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Abstract – In this article we present an application of the 
Multiobjective Ant Colony System (MACS) algorithm to the Un-
inhabited Aerial Vehicles (UAVs) route planning problem based 
on VORONOI diagram. First, we construct the objective func-
tions: minimize the route length and danger exposure. Then the 
MACS algorithm concept is introduced and modified to accom-
modate the route planning situation. The computational results 
show the efficiency of this method. 
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I. INTRODUCTION 
The great advantages that we can take by using Uninhabited 

Aerial Vehicles (UAVs) to do various military tasks have at-
tracted many researchers’ attention. The UAVs’ once recon-
naissance only role is now shared with strike, force protection, 
and signals collection, and, in doing so, have helped reduce the 
complexity and time lag in the sensor-to-shooter chain for 
acting on “actionable intelligence.” Just as its name suggests, 
the most significant characteristic, which is also its most con-
siderable merit, of a UAV is there is no pilot in the aircraft, so 
no life risks for the pilots.  

As there are no pilots, the mission of UAVs should be 
gracefully predesigned to make sure the UAVs can complete it 
with less fuel consumption, less exposure to the enemies and 
many other constrains. This is achieved mainly by preplanning 
the flying paths of the UAVs. MH Overmars and P Svestka 
recommend a probabilistic leaning approach to construct routes 
[1], in which the actions of randomly choose route points al-
ternate with that of evaluate the route constructed by part or all 
of the chosen route points until a satisfying solution is found; in 
[2] YE Yuanyuan first uses VORONOI diagram to construct all 
the possible routes and then uses graph clipping method to find 
out the routes that satisfied the constrains. 

Both of these methods contain the optimization phase. For 
example, the second part of the VORONOI diagram method, 
finding the optimum or feasible route, is a work that worth more 
consideration. Because there could be many objectives in doing 
this, such as, minimum route length minimum the exposure to 
threats. So this is a multiobjective optimization problem. In [2], 
this problem is converted into singleobjective one by summing 
up those objective functions which has been respectively mul-
tiplied the by their weight factors, which indicate the preference 

of different objectives. A major drawback to this approach is 
that it requires a priori preference information. 

In this paper, we use a multiobjective ant colony system 
algorithm to solve this problem, and obtained a set of 
Pareto-optimal solutions, which gives the decision-maker a 
clearer picture of the solution space and more alternatives to 
choose. 

The rest of this work is organized as follows: the problem is 
described in section II. Section III presents the ACS algorithm 
and its multiobjective version that used in the UAV route 
planning problem: MACS. Section IV describes the computa-
tional results; finally, conclusions in section V. 

II. PROBLEM PRESENTATION 
In Fig. 1, the stars represent the threats, say, the enemy’s 

radars or antiaircraft missiles. The VORONOI diagram is con-
structed according to these threat points [2]. The lines are the 
edges of the VORONOI diagram, while in our route planning 
scenario, they are all the “possible routs”. The dots are the 
vertices of the VORONOI diagram, and also named “route 
points”. What we should do now is to find out a route, along the 
VORONOI diagram edges, starting from our airport (repre-
sented by a pentagon in Fig. 1) to the target (represented by a 
rectangle in Fig. 1), that minimizes the objective function F .  

The mathematics descriptions are as follows: 

{ }1 2, , , nPath p p p= " : represents a feasible route that con-
tains n  route points serially; 

ijl :  the distance between ip  and jp ; 

 
Figure 1.  Routes based on NORONOI diagram



                                           

ijt :  the threat intensity between ip  and jp . 
The first objective is to minimize the length of the Path : 
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The second objective is to minimize the threat intensity of 
the Path : 
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While, ijt  is calculated as follows:  

Evenly take (sample) 0k  points on the path segment be-
tween ip  and jp , noted as 01, 2, ,ikjp k k N= ∈" . Where, 
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length, and, [ ]  means take the integral part of a number. 
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where, jd , ikjd  represent the distance between jp , ikjp  and 
the nearest threat point from them respectively. 

For the multiobjective optimization problem here, the ob-
jective function F  is considered as a two-dimensional vector: 

               [ ]1 2min F F F=                    (4) 

As the objectives would conflict with each other, that is, one 
Path  may be excellent to one objective, but not feasible to the 
other. So a set of esPath , called Pareto-optimal solutions, is 
presented, and also, unlike the method used in [2], each of these 
objectives is considered equally important, and no prior pref-
erence information is needed. 

III. MACS ALGORITHM 
ACS was first put forward by Dorigo and Gambardella to 

improve the performance of the Ant System (AS) algorithm in 
solving the TSP problem [3]. 

A.  The Standard ACS algorithm 
The main components of ACS are illustrated as follows: 

In TSP problem, the translation rule, that is, how an ant now 
at node r  chooses a next city s  to move to, of ACS is as 
follows: 
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Where τ  is the pheromone;  

1η δ=                           (6) 

is the inverse of ( ),r uδ , which is the distance between the city 
r  and the city u ; q  is a random number uniformly distrib-
uted in [ ]0 1… ; 0q  is a parameter ( )00 1q≤ ≤ ; β  is a pa-
rameter that determine the relative importance of distance and 
pheromone; and S  is a random variable selected according to 
the probability distribution given in (7). 
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where ( )kJ r  is the citied remain to be visited by ant k  now 
positioned on city r . 

The global pheromone updating rule in ACS is only applied 
by the globally best ant. The updating rule is: 

( ) ( ) ( ) ( ), 1 , ,r s r s r sτ α τ τ← − + ∆i               (8) 

where  

( ) ( ) ( )1
if , global-best-tour,

0           otherwise
gbL r sr sτ

− ∈∆ = 


;      (9) 

0 1α< <  is the pheromone decay parameter; gbL  is the 
length of the globally best tour from the beginning of the trail. 

