
Approximate Frequent Itemsets Compression Using
Dynamic Clustering Method

Hua Yan, Yongsheng Sang
Computational Intelligence Laboratory

School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu, P.R China
{huayan, sangys}@uestc.edu.cn

Abstract—Frequent-itemsets mining often faces the problem
of generating a large collection of frequent itemsets, which is
too large to be carefully examined and understood by the users.
To reduce the output size of frequent itemsets, we propose
using a dynamic clustering method to compress the frequent
itemsets approximately in this paper. Concretely, two frequent
itemsets intra-cluster similarities, expression similarity and support
similarity, are defined according to the specific requirements of
frequent itemsets compression. Based on the above two similarity
measures, the frequent itemsets clustering criterion and its related
clustering algorithm are developed. Specially, our method has
two features: 1)users needn’t specify the number of frequent
itemsets clusters explicitly; 2)user’s expectation of compression
ratio is incorporated. Our initial experimental results show that
our approximate frequent itemsets method is feasible and the
compression quality is good.

I. INTRODUCTION

Frequent-itemsets mining has been a hot research topic
in data mining because of its applications in many impor-
tant data mining tasks such as mining association rules[3],
mining correlation[6], and mining sequential patterns[5] etc.
The frequent-itemsets mining problem is defined as follows[3].
Given a transaction database D having N transactions, let I =
{I1, I2, . . . , Im} be a set of items, transaction tj (1 ≤ j ≤ N)
is tj = {Ij1, Ij2, . . . , Ijl}, such that tj ⊆ I . An itemset P is a
set of items, such that P ⊆ I . The support of an itemset P is
the number of transactions that contain the itemset P , denoted
as sup(P). The itemset P is frequent if sup(P) ≥ min sup,
where min sup is a user-specified support threshold. The task
of frequent itemsets mining is to find all the frequent itemsets
in database D.

Frequent-itemsets mining often faces the problem of choos-
ing the appropriate support value min sup for mining algo-
rithms. The frequent Itemsets generated by high support values
are too obvious to be meaningful, while the frequent itemsets
collection generated by low support values can be far too large
to be carefully examined and understood by the users.

To reduce the output size of frequent itemsets, two major
approaches have been developed for compressing purpose:
lossless compression and lossy approximation. The closed
frequent itemsets [9] and non-derivable frequent itemsets [7]
are belong to the lossless category. The complete set of original
frequent itemsets can be recovered if it is compressed by
these two methods. However, the compression ratio of lossless

methods is quite limited cause they emphasize too much on
the supports of frequent itemsets. On the other hand, the
maximal frequent itemsets[8], the boundary cover sets[2] and
the representative pattern[10] are all lossy methods. These
lossy methods have higher compression ratio but not reversible.

In addition to the drawback of information losing, the
maximal frequent itemsets and the boundary cover sets just
consider the expressions of itemsets while ignoring the support
information of itemsets. The representative pattern method,
which is proposed recently, builds up a pattern compression
framework that concerns both the expressions and supports
of the patterns[10]. However, two greedy algorithms of the
representative pattern method have high computation com-
plexity and space complexity. Concretely, the using of RP-tree
(representative pattern tree) to index all the frequent patterns
make them memory consuming and the coverage checking step
results in the quadratic computation complexity.

So our design goal is to develop a faster algorithm, which
compresses the collection of frequent itemsets approximately
and has the following two features:1) both expressions and
supports of frequent itemsets are used to evaluate frequent-
itemsets similarity; 2) user’s expectation of compression ratio
is incorporated.

Our approach In this paper, we propose using a dynamic
transactional clustering method to compress a collection of
frequent itemsets approximately. Concretely, a modified ver-
sion of transactional data clustering method, i.e. coverage
density-based clustering algorithm[11] is used to partition the
collection of frequent itemsets into several clusters. During the
course of frequent itemsets clustering, two frequent-itemsets
specific intra-cluster similarities: expression similarity and
support similarity are used to evaluate the similarity of a set
of frequent itemsets. Finally, the maximal frequent-itemsets of
each cluster are output as compression result.

The rest of the paper is organized as follows. Section
II defines two frequent-itemsets similarity measures and the
frequent-itemsets clustering criterion. Section III details the
frequent-itemsets clustering (compressing) procedure and ana-
lyzes the algorithm complexity. Our initial experimental results
are reported in Section IV and our approximate compression
approach is summarized in Section V.

