

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Middleware for Robotics: A Survey

Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar

The College of Information Technology
United Arab Emirates University

Al Ain, P.O. Box 17551, UAE, {nader.m, j.aljaroodi, ijawhar}@uaeu.ac.ae

Abstract—The field of robotics relies heavily on various
technologies such as mechatronics, computing systems, and
wireless communication. Given the fast growing technological
progress in these fields, robots can offer a wide range of
applications. However real world integration and application
development for such a distributed system composed of many
robotic modules and networked robotic devices is very difficult.
Therefore, middleware services provide a novel approach
offering many possibilities and drastically enhancing the
application development for robots. This paper surveys the
current state of middleware approaches in this domain. It
discusses middleware challenges in these systems and presents
some representative middleware solutions specifically designed
for robots. The selection of the studied methods tries to cover
most of the middleware platforms, objectives and approaches
that have been proposed by researchers in this field.

Keywords—robots, middleware, robot system integration

I. INTRODUCTION
The advances of technology in computing, wireless

communication, mechatronics, and sensor technologies is
pioneering an emerging field of robotics, and offering an
unprecedented opportunity for a wide array of real time
applications. Examples of these new applications are Search-and-
rescue (SAR) missions in dangerous environments or inaccessible
terrains, human-assistance for the elderly or physically
challenged, and medical/surgical robots. Future robots for
upcoming applications should be modular for easy and rapid
implementation, flexible, maintainable, customizable, self
configuring, self-optimizing, and able to interact with other
systems like senor networks and enterprise information systems.

Modern robots are considered complex distributed systems
consisting of a number of integrated hardware and software
modules. The robot's modules cooperate together to achieve
specific tasks. These modules are sensors, actuators, and
controllers. Due to their tight integration to the physical world and
unique characteristics, robots in general pose considerable
impediments and make the development of robotic applications
non-trivial. There must be new software services that glue all of
the components together in an efficient manner, supporting
concurrency-intensive operations and insuring robustness and
modularity. A friendly user programming interface that executes
applications and marshals the high level constructs of the
programming language to the low level constructs understandable
to the operating system should be provided. The middleware
should be customizable to different scenarios, applications and
environments it should also be self-configuring, self-adapting, and
self-optimizing. Indeed the need for a middleware layer that fully

meets the design and implementation of different challenges of
robot technologies is a novel approach to resolve many of the
open issues and drastically enhance the development of
applications on such systems.

Some research efforts have been done on surveying different
aspect of robotics. [1] surveyed space robotics. [2][3] focused
more on robot programming environments characteristics and
evaluations. [4] focused on surveying vision for mobile robot
navigation, while [5] presented different robotic mapping
techniques. In addition, some research efforts were conducted on
surveying different middleware approaches for emerging
technologies such as ad hoc networks [6] and wireless sensor
networks [7]. However, none of the existing work investigated
the current state of research on the design and development of
middleware for robotics. In this paper, we explore different
important middleware projects for robotics, and provide a
discussion of these approaches.

The remainder of the paper is structured as follows. Section II
provides a short overview of robotic applications and outlines the
most relevant challenges that face a middleware design for
robotics. In Section III, we describe several research projects in
middleware for robotics. Section IV, is a discussion of the
different approaches used and some open research issues. Section
V concludes the paper.

II. MIDDLEWARE CHALLENGES FOR ROBOTICS
While the older generations of robots were designed to

achieve specific tasks and manufactured as one unit, the new
generations of robots are usually ubiquitous and autonomous.
This is achieved by using modular design and implementation.
New robots are composed of heterogeneous interconnected
hardware components. These components are usually controlled
by software modules developed by different manufactures using
different programming languages. These components may also
use different communication mechanisms. Software modules are
also needed to process sensor information and control actuators
for performing computational, vision and cognitive tasks like
planning, navigation, and user interaction.

Although modular design has many advantages in
engineering, it raises some integration issues such as
communication, interoperability, and configuration. These issues
could be solved by using a middle layer, middleware. In general,
middleware systems are used in distributed systems to reduce
development time and cost. This is achieved by providing well-
structured and well-tested services for often-needed
functionalities. In addition, it provides some value added
functions that can not be added to the operating systems such as

reliability, security, and abstraction. However, the design and
development of a successful middleware for robots is not trivial.
It needs to deal with many challenges dictated by robots
characteristics on one hand and the applications requirements on
the other hand. These challenges are the following:

• Simplifying the development process: application development is
not easy for the robotic environment. Middleware should simplify
the development process by providing higher-level abstractions
with simplified interfaces that can be used by developers and the
middleware should also enhance software integration and reuse.

• Support communications and interoperability: robotic modules
can be designed and implemented by different manufactures.
Efficient communication and simple interoperability mechanisms
are needed among these modules. Therefore, robotic middleware
should provide these functions.

