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Abstract— In this paper a new approach to the design of 
multivariable adaptive-fuzzy controllers is proposed. The 
approach is based on fuzzy Lyapunov synthesis, that is an 
extension of the classical Lyapunov synthesis in the domain of 
computing with words. The closed-loop system is monitored and 
the parameters of the controller are adapted in order to 
minimizing the error between the actual and the desired states of 
the system. Stability of the closed-loop system is shown by the 
Lyapunov function which is used in the design stage. The 
performance of the proposed method is evaluated by applying it 
to a quadruple-tank process as a case study. 

Keywords—Fuzzy Control, Lyapunov Scheme, Quadruple-
Tank. 

I.  INTRODUCTION 
There have been challenging issues in design and analyzing 

fuzzy systems including: How to design and justify an 
adaptive-fuzzy controller systematically? And how to analyze 
the closed-loop stability? Transferring human empirical 
knowledge to the "if-then rules" controller is the another 
difficulty in traditional methods. In many applications of the 
fuzzy rule-based systems, fuzzy "if-then" rules are heuristically 
obtained from human expert knowledge. The use of neural 
networks to extract the fuzzy rule-base is investigated in many 
papers [1], [2], but stability of the closed-loop system can not 
be shown and guaranteed in this kind of methods. The Model-
based fuzzy control approach [3] is another possibility to solve 
the aforementioned problems. But it usually yields to a non-
fuzzy controller that leads to the loss of linguistic 
interpretability, which is the most important property of fuzzy 
systems. Recently, a new method for designing the rule-base 
fuzzy controllers was suggested [4]. Referred to as the Fuzzy 
Lyapunov Synthesis method, it is based on extending classical 
Lyapunov synthesis to the domain of computing with words 
[5], [6]. The method allows an analytic derivation of the rule-
base and furthermore, the same Lyapunov function used in the 
design phase can be used to prove the closed-loop stability [7]. 

Classical Lyapunov synthesis suggests a design method for 
the controller which guarantees 0)( ≤xV  for a Lyapunov 
function V(x) [8]. Fuzzy Lyapunov synthesis follows the same 
idea but the linguistic description of the plant and control 
objective will be used by means of computing with words. The 
basic assumption is that for a Lyapunov function V(x) if all the 

possible linguistic values of the )(xV  is not positive, then we 
can conclude 0)( ≤xV , so the stability can be guaranteed. As an 
example if )(xV = negative * negative + negative * u, then we 
can choose u=positive big to make negativexV =)( . An 
important point addressed here is that )(xV  might not be 
negative unless there exists a set of suitable linguistic variables 
and their arithmetic operations to guarantee this. To guarantee 
the negativity of )(xV , a fuzzy Lyapunov synthesis approach, 
in connection with fuzzy numbers and their arithmetic 
operations, was investigated in [9].  

Design of adaptive-fuzzy controller for SISO (Single Input, 
Single Output) systems, based on fuzzy Lyapunov synthesis 
method, was introduced in [10] for the first time, but the 
proposed method was applicable to only SISO processes. In 
this paper, design of adaptive-fuzzy controllers based on fuzzy 
Lyapunov synthesis method is extended to squared MIMO 
(Multi Input, Multi-Output) systems. The extended version of 
the arithmetic operations defined in [9] is used in the design 
procedure to guarantee the stability of the closed-loop system. 
A quadruple-tank system is considered as a case study to 
evaluate the performance of the proposed method. The rest of 
this paper is organized as follows: design of the fuzzy 
controllers based on modified fuzzy Lyapunov synthesis 
method for squared MIMO systems is given in section II. 
Adaptation scheme for the parameters is presented in section 
III. The proposed method is applied to a Quadruple-Tank 
system as a case study in section IV. Section V contains the 
conclusions. 

II. MODIFIED FUZZY LYAPUNOV SYNTHESIS 
Fuzzy Lyapunov synthesis follows the classical Lyapunov 

synthesis idea to make 0)( ≤xV  for a Lyapunov function V(x). 
In the modified fuzzy Lyapunov synthesis, the function not 
only should be negative but also it should behave in a desired 
manner [7]. In the following, modified fuzzy Lyapunov 
synthesis approach for a SISO system is extended to a class of 
MIMO systems. Consider a squared MIMO system described 
by the nonlinear state space representation: 
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where; T
nxxX )( 1=  is the state vector of the system, 
T

nfff (.))(.)((.) 1= and T
nggg (.))(.)((.) 1=  are vectors of 

differentiable functions, U is the input, C is the output matrices 
and Y is an 1×n  vector containing the output variables. The 
control objective is to design a tracking controller for the 
system. Assume that the exact vectors f(x) and g(x) are 
unknown but we do have some partial (fuzzy) knowledge about 
them given in the form of fuzzy "if-then rules". Based on this 
linguistic information and by using computing with words idea, 
we construct two fuzzy approximated functions for f(x) and 
g(x) denoted by )(ˆ xf  and )(ˆ xg , respectively. There are some 
systematic approaches to do this; one of the possible 
approaches is the use of neural networks [2]. 