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

II. PROBLEM STATEMENT

In this section, we first analyze a concrete frequent itemsets
mining example and describe the intuitive idea behind our
approach. Second, the concepts of coverage density is briefly
introduced and the definitions of expression similarity and
support similarity of frequent-itemsets are given. Finally, the
frequent-itemsets compressing (clustering) criterion is pre-
sented.

A. Analysis on A Frequent-itemsets Mining Result

Let’s have a look at a concrete frequent-itemsets mining
example at first. Suppose we have a transaction database D
with 9 transactions shown in Table I and the user specified
minimum support is min sup = 2.

After running Apriori [4] algorithm on database D, we get
13 frequent-itemsets and we use a directed graph to present
the mining result, which is shown in Figure 1. In Figure 1,
each graph vertex represents a frequent-itemset and includes
its two parts information separated by a colon. The first part
is the expression info. of a frequent-itemset, the second part is
the support info. of a frequent-itemset. For example, {1,2,3}:2
means that the support of frequent-itemset {1,2,3} is 2. The
directed edges among the result graph indicate the subset
relationship of these frequent itemsets.

TABLE I
TRANSACTION DATABASE D

TID Items
t1 1,2,5
t2 2,4
t3 2,3
t4 1,2,4
t5 1,3
t6 2,3
t7 1,3
t8 1,2,3,5
t9 1,2,3

{1, 2, 3}:2 {1, 2, 5}:2

{1, 2}:4 {1, 3}:4 {1, 5}:2 {2, 3}:4 {2, 4}:2 {2, 5}:2

{1}:6 {2}:7 {3}:6 {4}:2 {5}:2

Fig. 1. Frequent-itemsets mining result of D at min sup=2

Carefully analyzing the above frequent-itemsets mining re-
sult, we have the following observations: 1)A frequent-itemset
is similar to a transaction in the view of their expression,
i.e. they are also a set of items. At this point, a collection
of frequent-itemsets also can be regarded as a transactional
database; 2)frequent-itemsets of a mining result are highly cor-
related. Since Apriori algorithm searches the frequent-itemsets
in a level-wise way, all the subsets of a k-frequent-itemset are
also frequent [4]. For example, in Figure 1, the subsets of
frequent-itemset {1,2,3} are {{1,2}, {1,3},{1},{2},{3}} and

these subsets are all frequent. So in the view of expression of
these frequent-itemsets, all the subsets of a frequent-itemset
can be represented by their frequent superset. In the above
example, frequent-itemset {1,2,3} and its subsets can be
compressed into one, that is,we only report frequent-itemset
{1,2,3}; 3) However, the support of a frequent-itemset and
its subsets are usually different. Sometimes, the difference is
very large. For example, frequent-itemset {1,2,3} has support
2 while its immediate subset {1,2} and {1,3} have support 4. If
we only report {1,2,3}, then the support information of subset
are lost. So in the view of support, frequent-itemsets {1,2,3},
{1,2} and {1,3} all should be output. Another compressive
example is that frequent-itemset {1,2,5} and its subset {1,5},
{2,5}, {5} have same support. Obviously, it is sufficient to
output {1,2,5} only.

Based on the above observations, we propose using a
transactional clustering method to compress the collection of
frequent-itemsets with specific similarity measures designed
for frequent-itemsets compression application.

B. Notations

The problem of clustering frequent-itemsets can be defined
as follows. Given a collection of frequent-itemsets F , let I =
{I1, I2, . . . , Im} be a set of items, F be a set of frequent-
itemsets with size |F |, where frequent itemset fj (1 ≤ j ≤ |F |)
is a set of items fj = {Ij1, Ij2, . . . , Ijl}, such that fj ⊆ I . Let
|fj | be the length of the frequent itemset fj and sup(fj) be its
support. A frequent-itemsets clustering result FK is a partition
of F , denoted by {F1, F2, . . . , FK}, where F1

⋃
. . .

⋃
FK =

F, Fi �= φ, Fi

⋂
Fj = φ.

C. Concept of Coverage Density

During the course of clustering a collection of frequent-
itemsets, our method uses two similarity measures: expres-
sion similarity and support similarity. Since the expression
similarity is based on the transactional intra-cluster similarity
measure, i.e. the Coverage Density[11], we briefly introduce
the concept of Coverage Density below.

