
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE                             RAM 2008 

Error Equivalence Methodology for Dimensional 
Variation Control in Manufacturing  

 
 

Qiang Huang  
Department of Industrial and Management Systems 

Engineering 
University of South Florida 

Tampa, U.S.A. 
huangq@eng.usf.edu 

Hui Wang 
Department of Mechanical Engineering 

University of Michigan 
Ann Arbor, U.S.A. 
huiwz@umich.edu

 
 

Abstract—The product dimensional quality could be affected 
by multiple error sources in manufacturing processes. One 
widely observed engineering phenomenon is that different error 
sources can result in identical error patterns on product features. 
For example, deviations in fixture locators and workpiece datum 
surfaces can produce the same type of dimensional variations in 
engine head machining.  Such an “error equivalence” 
phenomenon often significantly increases the complexity of 
dimensional variation control such as root cause identification. 
By generalizing and extending the authors’ previous work, the 
paper aims to establish error equivalence methodology which 
addresses issues of mathematical modeling of the error 
equivalence phenomenon in manufacturing, error equivalence 
analysis for root cause identification and automatic adjustment. 
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I.  INTRODUCTION  
The manufacturing process usually involves multiple error 

sources that affect product dimensional quality. A widely 
observed engineering phenomenon is that individual error 
sources can result in identical error patterns on product 
features. For instance, a machining operation involves 
deviations from fixture locators, machine tool path movement, 
and workpiece surfaces. All three types of process deviations 
can generate the same amount of feature deviation y as shown 
in Fig. 1 [1-2]. This error equivalence phenomenon has also 
been noted in many other manufacturing processes, e.g., the 
automotive body assembly process ([3]). 

The impact of such an “error equivalence” phenomenon is 
twofold. On one hand, it significantly increases the complexity 
of variation control. As an example, identifying the root causes 
becomes extremely challenging when different error sources 
are able to produce identical dimensional variations. On the 
other hand, the error equivalence phenomenon provides an 
opportunity for variation reduction. For instance, we could 
purposely use one error source to counteract the others and 
thereby reduce process deviation [2]. In both cases, a 
fundamental understanding of this engineering phenomenon 
will assist to achieve improved dimensional control. 
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Figure 1.  Error equivalence in machining [1][2]  

The study on error equivalence is, however, very limited 
[1,2,4]. Most research has been focusing on the analysis of 
individual error sources, e.g., fixture errors [5-12] and machine 
tool errors [13-18]. Studies have been conducted to model the 
feature deviation y of a workpiece as a linear combination of 
multiple errors sources (x1, x2, …, xp)T [19-26],  

=1= Σ +p
i i iy Γ x ε              (1) 

where Γi’s are sensitivity matrices determined by process and 
product design. ε is the noise term. As a quality measure, y can 
either represent the deviation of critical dimensions or the 
deviation of features represented by surface orientation n, 
position p, and size D, i.e., ( )TT T T  = ∆ ∆ ∆y n p D [23]. The 
major assumption is that process errors are relatively small and 
high order terms of process errors can be ignored. This line of 
research has made great achievements to understand the causal 
relationship between process errors and deviation of quality 
characteristics from design specification. It provides a 
foundation for conducting further analysis of the error 
equivalence. 

The full utilization of the error equivalence for dimensional 
control requires research in the following aspects: (1) 
mathematical modeling of the error equivalence phenomenon 
in manufacturing, (2) error equivalence analysis for automatic 
process error compensation, and (3) error equivalence analysis 



         

for root cause identification.  The three research aspects 
constitute the essential components of error equivalence 
methodology. 

II. MATHEMATICAL MODELING OF THE ERROR 
EQUIVALENCE PHENOMENON IN MANUFACTURING 

Suppose error source xi leads to dimensional deviation y as 
y = fi(xi), i=1,2,…,p. A rigorous definition of error equivalence 
is given as follows. 