To design the controller rule-base, we choose a Lyapunov 
function candidate V(e) (where e is the error vector) and we 
also consider a desired negative-definite function dV , then V  
is calculated as: 
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Substituting the f(X), g(X) with the approximated 
functions )(ˆ xf , )(ˆ xg , the approximated value of V  can be 
obtained as: 
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By requiring dVV = , we have: 
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Substituting all the possible linguistic values for X , yields a 
linguistic equation that can be solved by using the arithmetic 
operations of fuzzy words defined in [9]. The conditions 
derived from solving (4), yield the rule-base for the fuzzy 
controller u. 

III. ADAPTATION SCHEME 
To introduce the basic idea of the scheme, we begin with an 

example. Consider a driver skilled in driving his own passenger 
car. If he intends to drive a truck and would apply his usual 
speed-control strategy, he will notice that the performance of 
the speed control is not so good compared with his own 
passenger car. Hence he tries to adapt his usual speed-control 
strategy to fit to the truck under control. Let investigate the 
example from another point of view: when the skilled driver 
wants to increase or decrease speed of the truck he actually 
tries to change it’s energy. He likes that the change in energy of 
the truck be the same with his own passenger car’s one. Indeed 
he uses modified fuzzy Lyapunov synthesis but he has to use 
some input-output data to adapt the rule-base of the control 
strategy in his mind. On the other hand the equation described 
by (4) may not have an explicit solution. So, the error between 

time derivative of actual and desired Lyapunov functions 
should be minimized instead of trying to make them exactly the 
same, so we have: 

Min norm(V , dV )                                                                   (5) 
Where norm is some norm of error between V  and dV . The 
other consideration is that since we used the approximate 
model of the plant in the design procedure, so the actual V  can 
be very different from dV . 

To solve the above problems, parameters of the designed 
controller are adapted in order to minimize the error between 
the actual V  and the desired one ( dV ). We define the squared 
error between the actual and desired functions as 

2)(5.0 dVVE −=  and let )( 1 laaa =  be the parameters of the 
fuzzy controller, that are the parameters of the fuzzy sets in the 
premise and consequent parts of the rules defining um. The 
MIT rule [11] is used to obtain the adaptation law: 
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Where, 0〉η  is a constant and 1, +kk tt  are two consecutive time 
steps. Calculating laE ∂∂ /  yields: 
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Having substituted (7) in (6), we have: 
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However since V  and )(Xg  are unknown, we replace (8) 
with: 
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Note that all the quantities in the right-hand side of (9) are 
now known online and )( 1+kl ta  can be calculated. 

IV. CASE STUDY 
Performance of the proposed method is validated by 

applying it to a Quadruple-Tank process. The goal of this case 
study is to show the performance of the proposed adaptive 
method step by step. 

A. Plant Description 
The quadruple-tank process introduced and developed by 

Johansson at Lund Institute of Technology in 1996 [12]. The 
system has some special features such as nonlinear dynamics, 



         

multi-input multi-output, and an adjustable zero location that 
makes it ideal for illustrating many concepts in multivariable 
control, particularly performance limitations due to right-half 
plane zeros. Effective control of this system has been one of the 
major challenges for the researchers in the field of control 
systems. Several control methods have been introduced and 
tested on this system, among which we find: Decentralized 
Proportional Integral (PI) Control [13-15], Feedback Relay 
Auto-Tuning PID Control [16], Linear Quadratic Optimal 
Control [17], Nonlinear Model Predictive Control [18], Model 
Predictive Control Based on Quadratic Cost Function [19], 
Neural Model Predictive Control [20], Quantitative Feedback 
Method [21].  

Quadruple-Tank process consists of four interconnected 
tanks. The target is to control the level in the lower two tanks 
using two pumps. The schematic diagram of the process is 
shown in Fig. 1. 

