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Abstract—In this paper, by constructing an appropriate 
Lyapunov functional, sufficient criteria independent of the delays  
for global exponential stability of the network are derived. The 
algebra criteria are applicable for other neural network models. 
This results are less conservative and restrictive than previously 
known results and can be easily verified. And the result has 
overcome the obvious drawback that previous works neglect the 
signs of the connecting weights, and thus, do not distinguish the 
differences between excitatory and inhibitory connections. It is 
believed that the results are significant and useful for the design 
and applications of the Cohen-Grossberg model. 
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I.  INTRODUCTION  
A large class of neural networks, which can function as 

stable content addressable memories or CAMs, are proposed by 
Cohen and Grossberg [1] and [2]. These Cohen-Grossberg 
networks were designed to include additive neural networks 
[3], [4], [7], [9], [10], [11], [16], [17], [21], [22], [23]and [24], 
later studied by Hopfield [3] and [4], and shunting neural 
networks. In general, the Cohen-Grossberg neural network 
model is described by the set of ordinary differential equations: 
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where i = 1, 2, … , n, Ji, denote the constant inputs from 
outside of the system and wij represent the connection weights. 
ai(xi) and bi(xi), are the amplification functions and the self-
signal functions, respectively, while fj(xj), j = 1,2, … , n, are the 
activation functions. In the original analysis, Cohen and 
Grossberg assumed that the weight matrix W=(wij)n×n was 
symmetric and the amplification functions ai(xi)>0. Meanwhile, 
the activation functions fj are assumed to be continuous, 
differentiable, monotonically increasing and bounded, such as 
the sigmoid-type function. For simplicity, the explanation of 
the lowcase i bound is omitted in the following equations. 

In reality, time delays inevitably exist in biological and 
artificial neural networks due to the finite signal switching and 
transmission speed in a network. It is also important to 
incorporate time delay into the model equations of the network 
such as delayed cellular neural network, which can be used to 
solve problems like the processing of moving images [14] and 
[15]. Discrete delays were introduced into system (1) by 
considering the following system [5] and [8]: 
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where the matrix nn
k

ijk vV ×= )( )( represents the interconnections 
associated with delay τk of whichτk, k = 0, 1, … , K, are 
arranged such that 0 = τ0 < τ1 <…< τk. Furthermore, their global 
limit property needs to satisfy the requirements that the 
connection should possess certain amount of symmetry and the 
discrete delays are sufficiently small. Hence, the work of Ye et 
al. [8] cannot tell what would happen when the delays increase. 
We have mentioned above that large delay could destroy the 
stability of the equilibrium in a network. Even if the delay does 
not change the stability, it could affect the basin of attraction of 
the stable equilibrium. For this topic, interested readers may 
refer to the recent work [18], [29], [30] and [31]. Recently, for 
the delayed Hopfield networks [7], [9], [10] and [11], cellular 
neural networks [14] and [15] as well as BAM networks [12] 
and [13], some delay-independent criteria for the global 
asymptotic stability are established without assuming the 
monotonicity and the differentiability of the activation 
functions, nor the symmetry of the connections, [7] and [9]. 
Wang and Zou [5][6] studied the following system  
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where vij ≥ 0 are delays caused during the switching and 
transmission processes. Some criteria for the exponential 
stability of a unique equilibrium are obtained. 
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Liao [19] studied a modified Cohen-Grossberg model with 
discrete delays described by the differential difference equation 
of the form 
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In this paper, we consider a modified Cohen-Grossberg 
model with multiple time-varying delays described by the 
differential difference equation of the form 
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Unlike most of the previous authors, we did not confine to 
the symmetric connections. Moreover, we did not assume the 
monotonicity and differentiability of the activation functions. 
In this paper, the amplification functions only require to be 
continuous and positive. Moreover, the self-signal functions are 
not assumed to be differentiable. Thus a much broader 
connection topology of the network is allowed. The global 
exponential stability criteria of the Cohen-Grossberg neural 
network with time-varying delays were also obtained by 
constructing appropriate Lyapunov functions. And the result 
has overcome the obvious drawback that it neglects the signs of 
the connecting weights, and doesn’t distinguish the differences 
between excitatory and inhibitory connections.  

The rest of this paper is organized as follows. In Section 2, 
some preliminary analyses are given. By constructing a new 
Lyapunov functional, we studied the Cohen-Grossberg models 
with time-varying delays and gained some global exponential 
stability criteria in Section 3. Some comparisons and an 
example are given in Section 4 to demonstrate our main results. 
Finally, conclusions are drawn in Section 5.  

II. SOME PRELIMINARIES 
Let R denotes the set of real numbers and if x ∈  Rn, then xT 

= (x1,x2, … , xn) denotes the transpose of x. Let Rn×n denotes the 
set of n × n real matrices. The initial conditions associated with 
(5) are in the form: 

,,,2,1],0,[),],0,([)()( nisRCssx ii =−∈−∈= ττφ
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For functions ai(xi) and bi(xi), i = 1,2, … , n, the following 
assumptions are used.  