Definition: Two error sources xi and xj are equivalent if 
expectation E[fi(xi)]= E[fj(xj)]. If function fi could be 
approximated by a linear function Γixi as shown in (1), the 
condition of error equivalence becomes E[Γixi]= E[Γjxj].  

In practice, engineering knowledge combined with 
parameter estimation can be used to verify the existence of 
error equivalence. If error sources xi and xj are equivalent, it is 
feasible to transform xi into equivalent amount of error in terms 
of xj without affecting the analysis of feature deviation y. As 
shown later in this paper, the transformation can be linear, i.e., 

* =i i ix A x . By definition, E[fi(xi)]= E[fj( *
ix )]. Hereafter, we 

simply denote it as fi(xi)=fj( *
ix ) or Γixi=Γj

*
ix  when linear 

approximation is appropriate.  

As worthy of mention, errors might not be equivalent under 
all situations. For instance, the surface profile deviation caused 
by a machine tool might not be reproduced by a fixture. This 
study only focuses on the situations that error equivalence 
holds. 

Figure 2 outlines the basic idea of mathematical modeling 
of the error equivalence phenomenon. If p process errors xi’s 
are equivalent, the first step of modeling is to transform xi’s 
into a base type error x1 through * =i i ix A x . A significant 
advantage of this transformation is that the causal relationship 
between base error x1 and feature deviation, i.e., y=Γ1x1, can be 
generally applied to other types of error sources. The remaining 
modeling steps can therefore be focused on the causal model 
y=Γ1x1 because the transformed errors *

ix ’s are to be grouped 
together into *

=1Σ p
i ix  with *

1x = x1. The process model in (1) can 
be rewritten as * *

=1= Σ +p
i i iy Γ x ε . Since *

ix ’s are treated as base 
error x1, we have *

iΓ = Γ1. The process model based on error 
equivalence modeling thus becomes  

y=Γ1u + ε with u= *
=1Σ p

i ix             (2) 

where u represents total amount of equivalent error. 

The machining process is used as an example to illustrate 
the modeling procedure. Three major error sources are 
considered: fixture error x1, machine tool error x2, and datum 
surface error x3. The fixture error is chosen as the base error 
because of the following reasons: 

(1) Fixture error is simply represented by the deviation of 
fixture locators, while machine tool error is relatively 
complicated. The datum error is usually caused by fixture or 
machine tool errors. 

(2) Fixture error has been well studied. Methods are 
readily available for the analysis of workpiece positioning error 
[5-12], the induced feature deviation [19-26], and fixture error 
diagnosis [27-29]. 

(3) Flexible fixtures have been available whose locators 
are adjustable for accommodating a product family. It is 
possible to adjust the locator lengths for the purpose of error 
compensation.  
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Figure 2.  Mathematical modeling of error equivalence 

Wang, Huang, and Katz (2005) [1] were the first to propose 
“Equivalence Fixture Error” (EFE) model and transform 
machine tool error x2 and datum error x3 into the equivalent 
amount of fixture locator error, *

2x =A2x2, and *
3x = A3x3. The 

machine tool error x2 was modeled as displacement error (xm ym 
zm) and rotational error captured by Euler parameters i.e., x2 
=(xm ym zm δe1m δe2m δe3m)T.  The datum error x3 was modeled as 
the deviation of datum surfaces using ( )TT T T  ∆ ∆ ∆n p D . 
Matrices Ai’s can be obtained using analytical geometry. For 
example, Fig. 3 show that the EFE for machine tool error or *

2x  
equals (∆m1 ∆m2 ∆m3)T, which can be found by exploring the 
geometrical relationship. For 3-2-1 fixture locating scheme, 
reference [1] has derived A2 and A3. 
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Figure 3.   EFE for machine tool error [1]    
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Figure 4.  Modeling of workpiece positioning error [8] 

Following the transformation * =i i ix A x  is modeling of 
y=Γ1x1, i.e., the effect of fixture error x1 on feature deviation y 
through improper positioning of workpiece. Workpiece 
positioning error has been investigated using kinematic 
analysis, especially the Homogeneous Transformation Matrix 
(HTM) method. The workpiece fixturing can be described 
using a HTM. The fixture locator deviation x1 leads to 
workpiece positioning error modeled by HTM H(δq1) (Fig. 4), 
where parameter δq1 in H(δq1) is determined by δq1=K1x1 [8].  