The process inputs are v1,v2 (input voltages to the pumps) 
and the outputs are y1,y2 (voltages from level measurement 
devices). Mass balance’s and Bernoulli’s law yield [12]: 
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Where iA  is cross-section of tank i, ia  is cross-section of 
the outlet hole, ih  is water level of tank i and the parameters 

)1,0(, 21 ∈γγ  are ratios of the control valves connected to the 
pumps 1 and 2, respectively. 

B. Modelling Stage 
The model of the plant can be given by the standard form of 

the state space equations. 
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Suppose that the exact vector  f(x) is not known but we have 

some partial information about it. The G(x) is assumed to be 
known (because of simplicity of G this assumption is not 
impractical). Suppose the available general information about 
f(x) is: 

1. The higher the level in the upper tanks the more the 
outgoing flow. 

 
Fig. 1  The Quadruple-Tank process 

 

2. The higher the level in tanks 3 and 4, the faster 
increase in the level of water in tanks 1 and 2, 
respectively. 

3. The more the applied input voltages to the pumps 1 
and 2, the faster increasing in height of water in tanks 
1 and 2, respectively. 

Based on the above linguistic information and some 
experimental data, a fuzzy approximated function of f(x) 
denoted by )(ˆ xf is obtained. Tables I, II and III show the 
approximated function )(ˆ xf . 

Four Gaussian membership functions are considered for the 
input variables: Very Low, Low, High and Very High denoted 
by VL, L, H and VH, respectively. Membership functions are 
defined as: 

 
TABLE I.         PARAMETERS OF ),(ˆ

311 hhf  

 VL L H VH 
VL 0 -0.0032 -0.0046 -0.0056 
L 0.0032 0 -0.0015 -0.0024 
H 0.0046 0.0015 0 -0.00096 

VH 0.0056 0.0024 0.00096 0 
 

TABLE  II.         PARAMETERS OF ),(ˆ
422 hhf  

 VL L H VH 
VL 0 -0.0022 -0.0033 -0.0039 
L 0.0022 0 -0.001 -0.0017 
H 0.0033 0.001 0 -0.00069 

VH 0.0039 0.0017 0.00069 0 
 

TABLE  III.        PARAMETERS OF )(ˆ
33 hf  AND )(ˆ

44 hf  

 )(ˆ
3 xf  )(ˆ

4 xf  
VL 0 0 
L -0.0032 -0.0022 
H -0.0046 -0.0033 

VH -0.0056 -0.0039 
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The product inference engine and the center of gravity 
defuzzifier is used to obtain the fuzzy approximated functions. 
Hence, 
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Where ),( 31 hhdij  is the firing strength of rule (i,j) and 1
ijT  is 

the value of entry (i,j) of table I. For example consider the rule 
represented by entry (2,3) in table I, then we have: 

if  h1 is High and h3 is Low  then 1̂f  is near -0.0015 

For the above rule we have: 
)()(),( 31313,2 hhhhd LH µµ ×=  and 0015.01

23 −=T . 
The values of ),(ˆ

422 hhf , )(ˆ
33 hf  and )(ˆ

44 hf can be obtained 
similarly. Therefore, the approximated function is obtained. 
The next step is to generate the control rule-base using the 
Lyapunov scheme. 

C. Generating the Control Rule-Base 
The proposed method in section II is now applied to the 

Quadruple-Tank system. The first step is to choose a positive-
definite Lyapunov function candidate V and a desired 
negative-definite function dV . We choose: 
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Where ri, i=1,2 is the reference input signals and h1, h2 are 
the water level in tanks 1 and 2, respectively and c is a positive 
constant. Indeed we would like V  to behave as dV . Note that if 
we succeed in equating dVV = , then the system will obviously 
be stable because dV  is a negative-definite function. The next 
step is to differentiate V and use the requirement dVV =  to 
derive the rule-base. Having used the chain rule, we have: 
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The requirement dVV =  results in: 
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Solving equation (16) for u1 and u2 results in: 
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But we have only fuzzy approximated function of f(X), so we 
substitute the fuzzy approximated function of  f(X) in (17): 
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Linguistic interpretability is a favorable property of fuzzy 
controllers but obviously (18) is not a fuzzy controller and can 
not be represented conveniently by a set of linguistic rules. On 
the other hand fuzzy Lyapunov synthesis follows a different 
route. We substitute all the possible combination of the fuzzy 
terms describing h1 and h2 in (18) and using arithmetic 
operations of fuzzy words we can obtain the rule-base of U. For 
example when h1 is Low and h3 is High, substituting the values 
for h1 and h3 and 1̂f  in (18) we get: 
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For calculation u from (19) the extension of four arithmetic 
operations to fuzzy words is needed. Here we use the 
arithmetic operations derived in [9]. Therefore, every fuzzy 
word is replaced by its center of gravity, thus we have: 
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Note that all values of the right-hand side of (20) are now 
known online and u1 can be obtained. Thus u1 is near the 
obtained number when h1 is Low and h3 is High. Continuing 
in this manner, we get the rule-base for u1. The rule-base for u2 
can be obtained in the same way. 

