
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Multi-agent Test Environment for BPEL-based Web
Service Composition

Wenli Dong
Institute of Software, Chinese Academy of Science

Beijing, China
Wenli@iscas.ac.cn

Abstract*—The distributed structure of agents makes the test
for large and complex Web Service composition possible. This
paper discusses how to develop the multi-agent test environment
for BPEL-based Web Service composition. The BPEL-based Web
Service composition is modeled by HPN that can be easily
referenced by test case generation and test evaluation. By
representing agent in HPN, the agent can be dynamically bound
at runtime. In order to implement the multi-agent test
environment for BPEL-based Web Service composition, the
ontology is analyzed and defined based on XML because of its
flexibility, extensibility etc. This ontology is the basis of the agent
communication and provides the terms for test case generation
and test evaluation etc. The test case generation and test
evaluation under this test environment are analyzed. The test
process is provided to illustrate the inter-action between the
agents under this multi-agent test environment to accomplish test
task.

Keywords—c Business Process Execution Language for Web
Services, High-level Petri Net, Multi-agent test

I. INTRODUCTION
The interoperability between Web Services has been one of

the most important research topics on the SOA field with
mounting economic and technical challenges as growing
complexity and increasing services. Business Process
Execution Language for Web Services (BPEL) [1] allows
specifying business processes and how they relate to Web
Services.

Testing Web Service composition to gain confidence in its
conformance to the desired function with expected QoS is a
key problem certainly, because lack of trust will prevent Web
Service from adopting. But, because of its properties, Web
Service composition test is complex, difficult and time-
consuming, which makes Web Service test the following
challenges: 1) the components in Web Service composition are
interactive with a diversity of information formats and
execution platforms. Testing Web Service composition requires
a flexible and composite software environment to host and/or
integrate a diversity of tools for various platform and language.
2) The dynamics of the Web Service composition such as
publishing, binding, discovery, and composition dynamically
demands software tool can bridge the gap between dynamic

* This work is supported by the National High Technology Research
and Development Program of China (Grant No.2007AA01Z190)

test and static analysis. 3) The provider and requestor are
geographically distributed, the components in Web Service
composition can be dispersed in different computers, and this
property requires such a test environment that can be extended.

Up to now, the researches on Web Service and agent focus
on their integration: a Web Service should be able to invoke an
agent service and vice versa. [2][3][4] introduce architectures
which connect agents with Web Service, and treat a Web
service as an agent having proper ontological description.
[5][6][7] propose how to access Web Services through an
agent-based service gateway, and how to access agent-based
services through a Web Services-based service gateway.
However, testing Web Service in agent software environment
isn’t involved in these researches, neither is Web Service
composition test. The agent software application in Web
Service isn’t furthered to construct a test environment to make
use of the agent software to offer effective way for testing Web
Service composition.

To meet these requirements, based on semantic Web and
HPN (High-level Petri Net), by allowing software agents to
communicate and understand the information published on the
Internet, a multi-agent test environment is proposed. First of
all, the agent runtime environment provides a dynamic
mechanism for service description, invocation, discovery, and
composition. Secondly, the semantic vision is to allow
communications from software agent to software agent. Under
our test environment, various software agents decompose test
task into small subtasks and carry out these tasks. They
cooperate with each other to fulfill the whole test task. The
multi-agent test environment proposed in this paper is
composite and extended, and agents can dynamically join and
leave the system to achieve the maximum flexibility and
extendibility.

This paper is organized as follows. Section 2 gives the
architecture of the multi-agent test environment. All the test
agents are described and classified in this section. In section 3,
the way for agent binding dynamically is introduced, which is
implemented based on HPN. Section 4 is generation of test
environment. Based on the lifecycle of test environment
construction, the ontology of test environment, modeling of
BPEL-based Web Service composition, test case generation,
and test evaluation under the multi-agent test environment are
discussed. The test process under this test environment is

illustrated in section 5. Section 6 is the conclusion and future
work.