         

For example, when the orientation vectors of datum surfaces 
are (0 0 -1)T, (0 -1 0) T, and (-1 0 0) T in the FCS, K1 is [1] 

K1=

i

k
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With only fixture error, the resulting feature deviation y 
after an ideal cutting operation on surface (nT, pT)T  is y=Γ1x1 + 
ε, where Γ1 is, e.g.,   

G1=

i

k
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If x1, x2, and x3 co-exist in the machining process, 
y=Γ1(x1+ *

2x + *
3x )+ε. 

Remark 1: Since *
=1Σ p

i ix  ≤ *
=1Σ | |p

i ix , model y=Γ1
*

=1Σ p
i ix  + ε 

therefore indicates the possibility that multiple process errors 
can cancel out one another and thereby reduce process 

variation. Error equivalence modeling thus provides a basis for 
error compensation. 

Remark 2: The process errors can be either static or dynamic. 
The error equivalence modeling still applied to dynamic error 
sources [4]. The difference is that time index t will be 
introduced to the model, i.e., x *

i (t)=Aixi(t) with transformation 
Ai remaining the same as before.  

III. ERROR EQUIVALENCE ANALYSIS FOR ROOT CAUSE 
IDENTIFICATION 

The ultimate goal of root cause identification is to estimate 
all process errors xi’s, i=1,…,p. The most commonly used 
approach is parameter estimation based on (1) [27-30]. With 
error equivalence phenomenon in manufacturing processes, 
the diagnosis issues include (1) diagnosability analysis, (2) 
identification of error occurrence, (3) decision-making on 
measuring certain process errors, and (4) error decomposition 
and individual error identification. Figure 5 shows the causal 
model based root cause identification through (1) least square 
estimation ( ( )ˆ nu  for the nth sample) and (2) statistical test on 
the effect of six equivalent fixture errors using an F test 
statistic (Fi, i=1,2,…6) that in fact indicates signal (process 
error) to noise ratio [29] . 
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Figure 5.  Error equivalence analysis for root cause identification 

Diagnosability analysis of a manufacturing process with error 
equivalence phenomenon: From parameter estimation point of 
view, a manufacturing process is diagnosable if all the process 
errors are estimable. We can prove an intuitive belief that a 
manufacturing process with error equivalence phenomenon is 
not diagnosable with measurement on y. In fact, (2) can be 
rewritten as   

T T T T
1 1 2 1 1 2[ ][ ]p p= +y Γ Γ Κ Γ Κ x x x ε . It is 

clearly that columns in 1 1 2 1[ ]pΓ Γ Κ Γ Κ  are 
dependent because columns of Γ1Ki are the linear combination 
of columns in Γ1. Therefore, the least square estimate of xi 
does not exist and the manufacturing process is not 
diagnosable. 

Sequential root cause identification:  The diagnosability 
conclusion indicates that measurement other than quality 
characteristics y is necessary to distinguish error sources.  
However, it is not economical to take the additional 
measurement if no process error occurs. Therefore, a 
sequential procedure becomes more desirable, that is, first 
identify existence of errors based on y, and then discriminate 
error sources using additional measurement only if process 
error is detected (Fig. 5).  

Error equivalence model in (2) makes it feasible to detect 
error occurrence only using data y. The LSE of total amount of 
equivalent error is û = ( T

1Γ Γ1)-1 T
1Γ y with matrix Γ1 full rank. 