• Providing efficient utilization of available resources: robots
usually need to execute processing- and communication-intensive
tasks in real-time. Examples are vision processing, mapping, and
navigation. Therefore, efficient utilization of robot components and
resources is needed. The robots may have single or multiple
microprocessors, one or more interconnection networks and
several other resources. Middleware should help in efficiently
utilizing these resources for different application requirements.

• Providing heterogeneity abstractions: any robotic system contains
many heterogeneous hardware and software components.
Communication and cooperation among these components is an
important aspect. Commonly the abstraction of this role is played
by a middleware which acts as a collaboration software layer
among all involved modules, hiding the complexity of the low-
level communication and the heterogeneity of the modules.

• Supporting integration with other systems: New types of robots
such as ubiquitous robots need to interact with other systems such
as other robots, wireless sensor networks, and high-end servers.
Most of these interactions should be done in an abstract way and in
real-time. Hence, middleware should provide real-time interaction
services with other systems.

• Offering often-needed robot services: A great deal of effort is
spent writing new implementations of existing algorithms and
control services for robots multiple times. The same
algorithm/service may be rewritten several times due to changes in
the robot’s hardware, the development of new applications,
changes in the operating systems, changes of technical staff, or just
for adding new functionalities. These often-needed robot services
should be provided by robotic middleware which allows for reuse
of the modules offering these functionalities.

• Providing automatic recourse discovery and configuration:
robots are considered dynamic systems due to their modularity and
mobility. For example external devices can be dynamically
available/unavailable for a robot’s use. Hence, automatic and
dynamic resource discovery and configuration are needed. In
addition, it should support mechanisms for the robots to be self-
adapting, self-configuring, and self-optimizing.

• Supporting embedded components and low-resource-devices:
robots in many situations use or interact with embedded devices
that may have several limitations such as limited power, small
memory, limited operating system functionalities and limited
connectivity. Handling such resources is usually different from
handling other regular resources; therefore, the middleware should
provide special functionalities to manage the resources as needed.

III. DIFFERENT MIDDLEWARE FOR ROBOTICS
As mentioned above, several researchers and research groups

are working on middleware solutions for robotics. Some design
principles and research projects have already been proposed and
implemented, while others offer conceptual models and
frameworks for the proposed middleware. In this section, which is
the focus of our paper, different approaches and projects will be
presented. However, due to the size restrictions, we will limit the
detailed descriptions to some projects that we view as more
representative of the issues in discussion.

A. Miro
Miro [8][9] is an object-oriented middleware for robots

developed by University of Ulm, Germany. The main motivation
of using object-oriented middleware is to improve the software
development process for mobile robots and to enable the
interaction between the robots and enterprise information
systems. Miro is designed and implemented by applying object-
oriented design and implementation approaches using the
common object request broker architecture (CORBA) standard.
This allows inter-process and cross-platform interoperability for
distributed robot control. Miro is constructed using three layers:
the device, the service, and the class framework. The device layer
provides object-oriented interface abstraction for all sensor and
actuator devices. This layer is platform-dependant. The service
layer provides abstractions for devices via CORBA interface
definition language (IDL). The class framework provides a
number of often-needed services such as mapping, self
localization, behavior generation, path planning, logging, and
visualization facilities. The layered architecture and object-
oriented approach make Miro very flexible and expandable to
support new devices and new services for new robot applications
[10]. Miro was implemented using multiplatform libraries for
easy portability. Examples of these libraries are the CORBA-
based adaptive communication environment (ACE) [11], used for
providing object-oriented abstraction layers for many operating
systems and communication primitives and the CORBA
Notification Services [12] used for providing the event-based
communication functionality.

B. Orca
Orca [13] is a middleware framework for developing

component-based robotics. It is designed to target applications
from single vehicles to distributed sensor networks. The main
goal of Orca is to enable software reuse in robotics. Orca enables
implementing a distributed component-based robotic system by
allowing the user to define interfaces and communication
mechanisms. Orca was implemented using CORBA. However,
due to the complexity problems faced with CORBA, Ice [14] was
used. Ice is a new approach to object-oriented middleware that
offers a much smaller and more consistent API, lighter
implementations, advanced services, and good performance. Orca
is an open-source product.