II. TEST ENVIRONMENT
As shown in Fig.1, the test environment consists of a

number of agents to fulfill test tasks for BPEL-based Web
Service composition. Organizing relative agents into group is
convenient for controlling agents [8][9][10]. As shown in
Fig.1, the Get BPEL (GB) agents and the BPEL Analysis (BA)
agents are arranged in media agent group for their interaction
with BPEL/WSDL specification and test environment.
However, these agents can be distributed in different
computers. Actually, the distribution of agents is free according
to any specific configuration, can move and change their
location at runtime.

GB

CS

BA

Medi a agent s

TCG

TO

TCE

Test agents

TATest er

TM

DF

AM

E

CI
BPEL-based
web servi ce
composi t i on

Test i ng
command

Test i ng
prompt

Test i ng
f eedback

Fig.1. Agents for Testing BPEL-based Web Service Composition

Get BPEL (GB) agents obtain BPEL/WSDL specification
from Test Assistant Agent. The BPEL and corresponding
WSDL documents will be input by GB while Test Assistant
Agents provide graph interface for user.

BPEL Analysis (BA) agents analyze the BPEL/WSDL
specification, exact useful information, and construct HPNs for
basic activity on a HPN platform. The structure information of
basic activity in HPN form is stored in Knowledge Base (KB),
a database that is used to store information related with test.

Composition Structure (CS) agents analyze the structure of
BPEL-based Web Service composition, and generate a HPN
presentation to describe the structure.

Test Case Generator (TCG) agents generate test cases to
test an activity according to certain test criteria.

Test Case Execution (TCE) agents execute the test cases,
and generate execution results. Two ways of test case execution
can be adopted in our design. One is to run the test cases
interactively under the control of Agent Manager (AM), with
the aid of a Test Assistant (TA). The other is to playback.

Coordinate Interface (CI) agents provide flexibility for
every kind of Web Service implementation. CI plays the role of
test harness, test driver and module stubs. They enable the
integration of various test tools seamlessly into the multi-agent
test system so that components written in different languages
can be tested in a uniform environment.

Test Oracles (TO) agents verify whether the test results
match the given BPEL/WSDL. BPEL/WSDL Specification
describes constraints on the order in which events can occur in
executions of an agent system and constrains for message,

operation etc. Oracles produced from these specifications can
verify whether or not traces generated by executing a system
conform to the specifications.

Test Assistance (TA) agents provide the interface between
tester and computer that guides testers in the process of test.
For example, the BPEL/WSDL documents are input from TA
to TCG to generate test cases. The test result, test log and test
report can be obtained by TA.

Test Monitor (TM) agents monitor the test process at
runtime and store the monitoring information in KB for later
analysis.

Evaluation (E) agents are used to collect monitoring
information and log information, employ predefined evaluation
model, so that appropriate conclusions about the quality of the
Web Service composition can be drawn. The rank information
based on evaluation result is recorded and referenced by later
test.

Agent Management (AM) agents are agents in charge of
managing agents, including agent description, agent
arrangement. In some degree, it is corresponding to ASM
(Agent Management System) [11]. An agent management
agent has the following capabilities:

1) Creating an agent description. It is based on XML. The
description consists of agent name, agent locator, and agent
properties. Among above properties, agent name is unique
generated by combining owner to identify different agents for
later agent selection. E.g., for an agent in computer called tt
owned by IBM, and implement add function, its name can be
represented as IBM::tt::addAgent1 simply. The agent ontology
is introduced in section 4.1.

2) Processing a given query for agents. The query condition
can be composite to find suitable agent exactly. The query
language is XQuery-based [12] because of its extensibility and
flexibility. For example, a query for an agent can have the
following structure:

parent::operation[attribute::name="deposit"]

The above expression is to select all parents of the context
node that are elements named "operation" and whose name
attribute has the value "deposit".

Directory Facilitator (DF) agent is mainly responsible for
registering agent to make agent in a test environment visible to
AM. Its register function is similar with UDDI (Universal
Description, Discovery and Integration). But, DF pays more
attention to QoS of service while UDDI focuses on the location
of service.

