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Abstract—In this paper, a new and simple method to design a 
robust controller for a robotic system is proposed. The presented 
work expands on previous research into the uses of robust control 
design methodology. Specifically, we combined quantitative 
feedback theory (QFT) with the fuzzy logic controller (FLC). 
This combination takes advantage of both methodologies. The 
hybrid controller could be utilized to control a class of nonlinear 
systems, where the plant is expressed as a linear model with time 
varying parameters. In order to illustrate the utility of our 
algorithm, we apply it to a robot arm having two degrees of 
freedom. A desired trajectory is specified. First, a robust QFT 
controller is designed for each link of the robot arm. QFT 
controller is used to follow the desired trajectory. Next, an 
appropriate fuzzy controller is designed to alleviate the 
complexities of the system dynamics. Lastly nonlinear simulation 
for tracking problem in an arbitrary path has been carried out 
which indicates successful design of QFT and Fuzzy controllers. 

Keywords—QFT, loop shaping, prefilter, fuzzy control, 
nonlinear system. 

I.  INTRODUCTION 
The main difference between multiple-input multiple-

output (MIMO) control systems and single-input single-output 
(SISO) control systems is in the means of assessing and 
compensating for the interaction between the degrees of 
freedom. MIMO systems usually include complicated dynamic 
coupling. Determining the accurate dynamic model and 
decoupling it for designing the controller is very difficult. 
Therefore the model established on SISO system control plan is 
hard to apply to complicated MIMO systems because the 
computational load is large. Moreover loop shaping [1] is a key 
step in the process of designing a controller. Even shaping a 
controller around a SISO plant may not be a simple task. For 
complicated applications it may be hard, even for one skilled in 
the art, it might take a long time and a close to optimal 
controller is not guaranteed [2-3]. Clearly, the difficulty in 
controlling MIMO systems is how to solve the coupling effects 
between the degrees of freedom [2-4]. Although QFT control 
has been successfully employed in many control engineering 
fields [5-7], its control strategies were mostly designed for 
SISO systems, in spite of the effect of dynamic coupling on a 
MIMO control system. So designing controller for SISO 
systems do not have sufficient accuracy. 

Considering the complexities of a QFT controller design [8] 
and complexities of a system being controlled, a new and 

simple control system is proposed where QFT and Fuzzy logic 
are uses. 

II. METHODE OF CONTROL 

A. QFT controller design 
QFT is the main controller for controlling each degree of 

freedom of the system. QFT is a robust feedback control 
system design technique introduced by Horowitz [9], which 
allows direct design to closed-loop robust performance and 
stability specifications. 

Consider the feedback system shown in Fig.1. This system 
has two-degrees of freedom structure. In this diagram p(s) is 
uncertain plant belongs to a set 
 p(s)∈ {p(s, α); α ∈ p } where α is the vector of uncertain 
parameters for uncertainty structured of p(s), G(s) is the fixed 
structure feedback controller and F(s) is the prefilter [3]. 

B.  Fuzzy controller designs 
Fuzzy control originally proposed by Lotfi Zadeh in 1965, 

fuzzy logic is a method of classifying a quantity by expressing 
that it is neither “Big” nor “Small” but to appoint a value to the 
“Smallness” or “Bigness” of the quantity. [10] 

Fuzzy logic was later expanded into a decision making 
process which results to fuzzy control. 

 
Figure 1.  Structure of a Two Degrees of Freedom System 

 

III. ILLUSTRATIVE EXAMPLE (TWO LINK ROBOTIC 
MANIPULATOR) 

A 2× 2 MIMO problem (control of a two link robotic 
manipulator) is employed to illustrate the application of the 
method mentioned in Section. 2.  

The purpose of a robot is to control the movement of its 
gripper to perform various industrial jobs such as assembly, 
material handling, painting, and welding [11]. Robot 



 

         

manipulators have complex nonlinear dynamics that might 
make accurate and robust control difficult. Fortunately, robots 
are in the class of Lagrangian dynamical systems, so that they 
have several extremely nice physical properties that make their 
control straight forward. There are several methods for 
controlling of a robot such as: classical joint control, digital 
control, adaptive control, robust control, learning control, and 
force control [12-14]. In this paper we consider the two arm 
manipulators as a two degree of freedom nonlinear system and 
as a controlling mentioned procedure will be used. 

A.  Dynamic equations of the robotic manipulator 
Fig.2 depicts a two degree of freedom robot, where 

21, mm are the masses of links 1, 2 and 21, ll  are the length of 
the links 1, 2 respectively. The dynamic equation of the robotic 
manipulator is [11]. 

 τ=++ )(),()( qGqqCqqM  (1) 

 G (q) is a 2×1 gravity vector where g represents gravity 
acceleration constant. 

),( qqC is a 2×2 matrix of coriolis and centrifugal forces. 

The following numerical values are chosen for the robot 
manipulator (m1=2kg, m2=3kg, L1=0.4m and L2=0.6m) [14]. 
So, dynamic equations of the robot can be derived as follows: 
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Block diagram representation of the above equations which 
simulates nonlinear multivariable dynamics of robot in 
MATLAB is show in Fig 3. 

 
Figure 2.  Two-link robotic manipulator 

 
Figure 3.  Simulation of Robot Dynamic in MATLAB 

B. Design of QFT controller for nonlinear systems 
In QFT method, the nonlinear plant is converted to family 

of linear and uncertain processes. For this purpose, literature on 
QFT offers two different techniques [3], namely Linear Time 
Invariant Equivalent (LTIE) of nonlinear plant, and Non Linear 
Equivalent Disturbance Attenuation (NLEDA) techniques. 

In both methods, limited accepted output is the main tool to 
translate nonlinearities of the plant into templates for the first 
technique, or disturbance bounds for the second technique. 