C. UPnP Robot Middleware:
UPnP middleware [15][16] was developed by Korea Institute

of Science and Technology to utilize the Universal Plug and Play
(UPnP) architecture for dynamic robot internal and external
software integrations and for ubiquitous robot control. UPnP was
developed to offer peer-to-peer network connectivity among PCs,
wireless pervasive devices, and intelligent appliances [17]. The

UPnP has automatic discovery and configuration mechanisms.
These mechanisms are utilized to configure robot components
and to allow ubiquitous robots to discover and interact with other
devices around them such as cameras, sensor networks, and
electromechanical devices. The new trend for implementing new
robots is to assemble a number of robot components that form the
final robotic system. These components are usually created by
different manufactures using various hardware and software
technologies. A modular robot can be manufactured by
connecting multiple components through an internal network. If
each component supports UPnP, then the process of linking and
configuring multiple robotic components together is simplified.
This approach provides a simple scheme for building intelligent
robots with a lot of hardware and software components. It solves
some implementation issues currently facing the robotic field.

The automatic discovery and configuration mechanisms are
also appropriate for dynamic computing environments such as
ubiquitous robots. Mobile robots can discover the existence of
external devices and can configure themselves to interact with
them. These devices can be cameras, sensor networks, and
controllable electromechanical devices. Using UPnP mechanics
robots are able to configure their internal components to interact
with other external devices based on the specific goals or services
they should provide. This is an essential feature for the
implementation of intelligence in robotics. The intelligence
component can be internal or external since software components
can cooperate with each other regardless of their location.

D. RT–Middleware
RT (Robot-Technology) - Middleware [18] was developed in

collaboration between The Japanese Ministry of Economy, Trade
and Industry (METI), The Japan Robot Association (JARA), and
National Institute of Advanced Industrial Science Technology
(AIST). The RT-Middleware is an infrastructure software based
on CORBA implemented using a number of specifications at the
distributed middleware interface level and a prototype
implementation named OpenRTM-aist was produced. The main
goals of this middleware are to build robots and their functional
parts in a modular structure at the software level and to simplify
the process of building robots by simply combining selected
modules. These goals are to allow system designers or integrators
to build customized robots for a variety of applications in cost
effective and efficient manners. The components used to
construct robotic systems are called RT-Components. There are
some efforts to standardize the architecture of RT-Components in
the Object Management Group (OMG) [19]. These efforts will
enable fast integration among robotic components implemented
by different manufacturers.

Another important goal is to make robots more intelligent by
distributing their necessary resources over a network. RT-
Middleware provides the necessary services to enable
implementing robotic applications that need these types of
distributed systems. One example of these applications is a
network distributed monitoring system for the human assistance
robot system [20]. This application was developed to improve the
interaction among the users and local robotic systems. In addition,
it enables a remote user to better monitor the local human and the
environment. Another application is the development of home
integration systems [21]. In this project, multiple home devices
and appliances can interact with the robot system.

E. ASEBA
ASEBA [22] is an event-based middleware that supports

distributed control and efficient resource utilization of
multiprocessor robots. This middleware is designed for robots
with several processors that communicate through a shard bus.
Some robots, in addition to the main processor, have several
microcontrollers that are part of or close to the sensors and
actuators to control them. Microcontrollers can communicate
among themselves by asynchronous messages called events.
Messages are only transmitted when relevant events occur. For
example when a specific observation was noticed by a sensor, an
event about that observation will be sent by the corresponding
microcontroller to another microcontroller or to the main
processor. This reduces the load on the bus as less data is
transmitted compared to regular robot systems in which periodic
sensor readings and actuator commands are generated from the
main processor. ASEBA improves the modularity and efficiency
of robots by distributing some of the processing tasks to all the
microcontrollers and communicating only the relevant data to the
main processor. It allows dedicating the main processor for CPU-
intensive tasks such as vision processes and higher-level controls.
Lightweight virtual machines are developed to run on
microcontrollers. These virtual machines support the
implementation of the policies for sending events. Policies are
described by a simple scripting language called AESL (ASEBA
Event Scripting Language). In addition, ASEBA provides an
integrated development environment with an editor, compiler and
debugger for implementing distributed controls for robots.

F. Player/Stage System
Player/Stage system [23] is a middleware platform that

provides infrastructure, drivers and some algorithms for mobile
robotic applications. This middleware has two major components:
Player and Stage. Player is a device repository server for
actuators, sensors, and robots. Each device in Player is composed
of a driver and an interface. Interfaces are the part used by the
client to write new applications that get information from a sensor
or control an actuator. Drivers can also implement algorithms that
receive data from other devices, process it, and then send it back.
Stage is a graphical simulator that models devices in a user
defined environment. Driver can also generate arbitrary data
when needed. The Player/Stage system is implemented as a three-
tier architecture in which the clients are software developed for
specific robot applications, the middle tier is Player which
provides common interfaces for different robot devices and
services, and the third tier is the actual robots, sensors, and
actuators. Various client side libraries exist in the form of proxy
objects for different programming languages to access the
services provided by the Player platform. Clients can connect to
the Player platform to access data, send commands, or request
configuration changes to an existing device in the repository.
Examples of client programming languages supported are C,
C++, Java, and Python.