To provide an intuitive illustration of our development of
CD concept, let us map the transactions of D onto a 2D grid
graph. Let the horizontal axis stand for items and the vertical
axis stand for the transaction IDs, and each filled cell (i, j)
represents the item i is in the transaction j. For example,
a simple transactional dataset {abc, bc, ac, de, def} can be
visualized in Figure 2.

a b c d e f

1

2
3

4
5

a b c

1

2
3

4
5

d e f

Fig. 2. An example 2D grid graph

If we look at the filled area in the graph carefully, two
naturally formed clusters appear, which are {abc, bc, ac} and
{de, def} indicated by two rectangles in Figure 2. In the

original graph there are 18 cells unfilled, but only 3 in the two
partitioned subgraphs. The less the unfilled cells are left, the
more compact the clusters are. Therefore, we consider that the
problem of clustering transactional datasets can be transformed
to the problem of how to obtain the minimized unfilled number
of cells with appropriate number of partitions. This simple
example also shows that it is intuitive to visualize the clustering
structure of the transactions when they have already been
ordered in the specific way as shown in the left most of Figure
2. Thus how to order and partition the transactional dataset
properly is one of the key issues of clustering algorithm.

Bearing this intuition in mind, we give the definition of
Coverage Density (CD).

Definition 1. Coverage Density (CD) is the percentage of
filled cells to the whole rectangle area which is decided by
the number of distinct items and number of transactions in a
cluster.

Given a cluster Ck , it is easy and straightforward to compute
its coverage density. Suppose the number of distinct items
is Mk, the items set of Ck is Ik = {Ik1, Ik2, . . . , IkMk

},
the number of transactions in the cluster is Nk, and the sum
occurrences of all items in cluster Ck is Sk, then the Coverage
Density of cluster Ck is

CD(Ck) =
Sk

Nk × Mk
=

∑Mk

j=1 occur(Ikj)
Nk × Mk

. (1)

Since the coverage density reflects the compactness of a cluster
intuitively, it is used as an intra-cluster measure. Generally
speaking, the larger the coverage density is, the higher the
intra-cluster similarity among the transactions within a cluster.

D. Similarity Measures for Clustering Frequent-itemsets

Two similarity measures are used for clustering frequent-
itemsets: expression similarity and support similarity. The
expression similarity is a measure to evaluate the items’
overlappings of a set of frequent-itemsets, while the support
similarity is used to measure the similar degree of frequent-
itemsets’ supports. Actually, the expression similarity is the
main measure in our compressing method while the support
similarity is just a auxiliary or secondary measure. In other
words, frequent-itemsets are evaluated by their expression at
first, if they are similar, then their supports are used to further
decide if they should be grouped together; if they are dissimilar
at their expressions, then the support similarity is not used.

As described above, Coverage Density is an intuitive and
ideal intra-cluster measure for transactional data[11]. So if the
frequent-itemsets are treated as a group of transactions, then
their expressions similarity can be calculated by a coverage-
density-like formula. Below we give the formal statement of
expression similarity computing formula:

Given a cluster (collection) of frequent-itemsets Fk having
|Fk| frequent-itemsets, suppose the number of distinct items is
mk, then the Expression Similarity (ES) of cluster Fk is

ES(Fk) =

∑|Fk|
j=1 |fj |

|Fk| × mk
. (2)

Same as coverage density, the value of ES is bigger than
zero but less and equal to one. For example, a one-frequent-
itemset cluster’s expression similarity is 1. The larger the
ES is, the higher similarity among frequent-itemsets within a
cluster. The ES reflects the compactness of frequent-itemsets
intuitively. In addition to its intuition, the computing of our
expression similarity is quite straightforward and fast cause it
is a set-based similarity measure.

Definition 2. (δ-frequent-itemsets-cluster) A cluster of
frequent-itemsets having δ% expression similarity is called as
δ-frequent-itemsets-cluster.

Having the concept of δ-frequent-itemsets-cluster, users can
control the frequent-itemsets compression ratio by changing
the value of δ. So in our clustering method, the δ value is an
input parameter used to incorporate user’s expectation.