(H1) ai(u) are continuous and there exist positive constants 
αi and ia such that 0< iii auaa ≤≤ )( , for all u∈R , i = 1,2, … 
, n. 

(H2) bi and 1−
ib , i = 1,2, … , n, are locally Lipschiz 

continuous and there exist γi > 0, i = 1,2, … , n, such that 

u[bi(u+x)-bi(x)] ≥ γiu2 

Remark 1. In [5], it is necessary that 0)( >′ xbi . However, 
our condition (H2) does not require that bi(x), i = 1,2, … , n, to 

be continuous and differentiable.Moreover, our results are less 
conservative and restrictive than those given in [5]. 

Usually, the assumed activation functions are continuous, 
differentiable, and monotonically increasing and bounded, such 
as the sigmoid-type functions. However, as pointed out in [10], 
[11], [12], [13], [14], [15], [16] and [17], for certain purposes, 
non-monotonic and not necessarily smooth functions might be 
better candidates for the neuron activation functions in 
designing and implementing an artificial neural network. Note 
that in many electronic circuits, amplifiers possess neither 
monotonically increasing nor continuously differentiable input-
output functions are frequently adopted. 

Moreover, we assume that the activation functions fi, i = 
1,2, … , n, satisfy either (H3) or (

3H ′ ):  

(H3) (i) fi, i = 1,2, … , n, are bounded in R; 

(ii) .,,2,1,)()(0 niL
u

xfuxf
i

ii =≤−+<  

( 3H ′ ) (i) fi, i = 1,2, … , n, are bounded in R; 

(ii) .,,2,1,)()( niuLxfuxf iii =≤−+  
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Remark 2. Note that unlike the requirement stated in[8], 

∑ =
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0

is not required to be symmetric in this paper. This 
means that our results are applicable to networks with a much 
broader connection structure. 

Before stating the main results, we first need the following 
definitions and lemmas.For convenience, we introduce some 
notations. For a symmetric matrix, A>0 (<0) means that A is 
positive definite (negative definite). 

Definition 1. For any continuous function h: R → R, Dini’s 
time-derivative of h(t) is defined as 

θ
θ

θ

)()(suplim)(
0

thththD −+=
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+ . 

It is easy to see that if h(t) is locally Lipschitz, then 
D+h(t)< ∞ . 

Definition 2. If there exist k>0 and 1)( >kγ , such that 

0,)(sup)()(
0
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system (5) is considered as exponential stable, and k is called 
the degree of exponential stability. 

We note that x* is an equilibrium of system (5) if and only 
if Rxxxx n ∈= T**

2
*
1

* ],,,[ is a solution of the following 
equations 
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Similar to the discussion in [5], we can easily obtain the 
following results. 

Lemma 1. If (H1)-(H2) and (H3) or ( 3H ′ ) hold, then for 
every input J, there exists an equilibrium point for system (5).  

Let x* be an equilibrium of system (5) and z(t) = x(t) − x*. 
Substituting x(t) = z(t) + x* into system (5) leads to 

 




++−−−





+−++−=

∑∑

∑

= =

=

i

K

k

n

j
j

k
ijjj

k
ij

n

j
jjjijiiiiiii

Jxttzfv

xtzfwxtzbxtzatz

0 1

*)()(

1

***

)))(((

))(())(())(()(

τ
 (7) 

By (7), system (5) can be rewritten as 
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where 
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It is obvious that x* is global exponential stable for system 
(5) if and only if the trivial solution z = 0 of system (7) is global 
exponential stable. Moreover, the uniqueness of the 
equilibrium of (5) follows from its global exponential stability. 

From assumption 3H ′ , we have 

(H5) iiii zLzg ≤)( , 0)0( =ig , ni ,,2,1= . 

Then, it is easy to see that 
2)( iiiii zLzgz ≤ . 

Definition 3. For any scalar a∈R, a+ is defined as 

 a+ = max{0, a}. (10) 

or  

 aa =+ .  (11) 

Lemma 2. Any scalar a∈R, there exist scalar a+, we hold 
the inequality a ≤ a+. 

Proof. Any scalar a∈R, we have  

a ≤  max{0, a}, and aa ≤ . 

It is easy to see that a≤ a+. 

III. MAIN RESULTS 
Theorem 1. Consider the delayed system (5) and assume 

that conditions (H1)-(H4) are satisfied. If there exist ijψ , ijρ , 
ijζ , ijη ∈  [0, 1], and positive constants r1,r2, di, i, j = 1,2, … , n, 

and σ >0, and the following condition holds: 
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then, for every input J, the equilibrium x* for system (5) is 
global exponential stable. This implies that there exists 
constants η ≥ 1 such that every solution of (5) satisfies  
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Proof. We construct the following nonnegative functional 
as the Lyapunov functional candidate: 
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By computing its the Dini’s time-derivative of V(z(t)) along 
the trajectories of (8) and making use of the Cauchy inequality 
(i.e, ra2 + b2 /r 2ab, r > 0), we have 
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This implies that V(z(t)) ≤ V(z(0)) for t>0, and 
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By (14), we can easily obtain 
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Hence, we have the following results 
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Now, by a standard Lyapunov-type theorem for functional 
differential equation, the trivial solution of (8) with (9) is global 
exponential stable for ∆<2. Therefore, x* is global exponential 
stable for system (5). This completes the proof of Theorem 1. 