Player serves as an interface to many different types of robotic
devices and provides drivers for many hardware modules. Some
of the main features of this middleware are the platform-,
programming language-, and transport protocol-independence;
open source; and modularity. Player's modular architecture makes
it flexible to support new hardware. Players can run on both
regular and embedded Linux, Solaris, and BSD Unix.

Player/Stage system was started at the University of Southern
California in the late nineties and moved to Source Forge in 2001.

G. The PEIS Kernel
The PEIS Kernel [24] is based on a collaborative research

project between the Electronics and Telecommunications
Research Institute (ETRI), Korea, and The Centre for Applied
Autonomous Sensor Systems, Sweden. This middleware is
designed toward the concept of Ecology of Physically Embedded
Intelligent Systems, or PEIS-Ecology, in which many robotic
devices, pervasively embedded in everyday environments such as
our homes or offices, cooperate in performing some tasks in the
service of people. In this approach, complex robotic
functionalities are not achieved via the implementation of
extremely advanced robots, but rather through the cooperation of
many simple robotic components. The main aim of this
middleware is to provide a common communication and
cooperation model that can be shared among robotic devices such
as mobile robots, static sensors or actuators, and automated home
appliances. With this middleware, any robotic device with
software control in the environment is defined as PEIS. Each
PEIS is a set of inter-connected software components developed
to control sensors or actuators. All PEIS devices are connected by
a uniform communication model, which allows the exchange of
information among PEIS devices and allows dynamic joining and
leaving of PEISs. All PEIS devices can cooperate using a uniform
cooperation model. In this model, each participating PEIS can use
functionalities from other PEISs in the ecology in order to
complement its own. For example, in a home environment, an
autonomous vacuum cleaner (PEIS device) can use a localization
function provided by an overhead tracking system (PEIS device)
to know its position. The PEIS Kernel provides a shared memory
model, a simple dynamic model for self-configuration and
introspection, and supports heterogeneous devices. Both tiny
embedded devices and complex large robots are supported [25].

H. ORiN
ORiN (Open Robot Interface for the Network) [26] is an

interface developed to provide standard methods for accessing
and controlling robotic systems from windows-based PCs. ORiN
is based on HTTP and other web technologies such as XML and
SOAP. It was developed to target industrial robots. This interface
provides separation between the specifications and the
implementations and enables third parties to develop robotic
applications that are controlled by PCs. Therefore low cost mutli-
vendor systems can be easily developed. The interface is based on
the distributed object model which provides network transparency
and language independence. In this system, various types of
robotic specifications are allowed and vendors can define unique
options using XML.

I. MARIE
MARIE (Mobile and Autonomous Robotics Integration

Environment) [27] is a middleware framework created for
developing and integrating new and existing software for robotic
systems. MARIE aims to create a flexible distributed components
system that allows robotics developers to share, reuse, and
integrate robotic software programs for rapid robotic application
development. MARIE is implemented in three layers: Core,
Component, and Application. The Core layer consists of services
for communication, low-level operating functions, and distributed

computing functions. The Component layer is used to add
components for often-used services and to support domain-
specific concepts. The Application layer contains useful services
and tools to build and manage integrated applications. MARIE
middleware provides some services that allow the adaptation of
different communication protocols and applications which make
it very flexible. The integration aspect of MARIE uses the
Adaptive Communication Environment (ACE) communication
framework [11]. A variety of software components can be
connected in MARIE using a centralized component. In addition,
there are four functional components: application adapters,
communication adapters, communication managers, and
application managers. Application adapters act as proxies
between the central component and the applications. The data
exchanged among application adapters is translated by
communication adapters, while communication managers create
and manage the connections. Finally, application managers
instantiate and manage components locally or across distributed
processing nodes. MARIE follows the mediator design pattern in
which it provides mediator interoperability layers among adapters
and managers. The key features of MARIE are the
interoperability and reusability of robotic application components.

J. RSCA
The RSCA (Robot Software Communication Architecture)

[28] is a QoS (Quality of Service) -Aware middleware for
networked service robots developed by Seoul National
University. The key strength of RSCA is the real-time support.
RSCA provides a standard operating environment and
development framework for robot applications. The operating
environment consists of a Real-Time Operating System,
communication middleware, and deployment middleware. The
operating system is compliant with the PSE52 in IEEE
POSIX.13. It provides an abstraction layer that makes robotic
applications both portable and reusable on different hardware.
The communication middleware is compliant to minimum
CORBA and RT-CORBA v.1.1 [29] and provides mechanisms
for distributed heterogeneous components to communicate in
real-time. The deployment middleware provides frameworks for
program execution in distributed environments, dynamic program
deployment, real-time support, QoS, and a management
capability for limited resources and heterogeneous hardware.

