic system benchmark demonstrated its 
effectiveness compared to the other alternative well-known 
identification algorithms in terms of the identified model 
simplicity and its lower computational complexity.  
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