The message mechanism consists of a set of
communication primitives such as send, receive message that is
passed between agents. Its design objects are applicable,
flexible, lightweight, and simple.

In our prototype system, the communication mechanism is
based on Message Queue. Two (or more) processes can
exchange information via message queue. Via some message
treatment module, the sending process places a message in a
queue that can be read by another process. Each message is

given an identification and type so that processes can select the
appropriate message. Process must share a common key in
order to access to the queue in the first place. Message queue
consists of queue manager, channel and queue. The two kinds
of channel is sending channel and receiving channel. The queue
is classified into transporting queue, local queue, and remote
queue based on the message source or/and destination. The
operation for message queue consists of control operations e.g.
initialing message queue, sending/receiving operation etc. As a
loose couple distributed communication way, message queue is
independent of hardware and operation system, and can ensure
data not being lost and copied. It provides an effective
communication mechanism for agent.

III. REPRESENTING AGENTS IN HPN
Referencing the soft gene definition stated in [13]: a soft

gene is an entity consisting of a set of behaviors and attributes.
In a HPN, a behavior can be represented by a transition and the
attributes can be represented by predicate properties. We define
the behavior and attributes:

// predicate definition

struct pred { //attribute definition}

 ram <pred> predicate-name

//transition definition

trans name { // declarations

 // arcs with the fire rule of transition

 action { // code to evaluate at fire start. } }

Under multi-agent test environment, the agent takes part in
test or not is decided at runtime. AM agents arrange the work
for all available agents, and the state of agent is recorded by
AM agents. Under thus open and dynamic environment, agents
change state dynamically and interact with other agents. An
agent can be defined as an entity with a set of soft gene. At a
specified time, the steps of the agent taking are decided by its
state and properties at this time. Based on above analysis, we
can represent agents in HPN. The agent name is defined in
predicate properties that denote the agent to take charge of
transition, and bind/discard agent name with a concrete agent is
dynamically. AM agents organize the interactions of all
available agents.

Assuming P is the set of predicates; A is the set of agents;
bind represents the relationship between a predicate and an
agent. That is:

}...,{ ,1,0 naaaA =)0(≥n

}...,{ ,1,0 mPppP =)0(≥m

bind: A╳P→{0,1}

The value of bind is 1 means at predicate
xP , agent

ya is in
the state specified by

xP .

Two types of operations are added in a HPN platform. One
is bind (

xP ,
ya), that means building relation between

xP and
ya .

The other is release (
xP ,

ya), that means discarding the
relationship between

xP and
ya .

For each agent ka , there is a set of behaviors represented by
transition and pointed by arcs. Every arc will be labeled with
the predicate information including agent name, input etc. the
behaviors for agent can be represented as }...,{ ,1,0 os tttT = , and the
arcs that fire each transition

qt can be represented as

},...,,{ 10 wt arcarcarcARC
q

= . A simple sketch is shown in Fig.2.

arc1

at t r i bute

Agent - name

. . .

predi cate

arc2 arcv. . .

t ransi t i on

Agent -
l ocat i on

Fig.2. Binding Agents in HPN

IV. GENERATING MULTI-AGENT TEST ENVIRONMENT

In order to test composition dynamically, the test
environment need start, stop, suspend or resume the operations
of the cooperative agents. For analysis purpose, monitoring
data, log, execution result are collected and manipulated, and
will be used in evaluation of the tested Web Service
composition. This means that the test environment should be
able to model and control the lifecycle of agents. That is, the
test environment is based on lifecycle. This ranges from
ontology definition for providing the interaction between
agents and BPEL specification, modeling the BPEL-based Web
Service composition to arrange the test steps; right up to run the
agent test, record the result, analyze and evaluate the test result,
log, and monitoring data.

A. Ontology Definition
Ontology is an explicit specification of some topic.

Ontology defines the basic terms and relations comprising the
vocabulary of the topic and provides the rules to define the
combination of the terms and the relations. Here, it consists of
terms relative with multi-agent test for BPEL-based Web
Service composition and the relations. Thus, the ontology of
multi-agent for testing BPEL-based Web Service can be
classified into two types: for multi-agent and for BPEL-based
Web Service.