K. The Middleware of AWARE
This platform [30] is a data-centric middleware for the

integration of wireless senor networks and mobile robots
developed by the University of Seville, Spain and the University
of Stuttgart, Germany. The main aim of this middleware is to
provide simplified mechanisms for integrating information
gathered by various types of sensors including wireless sensor
networks (WSN) and mobile robots. This type of integration is
needed for applications where robots are used to obtain and
process data from its environment through a WSN. This data can
be temperature, light level, or humidity for example. Another
application is to allow a robot to locate itself in an environment
where GPD (Geographic Positioning Device) service is not
available. This middleware provides data-centric capabilities in
which users can access data in an abstract way. Any user of the
network can make references to objects that exist in the
environment, such as a fire, a car, or an animal. The user has to
provide the conditions that define the targeted object. These

conditions can be, for example, high temperature for a fire object.
Then, the user can address any specific object in the environment
in order to obtain data from it. In this platform, the middleware
components are executed on all sensor and robot nodes. Sensor
nodes use TinyOS operating system designed for devices with
limited resources.

L. Sensory Data Processing Middleware
This middleware [31] is developed at The University of

Tsukuba in Japan to provide abstracted services for accessing
sensor information to support service mobile robots. Two types of
services were implemented to provide obstacle information and to
localize the robot position using landmark observations from
multiple external sensors. This middleware provides a unified
model for different configurations of external sensors on a service
mobile robot. The unified model abstracted from sensors can be
used in any service mobile robot application independent of the
sensors configuration. The developed services can be reused in
multiple applications without dealing with individual sensors.

M. Distributed Humanoid Robots Middleware
This communication middleware [32] is developed by Honda

Research Institute with other organizations to facilitate
communication among the modules of distributed humanoid
robots. In humanoid robots, a number of modules are needed such
as sensors, actuators, planning modules, decision making
modules, movement controllers, etc. The performance quality of
humanoid robots is completely dependant on the collaboration
and communication performance among these modules. The
developed communication middleware serves various functional
roles using three different communication subsystems: the
Cognitive Map (CogMap), Distributed Operation via Discrete
Events (DiODE), and Multimodal Communication (MC). The
CogMap allows for sharing and transforming information streams
dynamically among modules. DiODE provides direct connection
between two modules for direct and fast communication. Finally,
MC provides service to stream raw sensory data to other modules.

N. A Layer for Incorporations among Ubiquitous robots
This layer [33] is developed by Korea Advanced Institute of

Science and Technology to enable communication among
ubiquitous robots which are usually of different types. These
types can be software robots, mobile robots, and embedded
robots. Software robots are similar to mobile agents while mobile
robots are usually hardware robots controlled by software. This
middle layer is mainly designed to allow software robots and
mobile robots to communicate even when they use different
communication mechanisms. The middle layer consists of two
mappers: sensor mapper and behavior mapper. The senor mapper
helps software robots get physical sensor information from
mobile robots; while the behavior mapper helps software robots
make physical behavior using the actuators of the mobile robots.

O. WURDE
The WURDE (Washington University Robotics Development

Environment) Middleware [34] provides a set of utilities to
simplify interfacing with robotic components and software
development. The main goal of WURDE is to allow rapid
development of robotic applications by having clean levels of
abstraction. WURDE enables modular robotic applications to be
implemented in which robot software can be written as a number

of small, interconnected components. WURDE utilizes a message
passing protocol as its distributed computation mechanism. In
addition, WURDE uses asynchronous communication and wraps
the communication mechanism to simplify the process of
supporting new communication protocols. However, WURDE
dose not provide any security for controlling access to the
modules. Another module built with WURDE is the RIDE
interface that provides multi-robot tasking and control
mechanisms. It has interactive display environments.

IV. DISCUSSION AND OPEN ISSUES
In the previous section we surveyed different existing

middleware approaches for robotics. The general observation is
that all the projects target some form of enhancement to the
robotics systems both at the development and the utilization
levels. In addition, it is also clear that we cannot provide a clear
set of distinct classification criteria that distinguish between the
different projects and provide a solid basis for comparisons.
However, we define here a set of main objectives each of which
match a few of the projects listed above. These objectives are:

1. Enhancing the development process by providing some form of
modular design mechanisms, high level abstractions, and
component-based development. Many projects have this goal in
sight, for example, Micro, Ocra, RT-Middleware and WURDE.

2. Reusability of existing components where developers and robot
designers are provided with ready made components and software
modules that can be put together to create new robot devices and
applications such as Ocra, UPnP Robot Middleware and MARIE.