Remark 3. In [19][26][27], the author presented a 
sufficient condition for global exponential stability of (2) and 
(4). However, compared with Theorem 1 above the previous 
result has an obvious drawback: it neglects the signs of the 
connecting weights, and thus, does not distinguish the 
differences between excitatory (wij > 0) and inhibitory (wij < 0) 
connections [25]. 

If we set K =0, in Theorem 1, then the following corollary 
is immediate. 

Corollary 1. Consider the delayed system (5) and assume 
that conditions (H1)-(H4) are satisfied. If there exist ijψ , ijρ , 

ijζ , ijη ∈  [0, 1], and positive constants r1,r2, di, i, j = 1,2, … , n, 
and σ >0, and the following condition holds: 
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 (18) 

then, for every input J, the equilibrium x* for system (5) is 
global exponential stable.  
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If we set wij = 0, i, j = 1,2, … , n, in Theorem 1, then the 
following corollary is immediate. 

Corollary 2. Consider the delayed system (2) and (5) with 
pure delays and assume that conditions (H1)-(H4) are satisfied. 
If there exist ijψ , ijρ , ijζ , ijη ∈  [0, 1], and positive constants 
r1,r2, di, i, j = 1,2, … , n, and σ >0, and the following 
condition holds: 
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then, for every input J, the equilibrium x* for system (2) and (5) 
is global exponential stable.  

When we set ai(x) = 1, the model becomes the following 
neural networks with multiple time-varying delays: 
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When we set ai(x) = 1, bi(x) = γix in system (5), where γi > 
0, i = 1,2, … , n, the model becomes the following cellular 
neural networks with multiple time-varying delays: 
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Hence, by virtue of Theorem 1, we can immediately obtain 
the following result: 

Corollary 3. Consider the delayed system (20) and (21) 
and assume that conditions (H1)-(H4) are satisfied. If there 
exist ijψ , ijρ , ijζ , ijη ∈  [0, 1], and positive constants r1,r2, di, i, j 
= 1,2, … , n, and σ >0, and the following condition holds: 
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then, for every input J, the equilibrium x* for system (20) and 
(21) is global exponential stable.  

IV. REMARKS AND AN EXAMPLE 
In this Section, we will give an example to illustrate that the 

conditions given in this paper are less conservative and 
restrictive as than previously known results.  

 Example1 Consider the following system: 
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In this example, 3,5,2,2,2,1 112121 ====== ααγγLL , 
1,3 22 == αα . By virtue of condition in [5], it is easy to 

compute that 
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Therefore, we have θ=min{θ1, θ2} = −1.533 < 0, hence, the 
conditions in [5] are not satisfied.  

We can easily calculate 
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Therefore, we have θ=max{θ1, θ2}=2.2>2, hence, the 
conditions of Theorem 1 in [20] are not satisfied.  

We can easily calculate 
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Therefore, we have θ=min{θ1, θ2} = −1.2 < 0, hence, the 
conditions in [28] are not satisfied. 

 
Figure 1.  System (23) with initial state x(0) = [0.5, -0.3]T. 

However, if 2
1==== ijijijij ηζρψ , }0,max{ ijij ww =

+ , 
d1=d2=r1=r2=1, 0.4624=σ  in Corollary 3, then we can 
calculate ∆1=1.992, ∆2=1.145. Therefore, we have ∆=max{∆1, 
∆2}=1.992<2, hence, the conditions given in Corollary 3 are 
hold. For numerical simulation, System (23) with initial states 
x(0) = [0.5, -0.3]T, inputs J1 =1.5, J2=−1.5, and delay 
parameters τ1=1 and τ2=2 are considered. The existence of an 
unique equilibrium point, x*=[-0.4568, 0.3732]T, and the global 
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asymptotic stability of system (23) are guaranteed by means of 
computer simulations. Fig.1 depicted the time response of the 
state variables x1(t) and x2(t) for this case. Moreover, the results 
are independent of the delay parameters. 

V. CONCLUSIONS 
In this paper, the criteria for the global exponential stability 

of a class of Cohen-Grossberg neural networks with multiple 
time-varying delays have been derived. The results have been 
shown to be the generalization and improvement of existing 
results reported recently in the literature for the cases with 
delays. Analyses have also shown that the neuronal input-
output activation function and the self-signal function only 
need to satisfy, respectively, conditions (H1), (H2), (H3) and 
(H4) given in this paper, but do not need to be continuous, 
differentiable, monotonically increasing and bounded, as 
usually required by other analyzing methods. Novel stability 
conditions are stated in simple algebraic forms so that their 
verification and applications are straightforward and 
convenient. The criteria are independent of the magnitudes of 
the delays. We only require ai(x) be continuous and positive. At 
the same time, we thinks over the signs of the entries of the 
connection matrices. Thus the differences between excitatory 
and inhibitory effects are considered. An example is given to 
demonstrate that our criteria are less conservative and 
restrictive than previously known results.  
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