In addition to the expression similarity, the support simi-
larity is also used as the secondary measure in our frequent-
itemsets clustering method. The purpose of support similarity
is to preserve the support information after compression. So
it would be better if each frequent-itemset within a cluster
has almost the same quantity of support, i.e the distribution
of these supports doesn’t have much deviations from their
average value. So to evaluate the support similarity, we directly
computing the variance of support values of a cluster of
frequent-itemsets.

Definition 3. (support similarity) Given a cluster (collec-
tion) of frequent-itemsets Fk having |Fk| frequent-itemsets,
suppose the support value of frequent-itmeset fj is sup(fj),
where 1 ≤ j ≤ |Fk| and the average support value of Fk is
E(Fk), then the support similarity (SS) of Fk is

SS(Fk) =

∑|Fk|
j=1(sup(fj) − E(Fk))2

|Fk| . (3)

The ideal support similarity value is zero, which means each
frequent-itemset within a cluster has equal support. The larger
the SS value is, the bigger deviations of support values within
a cluster.

E. Clustering criterion

Having the concepts of expression similarity and support
similarity for a cluster of frequent-itemsets, we define the
clustering criterion based on the above two measures in this
section.

Given a collection of frequent-itemsets F with size |F |, for
a frequent-itemsets clustering result FK = {F1, F2, . . . , FK}
where K < |F | and the distinct number of items of each Fk

is mk, the clustering criterion is to maximize the Expected
Expression Similarity (EES) value of frequent-itemsets clus-
tering result as defined in Equation 4. At the same time, each
cluster of frequent-itemsets subjects to restrict Equation 5 and
Equation 6.

EES(FK) =
K∑

k=1

|Fk|
|F | × ES(Fk)

=
1
|F | ×

K∑

k=1

∑|Fk|
j=1 |fj |
mk

(4)

Subject to:

SS(Fk) ≤ min ss, 1 ≤ k ≤ K (5)

ES(Fk) ≥ δ, 0 < δ ≤ 1 (6)

, where min ss is a user-specified minimum support similarity
threshold.

Our EES-based clustering algorithm tries to maximize the
EES criterion under the restricts of user-specified min ss
value and δ value.

III. FREQUENT-ITEMSETS CLUSTERING ALGORITHM

Generally, a collection of frequent-itemsets is regarded as
a transactional dataset and can be partitioned by a general
clustering procedure like K-means’ clustering procedure. How-
ever, our frequent-itemsets clustering algorithm design makes
best use of two specific features of frequent-itemsets: 1)the
correlations among frequent-itemsets are very high cause a fre-
quent itemset is either a subset or a superset of other itemsets.
2)the collection of frequent-itemsets is sorted by the frequent-
itemset length. According to the above two features, we de-
signed a coverage-density-clustering-like algorithm, i.e. EES-
based clustering algorithm to do frequent-itemsets compressing
approximately. In this section, two problems are addressed:
1)how to partition the collection of frequent-itemsets utilizing
the features of frequent-itemsets? 2)how to report the clustering
result?

The EES-based clustering algorithm is a one-pass partition-
based clustering algorithm, i.e. it scans the collection of
frequent-itemsets one pass to assign each frequent-itemset to a
cluster in terms of maximizing the EES criterion and satisfying
two restricts. Concretely, it reads the frequent-itemsets from
the maximal length frequent-itemsets to the shorter length
frequent-itemsets sequentially. For each frequent-itemset, it is
either added to an existed cluster or used to form a new cluster.
The EES-based clustering algorithm tries to add the current
frequent-itemset into each existed clusters to see:1) if after
adding operation these clusters still satisfy the restricts; 2)
adding to which cluster will maximize the EES value of current
clustering result. If there is no cluster existed to satisfy the
restricts, the current frequent-itemset forms a new cluster.

Obviously, for the EES-based clustering algorithm, the
number of clusters is not decided by an explicit input parameter
K . At this point, the EES-based clustering algorithm is a
dynamic clustering method cause its number of clusters is
generated dynamically through clustering procedure. Actually,
the number of clusters is controlled by two user specified
threshold values implicitly: δ and min ss. The δ is direct
proportional to the number of clusters while min ss is inverse
proportional to the number of clusters.

The EES-based clustering purpose is different from the
general clustering purpose. Its main purpose is finding a set
of representative itemsets to represent a collection of frequent
itemsets. So after finishing clustering, the EES-based algorithm
still need to find the representative itemsets of each cluster and
report them.