3. Better utilization of resources and real-time support, where robots
are equipped with the capabilities to optimize resource utilization
and support real—time functions such as UPnP Robot
Middleware, RT-Middleware, ASEBA, RSCA and Distributed
Humanoid Robots Middleware.

4. Integration with external systems where robots become capable of
communicating and utilizing external resources like sensors,
devices controllers and GPS systems. Some examples are: PEIS
Kernel, ORIN, the Middleware of AWARE, Sensory Data
Processing Middleware and Middleware Layer for cooperation
among Ubiquitous Robots.

5. Flexible enhancements and expansion of functionalities, where it is
easy to enhance functionalities and incorporate new ones in
existing robot systems such as Micro, Player/Stage and MARIE.

Although we listed examples for each objective, many
projects cover several of these objectives with varying degrees.
Consequently, the examples given are mostly based on the main
objective of each project. As for the technologies or standards
used in these projects we observe that many tried to follow well
defines and common technologies like CORBA, ICE, XML, and
virtual machines. Table 1 includes a list of all the projects
surveyed in the paper with a brief list of their objectives and
technologies/standards used.

As mentioned earlier, it is obvious that there is no clear
definition or common understanding of what middleware for
robotics should or should not provide, and how to provide them.
It is apparent that different researchers and practitioners view the
issues in different ways. As a result, the target of reaching a single
middleware infrastructure that will solve all the problems of
robotics systems is not realistic. There are many issues, technical

limitations and difficulties that need to be addressed to achieve a
good middleware-based solution. Some of these issues are:

1. Current middleware systems provide very limited often-needed
advanced services that can be used to simplify the development
process and to enhance resource utilization. In addition, many of
the available services are not standardized, which make it difficult
to achieve interoperability between different robotic systems.

2. The availability of self-adaptation and self-configuration
mechanisms is very limited. Since the target is to develop
autonomous and ubiquitous robots, these mechanisms are very
important to enhance the performance of the robotic applications.

3. The security mechanisms within the middleware solutions for
robotics are inadequately investigated. As the use of multiple
robots and distributed robotic components increases, the need to
secure their communication and collaboration becomes essential
for their operations. However, researchers seem to steer away
from this issue.

4. There is very limited work towards providing high level
abstractions for coordination and collaboration among multiple
robotic applications. Therefore, application developers working on
collaborative robotic systems must start from lower, more
primitive levels.

5. There is very limited work towards providing automatic
mechanisms for efficient utilization of the availability and the
heterogeneity of multiple robots working on the same task. In
some cases, tasks need to be distributed among the robots to be
completed in parallel rather than being done by individual robots.
While in other cases, the existence of multiple robots that have
heterogeneous resources provides a great opportunity to redirect
tasks to the robot with the most suitable resources.

As the author of [35] tries to answer the question: “Is a

Common Middleware for Robotics Possible?" He lists the issues

and difficulties of robotic systems such as high levels of
heterogeneity, limited resources, and high probabilities of failures
that make the development of a common middleware a very
complicated task. Here we also identified some lacking features
and open issues that current middleware approaches did not
address. However, we view the difficulties and the open issues as
the motivations for working harder to design flexible and efficient
middleware solutions for robotic systems. This may be one
common middleware or several middleware components which
address different issues. In the end, the goal is to reach a useful
solution, which we view as a hard, but achievable task.

V. CONCLUSION
In this paper, we surveyed several projects for middleware in

robotics and discussed some of the main issues that face the
design and the development of such middleware solutions. Many
projects have different objectives such as simplifying the
development process, reusability, integration and flexibility. In
addition different projects used different technologies like
CORBA, ACE, Virtual machines, XML, and message passing to
achieve their objectives. Furthermore, we examined the current
projects to determine what were the limitations and open issues
that were not addressed well. As a result we identified several
open issues that need to be addressed to be able to design a
comprehensive middleware solution for robotics systems. We
arrived at a general conclusion that it is very hard to have one
middleware platform that will solve all the problems and address
all the issues because that will basically result in a very complex
system. In addition, many robotics systems do not need all the
functionalities and features together. Therefore, we envision a
modular or component-based middleware that provides
customizable solutions based on the integration of the needed
components to design and develop the required robotic system.

TABLE 1. A SUMMARY OF THE OBJECTIVES AND TECHNOLOGIES OF THE DISCUSSED PROJECTS.

Middleware Main Objectives Standards and Technologies Used
Miro To improve the software development process for mobile robots and enable interaction

between robots and enterprise systems using the distributed object paradigm.
CORBA

Orca To enable software reuse in robotics using component-based development. Ice
UPnP Robot Middleware To enable automatic discovery, configuration, and integration for robot components in

both modular and ubiquitous robots.
UPnP

RT–Middleware To make robots and their functional parts in a modular structure at the software level
and to simplify the process of building robots by simply combining selected modules.