In this paper the first method is used. For this conversion at 
the first acceptable out put set is introduced and then the input 
set produced. Dividing of output laplasian to input laplasian, 
introduces transfer function between each input and out put. 
This transfer function will be linear and uncertain. Response 
condition is provided with use of fixed-point theorem [3], [15]. 

In this paper the Golubev method [15] is applied for each 
input-output set, in order to reach directly to a linear time-
invariant transfer function, relating acceptable plant input-
output data set. 

Next step involves linearization by using Golubev method. 
Application of this method involves producing acceptable out 
put set, and then based on nonlinear dynamic obtaining input 
set. Dividing of output laplasian to input laplasian, introduces 
transfer function between each input and out put. This transfer 
function will be linear and uncertain. By generating different 
trajectory for robot arm suitable output set will be produced 
then according to nonlinear dynamic of robot associated input 
set (required torque in joints) will be obtained. Robotic 
Toolbox was used for solving inverse kinematics of robot Fig 
4. 

 

 

 

 

 

 

 

 
Figure 4.  Application of Robotic Toolbox for solving inverse kinematics 
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In order to find the linear uncertain plant transfer function, 
numerical methods can be used. Therefore by means of 
numerical software which applies in frequency domain (with 
minimization of square error between input and output of 
nonlinear transfer function) the uncertain linear family of 
processes was achieved.  

Figure 5 depicts nonlinear dynamic of robot which is 
modeled with an uncertain linear 2×2 by two matrix transfer 
function.  

Seven different paths were used in order to achieve suitable 
linear model. Therefore the uncertain linear matrix transfer 
function is as below: 
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C. Template Generation 
Figs.6, 7 show plant uncertainty in Nichols chart for each 

arm. The linear uncertain plant transfer functions of 
manipulator can be modeled as below: 

 
Figure 5.  Substitution of nonlinear system with its associated linear system 
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Figure 6.  Uncertainty Templates for Arm 1 
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Figure 7.  Uncertainty Templates for Arm 2 

D. Tracking Problem 
The overshoot and the settling  time specifications ( Mp  

=5%) and  ( Ts  =0.05 s)  respectively are given in the form of 
upper and lower bounds in frequency domain, usually based on 
simple second-order models to represent the status of  damped 
condition .Figs 8, 9.  
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Figure 8.  Robust Tracking Bounds for Arm 1 
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Figure 9.  Robust Tracking Bounds for Arm 2 
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E. Robust Margins 
The following two conditions to achieve robust stability 

are:  

First, stability of the nominal system which means: the 
Nichols chart envelope should not intersect the critical point q 
(-180°, 0 dB). [3] 

Second, magnitude constraint condition which means: 
placing a magnitude constraint on the complementary 

sensitivity function. l
( j ) 1.05

l 1
〈ω

+
 for each arm (Figs. 10, 11).     

F.    Robust Performance Bounds   
Having obtained the robust-performance bounds tracking 

and robust stability bounds (U-contour) the overall bounds of 
the design can be calculated by combining appropriately the 
individual bounds for each point of the phase-grid. Figs. 12, 13 
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Figure 10.  Robust Margins Bounds for Arm 1 
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Figure 11.  Robust Margins Bounds for Arm 2 
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Figure 12.  Robust Performance Bounds for Arm 1 
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Figure 13.  Robust Performance Bounds for Arm 2 

 

G. Loop and Pre-Filter Shaping 
Among all possible controllers which meet the above 

requirements, the “best” design is considered to be the one in 
which the open-loop frequency response at the design 
frequencies lies as close as possible to the robust performance 
templates. This is in order to avoid “over-designing’’ the 
system by using excessively large gains, which may lead to 
noise amplification, instability due to unmodelled dynamics, 
etc. 

By using the elements of the QFT toolbox we design the 
controller so that the open loop transfer function exactly lies on 
its robust performance bounds and does not penetrate the U-
contour  at all frequency values ( iω ).Fig. 14, 15. The design of 
pre-filter guarantees the satisfaction of tracking specification. 
In Figs. 16, 17 pre-filter shaping of open loop transfer function 
for each arm is shown. So the optimal controller and pre-filter 
are designed and given as follows. 



 

         

 
Figure 14.  Loop-Shaping In Nichols Chart for Arm 1 
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Figure 15.  Loop-Shaping in Nichols Chart For Arm 2 
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Figure 16.  Pre-Filter Shaping in Nichols Chart for Arm 1 
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Figure 17.  Pre-Filter Shaping in Nichols Chart for Arm 2 
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IV. FUZZY CONTROLLER 
Fig. 18 shows the membership function of the fuzzy 

controller. Fig 19 demonstrates the fuzzy control rules in 
controlling a robotic system [14]. 
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Figure 18.  Membership functions of a coupling fuzzy controller [14] 

 
Figure 19.  Fuzzy control rules [14]. 
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Figure 20.  Block diagram of the control strategy 

V. NONLINEAR ANALYSIS OF ROBOT 
Fig. 20 demonstrates the block diagram of the control 

strategy which including QFT and Fuzzy controllers. 

The result of tracking problem for an elliptical path is 
shown in Fig .21. 

VI. CONCLUSIONS 
This paper presents a new and simple algorithm for 

designing a robust controller for a system applying QFT and 
fuzzy techniques. The advantages of such a method can be 
demonstrated as following:  

By combining QFT and FLC the advantages from both 
methodologies are achieved. 

Successful implementation of robust controller design for a 
two arm manipulator. 

We should notice that tracking accuracy by using tighter 
robust performance bounds could be increased which in turn 
leads to an increase in the controller gain, therefore based on 
the design limitation suitable solutions will be obtained.  
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Figure 21.  Tracking Problem for Elliptical Path 
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