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Abstract— In this paper, based on image space reconstruction
algorithm and regression ICA, a new algorithm for overcomplete
ICA is developed. In this algorithm, it first reconstructs part of the
observations and then predicates the missing observations from
their probability distributions and the available observations.
After these steps, the standard ICA algorithm is employed to
estimate all the independent components. In the paper, the con-
vergence of the proposed algorithm is also analyzed. Experiment
demonstrates that the algorithm can obtain good fidelity for
blind signal separation. In the simulation, three speech signals
are successfully separated while only two mixtures of the three
signals are given.

I. INTRODUCTION

Up to now, independent component analysis (ICA) and
blind source separation (BSS) have been applied in many areas
such as speech recognition systems, telecommunications, and
medical signal processing. ICA is one of the most important
tools for recovering independent sources with sensor obser-
vations that are unknown linear mixtures of the unobserved
independent source signals [1-6]. A number of publications
have proposed various methods for the standard ICA noise
model and the ICA noise free model which require at least
as many sensors as sources. For those models, however, if
the number of original sources is often unknown, or the
number of observed signals from sensors is less or greater
than the original ones, it is very hard to estimate their original
sources. To solve this sort of problems, researchers developed
the overdetermine and overcomplete ICA algorithms. In this
paper we only interested in the solutions of overcomplete ICA
model, in which the number of the observations is less than
that of the original signals. In overcomplete ICA, Lewicki
and Sejnowski in [7] derived a gradient-based method called
learning overcomplete representations of the data that allowed
for more basis vectors than dimensions in the inputs, and
this algorithm has a requirement for the assumption of a
low level of noise. In [8], Girolami presented an expectation-
maximization algorithm for learning sparse and overcomplete
data representations. The proposed algorithm exploited a vari-
ational approximation to a range of heavy-tailed distributions
whose limit was the Laplacian. Yuanqing Li et al. [9] presented
a sparse decomposition approach of observed data matrix
which is used in blind source separation with less sensors
than sources. Lee et al. [10] proposed an overcomplete ICA
technique which assumes a linear mixing model with additive
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noise and involve two steps, the first is to learn an overcom-
plete representation and the second is to infer sources given
a sparse prior on the coefficients. Shi et al. [11] introduced
a blind separation technique which also includes two steps.
The first step was to learn the mixing matrix for the observed
data using the sparse mixture model, and the second was to
infer the sources by solving a linear programming problem
after the mixing matrix is estimated. This algorithm further
assumes if the sources were sparse, the mixing matrix could
be estimated by a method called the generalized exponential
mixture model. After estimating the mixing matrix, the sources
could be obtained by a posteriori approach. If we consider
noisy sources to be variables in the ICA, its observations will
be less than original sources and can be considered as one
of the overcomplete models. In noisy ICA, Employing bias
removal, Cichocki et al. [12] proposed modified algorithm,
which can reduce the noise to very low level. Jianting Cao
et al. [13] proposed an approach to high level noisy ICA
which can separate the mixtures of sub-Gaussian and super-
Gaussian source components. Mathis [14] introduced a three-
step blind signal separation algorithm for noisy environment
data in which three different approaches are used to mitigate
the effects of additive noise in the transfer medium. Motivated
by these methods, we present a new algorithm for the mixture
model that is able to expand overcomplete ICA and noisy
ICA to the standard ICA. After the n-m missing observations
are estimated by regression ICA, the sources are estimated by
using a standard ICA algorithm. For the proposed algorithm,
experiments with speech signals demonstrate good separation
results.

II. ICA REGRESSIONS

For overcomplete ICA model, the number of the observation
variables is less than that of the original signals. In standard
ICA, the numbers of observations and original sources are
equal, and the observations are noise free. A random vector
x(t) for this model is defined as

x(t) = As(t), (1)

where A is an (m X n) mixing matrix (m > n) and s(t) =
[51(t)...5,(t)]T is a source vector of stochastically independent
signals. ICA is obtained by estimating the mixing matrix A. As
the estimation of a separating or de-mixing matrix W and/or
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a mixing matrix A for noisy and overcompltete ICA is rather
difficult, the majority of past research efforts were devoted to
the noiseless case.