CORBA

ASEBA To allow distributed control and efficient resources utilization of robots with
multiprocessors.

Event-based middleware, Virtual
machines

Player / Stage System To provides a development platform that supports different robotic hardware and
provides common services needed by different robotic applications.

Three-Tier Architecture
Proxy Objects

The PEIS Kernel To provide a common communication and cooperation model that can be shared among
multiple robotic devices.

A shared memory model

ORiN To provide an interface for accessing and controlling robotic systems from PCs. HTTP, XML , SOAP
MARIE To create flexible distributed components that allows developers to share, reuse, and

integrate new or existing software programs for rapid robotic application development.
Mediator Interoperability
Technology, ACE

RSCA To provide real-time support for robotic applications and to provide abstractions that
makes robotic applications both portable and reusable on different hardware platforms.

PSE52 in IEEE POSIX. 13,
CORBA, RT-CORBA v1.1

The Middleware of
AWARE

To provide data-centric capabilities for the integration of wireless senor networks and
mobile robots.

TinyOS, TinySchema,
Publish/subscribe

Sensory Data Processing
Middleware

To provide abstracted services for accessing external sensor networks information to
support service mobile robots.

N/A

Distributed Humanoid
Robots Middleware

To facilitate communication among the modules of distributed humanoid robots. Publish/subscribe, TCP & shared
memory. Stream communications

Layer for Incorporation To enable communication among ubiquitous robots which are usually of different types. Sensor and behavior mappings
WURDE To allow rapid development of robotic applications by having clean levels of abstraction

and modular development.
Communication wrapping, Massage
passing,

REFERENCES
[1] L. Pedersen, D. Kortenkamp, D. Wettergreen and I. Nourbakshk, " A

Survey of Space Robotics," in The 7th International Symposium on
Artificial Intelligence, Robotics and Automation in space (i-SAIRAS-
03), 2003.

[2] G. Biggs and B. MacDonald, "A Survey of Robot Programming
Systems," In Proc. of Australasian Conference on Robotics and
Automation (CSIRO), Dec. 2003.

[3] J. Kramer, M. Scheutz, "Development Environments for Autonomous
Mobile Robots: A Survey," Autonomous Robots, Volume 22, No. 2, pp.
101-132, Feb. 2007.

[4] G. N. DeSouza and A. C. Kak, "Vision for Mobile Robot Navigation: A
Survey," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 24, No. 2, pp. 237-267, Feb. 2002.

[5] S. Thrun "Robotic Mapping: A Survey," Technical Report CMU-CS-
02-111, School of Computer Science, Carnegie Mellon University, Feb.
2002.

[6] S. Hadim, J. Al-Jaroodi, N. Mohamed, "Trends in Middleware for
Mobile Ad Hoc Networks," The Journal of Communications, Vol 1, No.
4, pp. 11-21, July 2006.

[7] S. Hadim and N. Mohamed, “Middleware Challenges and Approaches
for Wireless Sensor Networks,” in IEEE Distributed Systems Online,
Vol. 7, No. 3, art. no. 0603-o3001, March 2006.

[8] S. Enderle, H. Utz, S. Sablatng, S. Simon, G. Kraetzschmar, and G.
Palm, "Miro: Middleware for autonomous mobile robots," IFAC
Conference on Telematics Applications in Automation and Robotics,
2001.

[9] H. Utz, S. Sablatng, S. Enderle, G. Kraetzschmar, "Miro – Middleware
for Mobile Robot Applications," IEEE Transactions on Robotics and
Automation, 18(4):493-497, Aug. 2002.

[10] D. Krüger, I. Lil, N. Sünderhauf, R. Baumgartl, P. Protzel, "Using and
Extending the Miro Middleware for Autonomous Robots," Towards
Autonomous Robotic Systems (TAROS), Guildford, September 2006.

[11] D. C. Schmidt, "ACE: An Object-Oriented Framework for Developing
Distributed Applications," Proceedings of the 6th USENIX C++
Technical Conference, April 1994.

[12] T. H. Harrison, D. L. Levine, and D. C. Schmidt, "The Design and
Performance of a Real-Time CORBA Event Service," in Proc.
OOPSLA'97, pp. 184-200, Oct. 1997.

[13] A. Makarenko, A. Brooks, and T. Kaupp, "Orca: Components for
Robotics," In International Conference on Intelligent Robots and
Systems (IROS), pp. 163-168, Oct. 2006.

[14] M. Henning, "A New Approach to Object-Oriented Middleware," IEEE
Internet Computing, pp. 66-75, Jan.-Feb. 2004.

[15] S. Ahn, J. Lee, K. Lim, H. Ko, Y. Kwon, and H. Kim, "Requirements to
UPnP for Robot Middleware," in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Oct. 2006.