Referencing the ontology definition in [9][11], combing
with the characteristics of BPEL-based Web Service
composition, the simple ontology of multi-agent for testing
BPEL-based Web Service is proposed in this section.

Generally, ontology modeling includes the Knowledge
Interchange Format, UML, and XML. Because XML has the
advantage of extensibility, flexibility, and readability [14], in
this paper, we use XML Schema to define the ontology.

The Schema description is constructed based on the
description components and their relations. Because of space
limit, here, the agent description Schema will be given. For

message, transport, action, test case, test execution, test
log/monitor, and test evaluation, the description Schema will
not be provided.

Agent description includes: 1) Agent attribute: A set of
properties associated with an agent by inclusion in its agent-
directory-entry; 2) Agent communication language: A language
with a precisely defined syntax semantics and pragmatics,
which is the basis of communication between independently
designed and developed agents; 3) Agent directory entry: A
composite entity containing the name, locator, and attributes of
an agent; 4) Agent locator: An agent locator consists of the set
of transport descriptions used to communicate with an agent; 5)
Agent name: An opaque, non-forgeable token that uniquely
identifies an agent.

An agent can be defined as:
<element name="Agent_name" type="xsd:string"/> <element

name="Agent_locator"><complexType><sequence> <element ref=" Transport
"/></sequence> </complexType></element><element
name="Agent_communication_language" type="xsd:string"/><element
name="Agent_attribute"> <compexType><sequence><element
name="a_attribute" type="xsd:string"/></sequence></complexType>
</element> <element name="Agent_directory_entry"> <complexType>
<sequence> <element ref="Agent_name" minOccurs="1" /> <element
ref="Agent_locator" minOccurs="1"/> <element ref="Agent_attribute"
minOccurs="0"/></sequence> </complexType></element><element
name="Agent"><complexType><sequence><element
ref="Agent_directory_entry" minOccurs="1" /><element
ref="Agent_communication_language" minOccurs="1"
/></sequence></complexType></element>

B. Modeling BPEL-based Web Service Composition

We use HPN to model BPEL-based Web Service
composition [15]. From the operation mapping to the service
composition mapping for the various controlling constructs
specified by BPEL/WSDL specification, the relationship
between BPEL/WSDL conceptions and HPNs is specified in
four levels according to intra-activity, inter-activity, intra-
service, and inter-service.

In HPN, in order to map an operation, a part will be
presented by a place with token whose type specified by the
part type used as the interface of test case generation. An arc is
used to link the transition with another arc linked to the
input/output message consisting of parts. The physical
preconditions described in BPEL are embodied in the HPNs by
places. And the cause-effect analysis is adopted in this
mapping.

The operation cluster is generated by basic activity such as
receive, reply, assign, invoke, empty, terminate, and wait. The
operations in an operation cluster have message interaction
associated by operation dependency. We can make a
corresponding action or statement to a transition. Places
connected to the transition intuitively to express the states
before and after executing the corresponding action or
statement. Firing a transition means that the corresponding
action is being executed. Operation invocation can be
expressed by entering a token in a place that denotes the
starting point of the operation.

The operation invocation sequences at service level can be
loop, choice, link, parallel, and sequence, presented

respectively by structured activities: while, pick/switch, link,
flow, and sequence activity in BPEL. The transition of
activities at service level implies other problems, i.e., dynamic
binding and concurrency. Thus we should compute which
condition is satisfied and select an operation that should be
activated when a composite activity occurs. The mechanism of
this computation and selection can be implemented by a HPN.
To compute which action will be invoked, we attach the
information of the action name to a token and the condition
judgment on arc based on global parameters and token value to
denote the action selection. Identifying information will be
attached to token in places which can be implemented in HPNs.
Selecting a operation to be invoked is done with the evaluation
of “Guards” attached to arcs denoting operation invocations.