The clustering result of EES-base algorithm is a group of δ-
frequent-itemsets-clusters, each cluster may contain more than
one maximal frequent itemsets. For example of a collection
of frequent-itemsets in Figure 1, itemsets {1,2,3} and {1,2,5}
may be partitioned in one cluster if the δ value is small. It
is not reasonable if we report the combination of {1,2,3,5} as
the only representative itemset of the cluster cause {1,2,3,5}
is not frequent. So similar to some clustering algorithms
having multiple clustering modes in each cluster, the EES-
based clustering algorithm reports multiple maximal frequent
itemsets of each cluster as output of compression result.

A sketch of the pseudo code for the EES-based algorithm
is given in Algorithm 1.

Algorithm 1 EES-clustering.main()
Input: A collection of Frequent-itemsets F with support values; δ;min ss
Output: Compressing result
while not end of F do

read one frequent-itemset f from F;
add f into existed Fi and computing the ES(Fi) and SS(Fi);
if there is no ES(Fi) ≥ δ and SS(Fi) ≥ min ss then

create a new cluster Fj ;
put f into Fj ;
else
put f into an existed cluster Fi which maximizes the current EES;

end if
end while
for each cluster Fi do

output the maximal frequent itemsets;
end for

The space consumption of EES-based clustering algorithm
is quite small, since only the summary information of clusters
is necessarily kept in memory. Let K stand for the number
of clusters, and M stand for the maximum number of distinct
items in a frequent-itemsets cluster. A total O(K ×M) space
is necessary for the algorithm. Even for a typical collection of
frequent-itemsets with up to ten thousand distinct items, sev-
eral megabytes will be sufficient for the EES-based clustering
algorithm.

Since the computing of SS for each cluster is much
faster compared with the ES computing for each cluster,
it can be ignored. The most time-consuming part of EES-
based clustering algorithm is the computing of EES values
of current clustering result to find the best cluster assignment
for each frquent itemset. The cost of each EES computing of
current K clusters is O(K×|f |), where f is the average length
of frequent itemsets. As a result, the time complexity of the
whole algorithm is O(|F |×K×|f |) , where |F | is the number
of frequent-itemsets in dataset. Usually K and |f | are much
smaller than |F |, the running time of EES-based clustering
algorithm is almost linear to the size of F . So the EES-based
clustering algorithm is very fast and capable of partitioning the
large collection of frequent-itemsets.

We report our initial experimental results in next section.

IV. EXPERIMENTAL RESULTS

We did experiments to test:1)the feasibility of the EES-
based algorithm; 2)the relationship between the compression
ratio and two compression control parameters: δ and min ss;
3) the quality of compression result.

The real datasets mushroom in Frequent Itemsets Mining
Dataset Repository [1] is used to test the above experimental
purposes. The Mushroom contains 8124 transactions and 119
total items. We ran Apriori [4] on mushroom at minimum sup-
ports min sup = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}× 8124 and
got 7 collections of frequent-itemsets. We modified the Apriori
a little bit, which output the frequent itemsets along with
their supports. We didn’t use the collections at min sup =
{0.1, 0.2, 1.0} × 8124 because of the following reasons: 1)
Apriori just outputs one frequent itemset with length 1 at
min sup = 8124; 2)While we set min sup = 0.2 × 8124,
the combination explosion occurs. It’s too slow to wait the
outputs.

After getting 7 collections of frequent-itemsets, we ran
EES-based algorithm on these collections by varying the δ
from 1.0 to 0.1 and min ss from 100 to zero. The initial
results are reported below.

First, we compared the number of frequent-itemsets before
and after compression. Figure 3 shows the comparison between
the uncompressed number of frequent-itemsets and the com-
pressed result at δ = 0.5, min ss = 100. The result shows that
compression effect is quite good especially at lower min sup.

0

500

1000

1500

2000

2500

3000

0.9 0.8 0.7 0.6 0.5 0.4 0.3

min_sup/8124

N
u
m
b
e
r

o
f

F
r
e
q
.

I
t
e
m
s
e
t
s

uncompressed

Freq.Itemsets

compressed Freq.