 (3)

    (4)



         

The physical reason of full rank is that each column of Γ1 
corresponds to an independent error component of base error 
x1, e.g., one of the six fixture locators. The method proposed 
by Apley and Shi (1998) [29] can be applied to test the mean 
shift and variance change in the total amount of equivalent 
error u.  

Once process change is detected, decision has to be made 
on how to measure process errors inline at lower cost. 
Theoretically (p-1) out of p process errors xi’s have to be 
checked for complete diagnosis. The error not to be measured 
should be the one that costs the most. For example, machine 
tool error x2 is relatively costly to be measured. Once the total 
amount of equivalent error u is estimated, we can measure 
fixture locator error x1 and datum error x3 (datum error is 
usually part of quality characteristics y). The machine tool 
error x2 can be estimated through decomposition approach (to 
be discussed next). Furthermore, we only need to measure the 
error components that are significant. For instance, if 
component j of u is significant in the machining process, the 
occurrence of fixture error can be determined by only 
measuring locator j of that fixture. This sequential procedure is 
expected to dramatically reduce the measurement cost. 

To decompose û  with measurement of (p-1) process errors, 
we first assume error sources xi’s are independent from one 
another with mean µi’s and variance-covariance matrices Σi’s. 
Since * =i i ix A x  and u= *

=1Σ p
i ix , we have 

1ˆ ˆp
i i i== Σuµ A µ  and 1

ˆ ˆp T
i i i i== ΣuΣ A Σ A  with A1=I    (5) 

With measurement of N workpiece, the sample of û  will 
be ( ) 1 ( )

1 1 1ˆ ( )n T T n−=u Γ Γ Γ y , n=1, 2, …, N. ˆ uµ  and ˆ
uΣ  are 

obtained by computing the sample mean and covariance of û . 
ˆ iµ  and ˆ

iΣ  are estimated with measurement of (p-1) process 
errors xi’s. Using (5), the remaining un-measured process error 
can be obtained through decomposing ˆ uµ  and ˆ

uΣ . Under 
normality assumption, confidence intervals can be established 
to diagnose individual process errors. 

IV. ERROR EQUIVALENCE ANALYSIS FOR AUTOMATIC 
PROCESS ERROR COMPENSATION - A SYSTEM APPROACH 
For a manufacturing process with input-output relationship 

y=f(x1, x2,…,xp)+ε, the traditional error compensation strategy 
is to minimize individual process errors xi’s so as to reduce 
output deviation y [17]. Since error equivalence also implies 
the cancellation among process errors, this allows us to 
develop a new compensation strategy, i.e., treating all process 
error sources as a system and using one error to compensate 
for the others. For instance, with the development of flexible 
fixture whose locator length is adjustable through a control 
system, it is feasible to compensate for the overall process 
errors in the machining process by changing locator length. In 
this new strategy, the outputs of the controller and process will 
be monitored using methods developed in Statistical Process 
Control (SPC) (Fig. 6). The main purpose is to monitor 
unexpected events such as controller failure. 

Applicable conditions: The first open issue is, however, under 
what condition this “error canceling error” strategy will be 

effective. Let 1xG  be the controller adjusting base error source 
x1 (e.g., fixture locators). The base error x1 is not random 
anymore because of the controlled adjustment. Denote by z the 
controller output or the amount of adjustment applied to base 
error source. Although the adjustment z is expected to 
compensate for the remaining process errors *