In Web Service composition, an operation in one service
may have the same name with another one in another service.
In test of BPEL-based Web Service composition using HPNs,
this problem can be resolved by presenting the attribute value
of a corresponding token by combining with the namespace of
the invoked service for identifying the corresponding operation.

C. Test Case Generation
The problem of the amount of computation costs for

concurrent and dynamic BPEL-based of Web Service
composition can be resolved by using HPN. The reason is as
following: Since a HPN is an FDT (Fuzzy Decision Tree) that
models concurrent systems, and constrains that are involved in
the BPEL based Web Service compositions. Thus, through the
generation of a reachability tree using colored tokens, no
unreachable states are generated.

However, when modeling a large system in a traditional
Petri net, many equivalent subnets are often involved. HPN can
resolve this problem, since HPN allows tokens having
attributes, and hierarchical design is possible.

Reduction by the partition equivalent markings is used in
the test case generation so as to obtain a test suite with
reasonable length. The essential nature of the equivalent
markings fits the basic idea of the teat case generation method
“equivalence partitioning” [16] well. The idea is that one test
case of an equivalence class has the same detecting error ability
with other test case in the same equivalent class.

In this section, the STPC (Scenario Tree Based on Path
Coverage) method will be introduced. The test suites
generation procedure is: 1) A specification of the BPEL-based
Web Service composition system described by a HPN platform
is provided; 2) A STPC is constructed from this specification,
and a test suite is generated from the STPC; 3) A test suite is a
set of input sequences and correct output sequences. The input
sequences and the output sequences are generated from traces
of arcs, and traces of nodes from the root to leaves of the STPC
respectively.

The test suite generation method for STPC is: 1) N is a
finite set of nodes of STPC after reduction; 2) A is a finite set
of arcs of the STPC; 3) Assuming there are k+1 leaf nodes

ko ll ,..., , there are traces from the root node to every leaf node, if
there are m nodes on a path to leaf)(miii nll = , the finite sequence

of nodes and arcs on a trace of the leaf il can be defined as:
imiri lananX •••= ...0101

Where rn is the root node, AaNn jiji ∈∈ , , and “·” is a
concatenation.

Then the test suite ∏ is: },...,{ 1 ko XXX=∏

Actually, a test suite is generated based on Depth-first
Traversal, and so it can cover all paths.

The Petri tree for "five dining philosophers" is illustrated in
Fig.3.

t hi nk

Take f or ks

eat

Put down
f or ks

ph

ph

ph

ph

Ri ght (ph)+l ef t (ph)

Ri ght (ph)+l ef t (ph)

P1

T1

P2

T2

Free
f or ks

P3

PH

PH
F

Fig.3. HPN for Philosopher System

It is reduced by covering markings (none in this tree) and
by equivalent markings. The corresponding test suite: {{#1, #2,
#3}}.

D. Test Evaluation
The quality of BPEL-based Web Service composition will

be affected mainly by two reasons. One is the occurrence rate
of the child components, actions, sub-scenario within a
structured activity, and the other is the quality of child
components. The multiple of them determines the contribution
of the child components to the composition evaluation. While
the quality of basic activity is presented by the value of token
typed unsigned long int, the occurrence rate of the branch is
attached to corresponding arc in HPN. The quality can be
automatic calculated base on the HPN tool.

The quality of Web Service composition should be
computed according to the quantitative metrics, e.g. reliability,
every basic activity has a corresponding multi-dimension
evaluation value to indicate its quality. Based on an adaptive
evaluation method [17], basic activity quality will be computed
quantitatively. Following the Web Service composition
evaluation way, the quality of a BPEL-based Web Service
composition can be calculated recursively.

For each structured activity in BPEL, based on their
structure, we summarize following relationship between the
structured activity and its sub activity.

The relationship between sequence/link activity and its sub
activities is “ ∩ ”. According to probabilistic computation
formula, assuming that a sequence/link activity, A, consists of
B and C, the quality of B is relB , the quality of C is relC , B and C
is independent. The quality of relrel CBA)(∩= relrel CB ×= , this
formula can be populated to sequence activity consisting of
more sub activities.