Based on the probability distributions of the original
sources, regression ICA [15] can be used to estimate the
missing observations for the overcomplete ICA. In general,
the observations in vector x are separated into two parts,
the observed variables and the missing variables. Since in
overcomplete ICA, the number of observations m is less than
the number of the original signals n, that is, we only have
the data of m observations, and from which we expect to
find other n-m missing observation signals so that we can use
standard ICA algorithm to solve overcomplete ICA problems.
We consider this m observations to be the observed variables,
and the other n-m unknown variables to be the predicting
variables in regression ICA. For simplicity, the m first variables
form the vector of the observed variables X, = (1, ..., )7,
and the other n-m variables form the vector of the missing
variables z,, = (Zm1,---,7n)’. The regression ICA model

can be written as
Xo| | Ao S
Xm Aﬂ’l, '

Therefore, for a given observation of x,, if we can obtain
x,, for the overcomplete ICA, then it will be transformed
to standard ICA. Now the problem is how to predict X,,.
To predict x,, correctly, the joint probability distribution of
x must be used. To be more precisely, we must have some
previous observations of x,, to be able to estimate the joint
probability distribution, which means we need to measure how
the predicted variables depend on the predicting variables.
The regression Xx,,, is conventionally defined as the conditional
expectation:

X = E{Xn|X0} = E{A8|X,} = Am/

A,s=X,

©))

sp(s)ds. (3)

Denote the probability density of each s; by p;, and by
gi(u) = pi(u)/pi(u) + cu a function that equals the negative
score function pj/p; of the probability density of s; plus an
arbitrary linear term. In practical application, the negative score
function is usually considered the same for all ¢. For example,
we can choose the tanh function for the score function of
a mildly super-Gaussian distribution. Denote further by g the
multi-dimensional function that consists of applying g; on the
ith component of its argument, for every i. After the above
preprocessing and assumptions we have the following result
[15]:

B{Xmn %o} ~ Amg(Alx,), 4)

where we can take g;(u) = —tanh(u) + u for all i. In this
case, the vector AZXO can be interpreted as an initial linear
estimate of s. In a standard ICA x = As, after whitening, we
can have an orthogonal matrix A to replace A, and therefore
AZ can be consider the pseudoinverse of A,. Obtaining initial
estimation § = g(AZx,) is the key step in this algorithm. We
will discuss this in the following section.
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III. PROPOSED OVERCOMPLETE ICA ALGORITHM
A. Prediction of the Observations

In ICA, the only data we have are the observations. To
obtain the regression x,, in (3), we need to find a way to
reconstruct xg so that we have a separation of the observations.
Finding the mixing matrix Ay in (4) is the first step of solving
the overcomplete ICA problem here. For the overcomplete
ICA, it has the following model:

X = AOS =
a11 ai2 A1m Q1n
Q21 A22 a2 a2
m (51,582, ...5,)1(5)
Am1 Am2 Amm Amn

where it assumes that the number of the independent compo-
nents is larger than the number of observed variables(m<n).
For the overcomplete ICA model in (5), we denote the m
observation components vector to be X, because if we can
find a way to estimate the another n-m components vector X,,
of the observations, then it will be expanded to standard ICA,
which has the following structure:

X0 o Ao .
= S =

Xﬂ’l, Am

a11 a12 Q1n

a1 @22 A2n

T

Um1 U2 A | (81,82,...80)" . (6)
Am+11 Am+22 Am+2n
L On1 an2 Qnn |

To obtain the overcomplete ICA in (6), we introduce an
algorithm to estimate the missing observations, which is the
square Euclidean distance expressed by the Frobenius norm
[17]:

m N
1 1
Dr(A.S) = |X—AS|[F = 5> > |wix — [AS]i[*
i=1 k=1
s. t. Q5 > 0, J)J(k) = Tjk > 0, N i,j,kﬁ. (7)

where X and S are all the observations and their corresponding
original sources. From this loss function, Lee and Seung
proposed the following multiplicative algorithm[18]:

- [xs"] [ATS];x
Y [ASS™],; [ATAS]j),
The algorithm in (7) and (8) is an extension of the image
space reconstruction algorithm which is simply called ISRA

[19]. From the update results of (8), we have a reconstruction
of the observation Xg: Xg = AgSp.

a;j < a y Sjk < Sjk (8)



Now, using the above result, we can indicate initial com-
ponents in vector § = (s1, S2, ..., S,,) as follows:

§ =Alxo. )

which can be used for the expectation computing in (4). The
rest part of the overcomplete ICA is to predict the other n-m
observations by using (3) and (4). After the this, we achieved n
observations for the n original sources ICA. The overcomplete
ICA now is transformed to standard ICA. On the other words,
using equations in (3) and (4), we can construct a standard ICA
expression with (m + 1) = n observations and (m +1) = n
original sources. The standard ICA algorithms can be used
now.