Now using the product inference engine and center of 
gravity defuzzifier, we can calculate the value of u as follows:  
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Where ),( 31
2,1 hhd ij  is the firing strength of rule (i,j) and 

2,1
ijT  are the values obtained from (18). 

D. Controller Parameters Adaptation 
In this section we use the approach described in section III 

to derive adaptation laws for the parameters aj and bj of u1 and 



         

u2, respectively. It should be emphasized that the same 
approach can be easily applied to adapt all the parameters of 
u1 and u2, including the parameters of the fuzzy sets in the 
premise and consequent parts of the rules, defining u1 and u2. 

To derive the adaptation scheme for the parameters of the 
controller (aj and bj), we define the squared error between the 
actual and desired behavior of V  as: 
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By differentiating E with respect to aj and bj using (7): 
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Using (23) and (6) the adaptation law for u1 is obtained as: 
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The adaptation law for u2 can be obtained in the same way: 
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E. Simulation Results 
Two types of controllers are simulated and the results are 

presented in this section. The first one is the fuzzy Lyapunov 
based controller described by (20) without any adaptation law 
for adjusting the parameters. The second one is the adaptive 
version of the controller.  Equations (23) and (24) are used to 
adapt the firing strength (dij) of the rules with η=0.01. The 
Parameters of the quadruple-tank used in the simulation are 
listed in table IV. 

Figures 2 and 3 show the simulation results of the system 
for the first and second controllers, respectively. In the first 
case the input is sum of a sinusoidal and a step function applied 
at t=10 sec. For the second case a sinusoidal input is also 
applied at t=10 sec. Note that only one of the inputs is excited 
and the second input is considered as a constant signal, in both 
cases. Adapting the parameters of the second controller is 
started after applying the input (after t=10 sec). The error signal 
between the process output and the reference signal is shown in 
figure 4. As shown in the figure, adjustment of the parameters 
of the controller results in reduction of the error amplitude. 
Note that the scale of figure 4 is much smaller than the scale of 
figures 2 or 3. 

TABLE  IV.        PARAMETERS USED IN THE SIMULATION 
h0

1, h0
2 0.125, 0.125 Cm 

h0
3, h0

4 0.15, 0.15 Cm 
k1,k2 3.33, 3.35 Cm3/volt 
γ1, γ2 0.7, 0.6 - 
A1,A2 28 Cm2 

A3,A4 32 Cm2 
a1,a2 0.071 Cm2 
a3,a4 0.057 Cm2 

kc 0.5 Volt/Cm 
g 981 Cm/s 
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Fig 2. Response of the closed-loop system with the first controller 

0 20 40 60 80
11

12

13

14

time(sec)
le

ve
l(c

m
)

 

 
h1
h2

input1

 
Fig 3. Response of the closed-loop system with the second controller 
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Fig 4. The error signal in the second (adaptive) case 

 

As shown in figure 4, the error amplitude is always less 
than 0.1 cm. Therefore we can conclude that the performance 
of the designed adaptive fuzzy controller is satisfactory in 
tracking the reference signal. 

The proposed method has been validated by using the 
Quadruple-Tank system. The method can also be applied to any 
squared MIMO system by using the proposed procedure, 
consequently a stable adaptive-fuzzy controller can be designed 
without need to the specific human expert knowledge. 

V. CONCLUSION 
In this paper a systematic approach for designing stable 

adaptive fuzzy controllers for MIMO systems has been 
proposed. The approach is based on modified fuzzy Lyapunov 
synthesis method that follows the classical Lyapunov synthesis 
method in computing with words idea. The proposed method 



         

can be applied to different systems for both tracking and 
regulation problems. Stability of the method can be proved by a 
Lyapunov function. The approach is validated by applying it to 
a quadruple-tank system as a case study. Simulation results 
show the performance of the designed adaptive fuzzy 
controller. 
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