The quality of while follows the formula:
t

relrelrel CBA)(×= ,
where relA represents the quality of overall while scenario,

relC represents relative occurrence rate of condition set by true,
relB represents the quality of activity in while cycle, and t

represents the times of loop.

The quality of pick can be formulated: +×= 11 relfrel BCA
ln22 ... refnrelf BCBC ×++× , where relA represents the quality of

overall pick scenario, fkC represents relative occurrence rate of
the thk condition set by true, relkB represents the quality of the

thk activity in pick.

The quality of switch can be formulated: ×= 1frel CA
ln)1(212111)...1(...)1(refnnfffrelffrel BCCCCBCCB ××−−−−++××−+ − , where

relA represents the quality of overall switch scenario,
fkC represents relative occurrence rate of the thk condition set

by true, relkB represents the quality of the thk activity in switch.

The quality of flow can be formulated:
∏

=

−−=
n

k
rel BA

1
relk)1(1

,
where relA represents the quality of overall flow scenario, relkB
represents the quality of the thk activity in flow.

For a ATM process described in Fig.4 simply, assuming the
quality of each activity in ATM process has been evaluated at
the pre-phase, and the result is shown in table 1.

Table 1. The Quality of Activity

Activity Quality
connect 0.8
status 0.9
logon 0.7

withdraw 0.6
deposit 0.6
logoff 0.7

disconnect 0.8
A decision graph (Fig.4) illustrates the calculating process

of the quality of the ATM process. Note that the value attached
on the edge denotes the occurrence rate of the branch.

Fig.4. HPN with Decision Making

The quality of the ATM process:
8.0)9.03.07.07.0()5.06.05.06.0(7.08.0 ××+×××+×××=relATM

=0.2043

V. TEST PROCESS
The multi-agent test environment for BPEL-based Web

Service composition is a distributed system, involving various

agents and their interaction. Each agent can be identified by its
unique name, and will be bound dynamically at runtime. The
whole process is dependant on HPN assisting dynamically
structure analysis. In this section, we will demonstrate the
interaction process of the agents in the test process:

1) At the beginning of the test, all the agents will be
created. Next, the agent description will be recorded by AM.
The instantiated agents are registered in the DF, the
corresponding rank information is set as 0 at this stage.

2) Under the control of AM, based on selection strategy,
TA is selected by querying DF, so does GB, BA, CS, TCG, CI,
TO, and TM. The BPEL and WSDL documents are input by
GB through TA, and stored in KB. The structure specified by
BPEL/WSDL is analyzed by BA and CS, and the HPN is
generated. And TM will start its monitoring for all agent
subtasks and record log in KB.

3) Based on STPC, the TCG will generate test suites and
stores them in KB.

4) According to test composition, AM will send query
request to DF, DF will find a suitable TCE and reply the
request with the agent information including agent name, agent
location etc. The specified TCE will interact with CI to
transform the test script/program and TCE will execute test
steps, all the test process will be recorded in test log.

5) The test result will be compared with the specified Web
Service composition by TO and the matching result will be
stored in KB.

6) To find next agent for next activity of BPEL-based Web
Service composition test, the TCE completing test task will
send message to indicate the finish of the pre-step to ask the
AM to decide which agent can do the next test step.

7) The test executive sequence is controlled by AM after it
stored the structure information in the form of HPN. Thus, the
step 4, 5 and 6 will be repeated for all remaining activities with
the agent querying to DF by AM.

8) When AM finds the test has been finished, the AM will
send query request to find a suitable Evaluation agent to draw a
conclusion for the quality of the tested Web Service
composition.

Throughout the whole process, the agent will be ranked
according to its behavior. The evaluation standard includes
security, reliability, and performance etc [18]. The status of all
agents will be recorded by AM dynamically.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have discussed how to develop the multi-

agent test environment for BPEL-based Web Service
composition. By representing agent in HPN, the agent can be
dynamically bound at runtime. It is easily to re-compose the
Web Service and select the suitable agents to carry out the test
task with the help of HPN.