[16] S. Ahn, K. Lim, J. Lee, H. Ko, Y. Kwon and H. Kim, "UPnP Robot
Middleware for Ubiquitous Robot Control," The 3rd International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI
2006), Oct. 2006.

[17] UPnP, www.upnp.org
[18] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W. Yoon, "RT-

Middleware: Distributed Component Middleware for RT (Robot
Technology), IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3555-3560, Aug. 2006.

[19] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, "RT(Robot Technology)-
Component and its Standardization - Towards Component Based

Networked Robot Systems Development -", SICE-ICASE International
Joint Conference 2006 (SICE-ICCAS 2006), pp.2633-2638, Oct. 2006.

[20] S. Jia and K. Takase, "Network Distributed Monitoring System Based
on Robot Technology Middleware," International Journal of Advanced
Robotic Systems, Vol. 4, No. 1, pp. 69-72, 2007.

[21] Y. Hada, S. Jia, K. Takase, H. Gakuhari, and T. Ohnishi, "Deveopment
of Home Robot Integration System Based on Robot Technology
Middleware," The 36th International Symposium on Robotics (IRS),
Japan , 2005.

[22] S. Magnenat, V. Longchamp, F. Mondada, "ASEBA, an event-based
middleware for distributed robot control" Workshops DVD of
International Conference on Intelligent Robots and Systems (IROS),
Oct.-Nov. 2007.

[23] M. Kranz, R. Rusu, A. Maldonado, M. Beetz, A. Schmidth, "A
Player/Stage System for Context-Aware Intelligent Environments," in
Proc. of the System Support for Ubiquitous Computing Workshop
(UbiSys), Sep. 2006.

[24] M. Broxvall, B.S. Seo, W.Y. Kwon, "The PEIS Kernel: A Middleware
for Ubiquitous Robotics," in Proc. of the IROS-07 Workshop on
Ubiquitous Robotic Space Design and Applications, Oct. 2007.

[25] M. Bordignon, J. Rashid, M. Broxvall, A. Saffiotti, "Seamless
Integration of Robots and Tiny Embedded Devices in a PEIS-Ecology,"
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Oct. 2007.

[26] M. Mizukawa, H. Mastsuka, T. Koyama, T. Inukai, A. Nodad, H.
Tezuka, Y. Noguch, and N. Otera, "ORiN: Open robot interface for the
network," In SICE, pp. 925-928, 2002.

[27] C. Côté, Y. Brosseau; D. Létourneau; C. Raïevsky, F. Michaud,
"Robotic Software Integration Using MARIE," International Journal of
Advanced Robotic Systems, Vol. 3, No. 1, pp. 55-60, March 2006.

[28] J. Yoo, S. Kim, and S. Hong, "The Robot Software Communications
Architecture (RSCA) QoS-Aware Middleware for Networked Service
Robots," in Proc. International Join Conference SICE-ICASE, pp. 330-
335, Oct. 2006.

[29] D. C. Schmidth, A. Gokhale, T. Harrison, and Parulkar, "A Higher-
Performance Endsystem Architecture for Realtime CORBA," IEEE
Communication Mag., Vol. 14, Feb 1997.

[30] P. Gil, I. Maza, A. Ollero, P. Marrón, "Data Centric Middleware for the
Integration of Wireless Sensor Networks and Mobile Robots," in Proc.
7th Conference on Mobile Robots and Competitions, ROBOTICA
2007. April 2007.

[31] E. Takcuchi and T. Tsubouchi, "Sensory Data Processing Middlewares
for Service Mobile Robot Applications", in Proc. International Join
Conference SICE-ICASE, Oct. 2006.

[32] V. Ng-Thow-Hing, T. List, K.R. Thórisson, J. Lim, J. Wormer, "Design
and Evaluation of Communication Middleware in a Distributed
Humanoid Robot Architecture," IROS '07 Workshop Measures and
Procedures for the Evaluation of Robot Architectures and Middleware,
29 Oct. - 2 Nov. 2007.

[33] T. Kim, S. Choi, and J. Lim, "Incorporation of a Software Robot and a
Mobile Robot Using a Middle Layer," IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, Vol. 37, No.
6, pp. 1342-1348, November 2007.

[34] F. Heckel, T. Blakely, M. Dixon, C. Wilson, and W. D. Smart, "The
WURDE Robotics Middleware and RIDE Multi-Robot Tele-Operation
Interface," AAAI Mobile Robotics Workshop, 2006.

[35] W. Smart, "Is a Common Middleware for Robotics Possible?," In
Proceedings of the IROS 2007 workshop on Measures and Procedures
for the Evaluation of Robot Architectures and Middleware, Oct. 2007.