The local pheromone updating rule in ACS is applied any 
time an ant visits an edge while building a solution. The up-
dating rule is: 

( ) ( ) ( ) ( ), 1 , ,r s r s r sτ ρ τ ρ τ← − + ∆i            (10) 

where 0 1ρ< <  is a parameter; ( ) 0,r sτ τ∆ = , 0τ  is the 
initial pheromone level, and, in [3], is experimental optimally 
initialed as  

( ) 1
0 nnn Lτ −= i ,                   (11) 

where, n  is the number of cities and nnL  is tour length pro-
duced by the nearest neighbor heuristic. 

For the Ant Colony Optimization (ACO) algorithm family, 
the most fundamental element is the use of pheromone as a 
guidance of the search process. The improvements and modi-
fications of these algorithms are mainly concentrated on the 
modification of the translation rules and the pheromone up-



                                           

dating rules [6] [7]. While integrate ACO algorithms with other 
searching algorithms, typically local searching algorithms, is 
another way to improve their performance [5] [8]. The MACS 
belongs to the former category, as will be discussed bellow. 

B.  The MACS algorithm 
In the TSP problem, the only one objective is to minimize 

the length of the route. And we can make out that both the 
heuristic information (from (6)) and the amount of the phero-
mone (from (9) and (11)), which is deposited each time the 
pheromone updating rules (both global and local) are applied, 
are related to “length”. It is natural to come up with the idea that 
we use two sets of heuristic information working together 
(length and threat intensity) to solve our two objective route 
planning problem. Much like the algorithm in [4], which is used 
to solve the vehicle routing problem with time windows. 

The modifications of the algorithm are: 

For the heuristic information, (6) is replaced by 

   ( )1ij ij ijl tη = i .                     (12) 

For the local pheromone updating rule, (11) is redescribed 
as 

( )0 0

1

0 p pn L Tτ
−

= i i                   (13) 

where, n  is the number of route points; 
0pL  and 

0pT  are the 
tour length and the tour threat intensity produced by the nearest 
neighbor heuristic respectively. 

For the global pheromone updating rule, (9) is replaced by 
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where, 0k  is the cardinality of the Pareto-optimal set and  

( ) ( ) ( )1 if , Pareto-optimal rout ,
0                          otherwise
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where kL  and kT  are the tour length and the tour threat in-
tensity produced by Pareto-optimal route k . 

Furthermore, unlike the TSP problem in [3], nor the 
VRPTW problem in [4], the connections among the route 
points are confined to the edge of VORONOI diagram. So, the 
symbol ( )kJ r  in (7) should be redefined as all the route points 
that connected with point r  by a VORONOI diagram edge. 

We can see, until now, that the two objectives are treated 
equally importantly, the relative importance of them is left to 
the final decision-maker to decide. 

C.   PSEUDOCODE OF MACS 
/* Initialization */ 

 0 construct a feasible solution using... 
  

             only heuristic information;
p ←

  

 { }0Pareto-optimal Set ;P p=  
 0calculate using (13);τ   
Repeat /* Main Loop */ 
 { }for each ant 1, 2,i m∈ "  
  construct_a_route( );ip i←  
 end for  
 for each ip P∈  

  
perform global pheromone updating... 
                        rule according to (8);

 

 end for  
Until a stopping criterion is met. 
/* End of MACS */ 
Procedure construct_a_rout(i)  
/* Initialization */ 
put an ant on the start route point ;sp  

{ }i sp p=  /* All the route points are stored in ip  */ 
Repeat 
 ( )calculate the heuristic information using 12 ;ijη  

 
calculate the possibilities to each of the next ...
                       possible rout points using (7);

 

 
generate a random number q, and use (5)...
                          the next point is chosen, say, ;ijp  

 ;i i ijp p p= ∪  
Until the destination is visited. 
/* Pay attention to this next post-processing step. Unlike the 
algorithms in [3] and [4], where there is a taboo table in their 
methods, in this algorithm loops can appear in ip . This step is 
very important in improving the performance of the algorithm. 
*/ 
 get rid of the route loops in the route ;i ip p←  

apply the local pheromone updating rule ...  
                                             on  using (10);ip

 

 1 2calculate and ;F F  
 if  is nondominated in ip P  

  
;

remove dominated solution from ;
isave P P p

P
= ∪

 

 end if  
/* End of the Procedure. */ 

IV. COMPUTATIONAL RESULTS 
In this section we conducted a digital simulation of route 

planning based on VORONOI diagram using MACS. 90 threats 
are considered in this experiment. The parameters of the MACS 
algorithm are as follows: 0.6ρ = , 0 0.7q = , 0.1α = , 

0.25β = , and using 10 ants. 



                                           

 
Figure2. The physical routs that are founded.  

 
Figure 3. The pareto front. 

The results are illustrated in Fig.2 and Fig.3. From the point 
that is represented by a pentagon to the point that is represented 
by a rectangle, five routes are found, which is much better than 
that in [2], where only one route is found between one pair of 
start-target points. So the final decision-maker can use his/her 
preferences to choose one or more routes from the five candi-
dates. 

V. CONCLUSION 
In this paper, we first described the MACS algorithm, and 

then applied it to the UAV route planning problem. A set of 
pareto optimal solutions are established, and the results are 
satisfying. But there still a lot can be done to improve the al-
gorithm. For example, how to decide the values of the pa-
rameters in section 4 would be a great problem to be discussed 
[9]. Moreover, the resulted routes in this paper are primary ones, 
other processes (such as smoothing the routs) should be added 
in, so that they can be accommodated to other constrains (such 
as the minimum turning radius of UAVs) [10]. 
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