The distributed structure of agents makes the test for large
and complex Web Service composition possible. All agents are
coordinated by AM, and AM arranges the test tasks based on
HPN representation of the Web Service composition. In order

to implement the multi-agent test environment for BPEL-based
Web Service composition, the ontology is analyzed and defined
based on XML because of its flexibility, extensibility etc. The
test case generation and test evaluation in this test environment
are analyzed. The test process is provided to illustrate the
interaction between the agents under this multi-agent test
environment to accomplish test task.

Our future work includes perfecting the ontology of this test
environment combing the OWL-S and the complex application
of this multi-agent test environment to verify the reliability of
the test environment. At the same time, the security of this
multi-agent test environment is also within our further
researches because of its distribution.

REFERENCES
[1] Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
[2] Jan Peters. Integration of Mobile Agents and Web Services. YR-
SOC, Leicester, UK, 2005, pp. 53-58.
[3] J. Dale, L. Ceccaroni, Y. Zou, and A. Agam. Implementing Agent-
based Web Services. AAMAS 2003, Melbourne, Australia, 2003.
[4] V. Ermolayev, N. Keberle, and S. Plaksin. Towards a Framework for
Agent-Enabled Semantic Web Service Composition. International
Journal of Web Services Research, Vol. 1, No. 5, 2004, pp. 63-87.
[5] Dominic Greenwood and Monique Calisti. An Automatic, Bi-
Directional Service Integration Gateway. AAMAS, New York, USA,
July 2004.
[6] Dominic Greenwood and Monique Calisti. Engineering Web Service
- Agent Integration. Systems, Man and Cybernetics, Hague, Netherlands,
October 2004, pp.1918-1925.
[7] J. Dale, A. H. M. Hajnal, M. Kemland, and L. Z.Varga. Integrating
Web Services into Agentcities Recommendation.
http://www.agentcities.org/rec/00006/actf-rec-0006a.pdf (Accessed
2005-02-09).
[8] LIU Ying-qiao, ZHAO Zheng-de et al. Web Service Based Multi-
agent Cooperative Platform. Computer Engineering and Design, Vol.39
No.21, 2003, pp. 1269-1271.
[9] Qingning Huo, Hong Zhu and Sue Greenwood. A Multi-Agent
Software Environment for Testing Web-based Applications.
COMPSAC, Dallas, USA, November 2003, pp.210-215.
[10] Cecile Aberg, Patrick Lambrix, Nahid Shahmehri. An Agent-based
Framework for Integrating Workflows and Web Services. WETICE,
Linköping, Sweden, June 2005, pp. 27-32.
[11] FIPA Abstract Architecture Specification. http://www.fipa.org/.
[12] XQuery 1.0: An XML Query Language W3C Candidate
Recommendation, November 2005, http://www.w3.org/TR/xquery/.
[13] Q. Yan, X. Mao, L. Shan, Z. Qi, and H. Zhu. Soft Gene, Role,
Agent: MABS Learns from Sociology. IEEE/WIC, Halifax, Canada,
October 2003, pp. 450-453.
[14] DONG Wenli, MENG Luoming. tML Schema Based ICS Proforma
and Generation Method. Chinese Journal of Electronics, 2005(4), pp.
681-685.
[15] Wen-Li Dong, Hang YU, Yu-Bing Zhang. Testing BPEL-based
Web Service Composition Using High-level Petri Nets. 10th IEEE
International Enterprise Distributed Object Computing Conference,
HongKong, October 2006, pp.441-444.
[16] G.J.Myers. The Art of Software Testing. John Wiiley & Sons, Inc.,
1979.
[17] Wenli Dong. Research on Service Oriented Software Test Theory
and Practice. Postdoctor Research Report, Tsinghua University
Computer Science and Technology Department, China, 2006.
[18] Hang Ling, Ma Fanyuan. The Application of Web-based Software
Agent in E-commerce. Computer Engineering, Vol.26 Supplementary,
October 2000, pp.501