2=Σ i
p
i x , it 

becomes a new random “error source” because of the 
variability in the actuator. Therefore, the adjusted total process 
error ua has  

auµ̂ 2 ˆp
i ii== + Σzµ A µ  and 

auΣ̂ 2
ˆ ˆp T

i i ii== + ΣzΣ A Σ A      (6) 
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Figure 6.  A new process error compensation strategy using error equivalence 

phenomenon 

The controller 1xG  normally aims to keep the process 
output y on the target and with minimum variation. The 
commonly used control algorithm is to let µz =− 2 ˆp

i ii=Σ A µ  or 

auµ̂ = 0 [31-33]. However, the generalized variance of error ua 

or |
auΣ̂ | is not necessary to be smaller than the one without 

adjustment. Cleary, if | ˆ
zΣ | ≤| 1Σ̂ |, the new compensation 

strategy will uniformly reduce process variation. If | ˆ
zΣ | > | 1Σ̂ | 

but the increase of total process variation (|
auΣ̂ |-| ˆ

uΣ |)/| ˆ
uΣ | is 

insignificant, the compensation might be acceptable as well. 
For instance, the precision of fixture is usually much higher 
than the workpiece and machine tool. A fixture equipped with 
a controller could have lower precision or larger | ˆ

zΣ |. The 
minor percentage of fixture variation in the tool process errors 
might justify the application of error compensation because it 
brings the process on the target. Compensation is normally not 
effective if | ˆ

zΣ | > | 1Σ̂ | and (|
auΣ̂ |-| ˆ

uΣ |)/| ˆ
uΣ | is appreciable. 

The conventional compensation strategy aims to offset ˆ iµ  
and reduce ˆ

iΣ  individually. It will be effective if there is only 
a limited few process errors dominating in ˆ uµ  and ˆ

uΣ . 
Otherwise, it has to develop controllers for all error sources in 
order to keep the process output y on the target.  In that case, 
the two compensation strategies can be applied 
complementarily. The error sources with the largest variations 
can be counteracted using conventional methods to reduce ˆ

uΣ , 
while the new compensation strategy is to achieve ˆ

auµ = 0. 

Controller design and performance evaluation: Using the 
observed feature deviation y(n) at time period n as input, 
controller 1xG  generates adjustment z(n) to counteract 



         

*( 1)
1

p n
i i

+
=Σ x for the (n+1)th time period. Let Z(n) be the 

cumulative amount of adjustment, i.e., Z(n) = z(0) +···+z(n).  y(n+1) 
is given as 

y(n+1) = 0 ( ) ( )
10

p l n l
l

−
=∑ Γ Z + Γ1

*( 1)
1

p n
i i

+
=Σ x +ε(n+1) and (0)

1 1=Γ Γ  (7) 

where p0 matrices 0( )
1 0{ }pl

l=Γ  depict how the adjustment 
0( )
0{ }pn l

l
−

=Z  affect y(n+1). The goal of controller 1xG  design is to 
cancel yµ  and minimize the process variation. A commonly 
adopted approach is Minimum-Mean-Square-Error (MMSE) 
control, i.e., to choose controller parameters so as to minimize 
the mean square error of the controlled process output 2y

µ . 
Since the process errors include the quasi-static components 
which are relatively constant within each period whereas are 
time-varying between time periods, it is important to establish 
a dynamic model for these slow-varying errors. Denote Pd and 
Ps as the sets of subscripts for all quasi-static errors and static 
errors, respectively. Assume that quasi-static errors 
{ *( )n

ix }
di∈P  are modeled by 

 1 2*( ) ( ) *( ) ( ) ( ) ( ) ( )
1 1

p pn l n l l n l n n
i i i i i i il l

− −
= =

= − + + +∑ ∑x W x V t D e        (8) 

where ( )n
iD  is the intercept term, it  includes the measured 

variables that impact *( )n
ix  (e.g., temperatures of machine tool), 

( )n
ie  is the noise term, p1 and p2 represent the maximum time 

lags, ( )l
iW and ( )l

iV  are the coefficient matrices. Following the 
similar derivation in [4] and [34], the MMSE adjustment for 
both static and quasi-static errors can be  

0 2

0

0

0 0

( ) ( 1) ( ) *( ) ( ) ( ) ( ) *
00 0

( )