Itemsets at

delta=0.5,min_ss

=100

Fig. 3. Number of frequent-itemsets before and after
compression

Second, we studied the relationship between the com-
pression ratio and two control parameters. We selected the
collection of Frequent Itemsets at min sup = 0.8 × 8124
as testing dataset, which has 23 frequent itemsets. The results
are shown in Figure 4 and 5. The two graph results prove our
analysis before, i.e. the δ is direct proportional to the number
of compressed frequent itemsets while the min ss is inverse
proportional to the number of compressed frequent itemsets. In
other words, the δ is inverse proportional to the compression
ratio and the min ss is direct proportional to the compression
ratio.

Third, we analyzed the compression results to evaluate the
quality of EES-based clustering algorithm. Although the EES-

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δ

N
u
m
.
o
f

C
o
m
p
.
F
r
e
q
.
I
t
e
m
s
e
t
s

Fig. 4. δ vs. the compressed number of frequent-itemsets

0

2

4

6

8

10

12

0 1 5 10 20 30 40 50 60 70 80 90 100

min_ss

N
u
m
.
o
f

C
o
m
p
.

F
r
e
q
.

I
t
e
m
s
e
t
s

Fig. 5. min ss vs. the compressed number of frequent-
itemsets

based algorithm just scans the collection of frequent-itemsets
one pass, the quality of clustering result is quite good. Below,
we report the clustering result of the min sup = 0.8 × 8124
collection of frequent-itemsets at δ = 0.5, min ss = 100 in
Table II. According to Table II, the final compression result
is: {34, 36, 85, 86}, {34, 85, 86, 90}, {34, 85, 86}, {36, 85},
{85, 90} and {85}. Obviously, the quality of such compression
result is good.

TABLE II
CLUSTERING RESULT OF min sup = 0.8 COLLECTION OF

FREQUENT-ITEMSETS

Cluster 1 Cluster 2 Cluster 3
{34,36,85,86}:6602 {34,85,86,90}:7288 {34,85,86}:7906
{34,36,85}:6602 {34,85,90}:7296 {34,85}:7914
{34,36,86}:6602 {34,86,90}:7288 {34,86}:7906
{36,85,86}:6620 {85,86,90}:7288 {85,86}:7924
{34,36}:6602 {34,90}:7296 {34}:7914
{36,86}:6620 {86,90}:7288 {86}:7914

Cluster 4 Cluster 5 Cluster 6
{36,85}:6812 {85,90}:7488 {85}:8124
{36}:6812 {90}:7488

The above initial experimental results show that the EES-
based algorithm is capable of compressing the collection of
frequent itemsets. Although it is an approximate compression
method but compression quality is high.

V. CONCLUSION

In this paper, we propose using a dynamic clustering method
to compress the frequent itemsets approximately, i.e the col-
lection of frequent itemsets is partitioned into clusters at first,
then the multiple maximal frequent itemsets of each cluster are

output as the compression result. Two frequent itemsets intra-
cluster similarities: expression similarity and support similarity
are defined in this paper. Based on the two similarity mea-
sures, the frequent itemsets clustering criterion and its related
frequent itemsets clustering algorithm are also developed. Our
initial experimental results show that our clustering method
obtains not only high compression ratio but also high-quality
compression result.

ACKNOWLEDGMENT

This work was supported by Chinese 863 High-Tech Pro-
gram under Grant 2007AA01Z321.

REFERENCES

[1] Frequent itemset mining dataset repository. http://fimi.cs.helsinki.fi/data/.
[2] F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of

frequent sets. Proceedings of Intl. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 12–19, 2004.

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499, 12–
15 1994.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. pages 3–14, 1995.
[6] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets:

Generalizing association rules to correlations. Proc. of ACM SIGMOD
Conference, pages 265–276, 1997.

[7] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
Proceedings of the 6th European Conference on Principles of Data Mining
and Knowledge Discovery, 2431:74–85, 2002.

[8] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning (extended abstract). Proc.
of ACM PODS Conference, pages 209–216, 1997.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. The 7th International Conference
on Database Theory, 1540:398–416, 1999.

[10] D. Xin, J. Han, X. Yan, and H. Cheng. On compressing frequent patterns.
Data Knowl. Eng., 60(1), 2007.

[11] H. Yan, K. Chen, L. Liu, J. Bae, and Z. Yi. Efficiently clustering
transactional data with weighted coverage density. Proc. of ACM Conf.
on Information and Knowledge Mgt. (CIKM), pages 367–376, November
2006.