*( ) ( 1) T 1 T ( ) ( ) ( ) *
1 1 1 11

( ) ( )* T 1 T *
1 1 1 0

ˆ , (9)
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n
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where n0 is the starting period to apply adjustment, and ( )
0
nZ  is 

the intercept term. In Z(n), the first three terms compensate for 
the quasi-static components while the last term - *

s
jj∈∑ P

x  is to 
cancel the static errors. Equation (9) predicts the total 
equivalent errors at time n+1 based on the historical 
information on process equivalent errors and adjustment. It 
should be noted that the constraints on the adjustable variables 
have to be considered. For example, a stopping criterion to a 
small adjustment must be incorporated into the control rule 
since tiny adjustment exceeding the device accuracy limits can 
only increase the process fluctuation [4].  

Since MMSE control may have unstable modes, it is 
necessary to estimate the controller performance such as 
stability and sensitivity. The stability of a controller means that 
an error in the output can be cancelled by an adjustment 
sequence that converges to zero. From control theory [35], one 
can obtain the controller stability by inspecting the poles of the 
transfer function of (9). Sensitivity refers to how the quality 
could be affected whenever moderate changes occur in the 

controller parameters. This can be analyzed by differentiating 
(9) with respect to ( )l

iW  and ( )l
iV .  

Integration of Statistical Process Control with error 
compensation: On some occasions, unexpected process errors 
(e.g., variation of adjustable fixture locator, hot chips during 
machining) have not been considered in {xi} and thus the 
controlled process could show a large variation. Furthermore, 
the cost of frequent process adjustments might be substantial. 
Integration of SPC and APC [36-39] is an economic way to 
reduce the variation of controlled process though it has been 
rarely applied in a discrete part manufacturing process. The 
samples of outputs {y(n)} of the manufacturing process can be 
monitored by control charts. Within the device constraints, the 
incremental adjustment z(n) should be applied (due to the 
quasi-static errors) only when y(n) exceed certain range, which , 
together with device constraints, defines a dead band for the 
adjustment. Monitoring the noise, i.e., ( )ˆ nε =y(n)- *( )

1
p n
i i=Σ x -

0 ( ) ( )
11

p l n l
l

−
=∑ Γ Z  can help to detect if unexpected errors impact 

the process output. When the unexpected errors take place, we 
can update the process error model to track the latest 
information about errors and make a closer prediction. With 
the updating scheme, the fitted coefficient matrices { ( )

0
nZ }, 

{W ( )l
i } 1

1
p
l =  and {V ( )l

i } 2
0

p
l =  in (9) also change with period n. So, 

it is reasonable to denote them as { ( )
0,
n
nZ }, {W ( )

,
l

i n } 1
1

p
l =  and 

{V ( )
,
l

i n } 2
0

p
l = . We have demonstrated [4] that updating scheme 

can quickly reduce the variation caused by the controller 
parameter fluctuation in a milling process. 

V. CONCLUSIONS 
Error equivalence is a fundamental engineering 

phenomenon concerning the mechanism that different error 
sources result in identical dimensional variation patterns. This 
study aims to establish error equivalence methodology and 
obtain insights into this fundamental phenomenon for 
improved dimensional variation control. The methodology in 
this paper addressed the following four issues related to error 
equivalence. 

• Mathematical modeling of the error equivalence 
phenomenon: Definition of error equivalence was 
introduced by measuring the impact of two error 
sources on feature deviations. A modeling approach 
was developed to transform error sources into a base 
type error and group errors into a total amount of 
equivalent error.  

• Root cause identification: The error equivalence 
model clearly shows that a process is not diagnosable 
with measurement on product feature alone. A 
sequential root cause identification procedure was 
thus proposed to identify existence of errors and then 
discriminate error sources.  

• Automatic process error compensation: The error 
equivalence also implies a new compensation 
strategy, i.e., treating all process error sources as a 
system and using the base error source to compensate 
for the others.  



         

This study serves as an initial attempt to systematically 
analyze error equivalence phenomenon. Applications could be 
extended to processes other than machining. 
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