Denote y to be the estimation of original sources s, most
ICA learning algorithms are derived from heuristic consider-
ations of a performance function. ICA and maximization of
likelihood lead to the loss function as following:

L(y, W) = —log|det(W)| = > logpi(y:). (10)
=1

To compute the gradient of the loss function L, the total
differential dL of L is derived when W is changed from W to
W + dW, which is

L
dL = L(y,W+dW) — L(y,W) = a—dU)ij. (11)
i 8w¢j
This leads to the following stochastic gradient learning algo-
rithm for ICA [8]:

W(t+1) = W(t) + ()T —o(y@®)y" OIW().  (12)

where W is the demixing matrix and the estimation result y =
Wx includes all the real original sources. In our algorithm, if
we know the number of the noisy sources, we can include the
noisy sources to be its components. The eventual W will be
used to recover all the original sources. The equilibrium point
of the update equation (12) satisfies

E[l—¢ly®)y" ()] =0. (13)
B. Convergence Analysis for the Algorithm

After we obtain the missing observations for the overcom-
plete ICA, we can use (12) to estimate their original sources.
To guarantee the local convergence of the update equation (12),
the continuous time version of the algorithm is considered.
Using the expected version of the learning equation, it has

W(t) = n(t) B ol ()" (H)]W(). (14)

To obtain the equilibrium point, Amari in [8] suggested the
following terms for the stability conditions:

o = Ely}l, (15)
ki = Elgi(yi)l, (16)
mi = Elyl¢i(y)). (17)

In equation (5), As we mentioned before, the noise components
can be considered as part of the source signals, and the ICA
estimation of this model will obtain all the original sources.
Thus the noisy ICA can be solved as overcomplete ICA. The
stability conditions (15)-(17) for this model will also include
the real sources and noise. In most cases, the independent
sources may have different types of distributions. Applying
these terms to the estimated [ variables, we have the following
new terms:

of = Enj], (18)
ki = Elgi(n)), (19)
m; = Enio(n)). (20)

The stable equilibrium of the learning algorithm for the sep-
aration solution needs to add the other [ sources. For each of
the pairwise sources i, j(i # j), the conditions of the stability
are developed as

Elyi¢i(y:)] +1> 0, 1)
Elpi(y:)] > 0, (22)
E[WEWE[p:(y:)]El¢; (y;)] — 1 >0, (23)

and for each of the pairwise sources {,m(l # m) and the
pairwise sources [, 4, it has

En2oi(n)] +1>0, (24)

E[@l (nl)] > 0, (25)

E[nf1E[n2)E[p1(m)] Elpm(nm)] — 1> 0, (26)
E[n{]E[y;]E[21(m)]E[i(yi)] —1 > 0. 27)

The generalized Gaussian distribution is given by
o o
—(lyil/B)
e ; (28)
261(3)

where 0 < o < 2, and o < 2, the model is for supper-Gaussian
distribution, o = 2 for Gaussian and « > 2 for sub-Gaussian.
The derivation of p(y;) is

p(yi) =

sign(y;) (M)(y—l @

s s 26T ()
Under this assumption, the negative score function ;(y;) can
be approximated as [13]:

p(yi) = o eyl /8)™ (29)

3.
=
S
<
D

. a
- = sign(yi) 5z v Y (30)

oo Uy ez, (31)

P(yi) = g

According to the computation in [13], for the generalized gaus-
sian distribution signals, we have the following expressions for



the stability conditions:

Eli¢i(yi)] +1=a>0, (32)
Ma(a—1I(&2)

Elgi(yi)] = ) e’ >0, (33)
ala — 3 a—1
EWE[pi(y:)] — 1 = ( 1%5((3))” =) 1>0. (34)

Since we assume that the distributions for the variables are
generalized gaussian, these conditions are suitable for all
the original and noisy estimations. If all the variables are
nongaussian, from (32)-(34), we obtain the stability conditions
(21)-(27). The only problem is where a variable is gaussian, it
has

a—1
«

ala — 1)F(%)F(

r2(3)
This means if there are two more gaussian signals for sep-
aration (including noisy signals), condition (34) cannot be
satisfied, in other words, ICA doesn’t work. In this situation
we cannot guarantee the stability. However, if the [ variables
are gaussian, we knew that ICA just cannot separate these
gaussian variables from each other, but this is not a problem
for our solution. Since the real original sources we wanted are
not gaussian, we can estimate all the nongaussian components
correctly. The estimates for the gaussian noise will be arbitrary
linear combinations of these noise components, and we will
just leave them there.

)

En{1E[gi(n)] — 1 = -1=0, (35)

C. Estimate the Original Sources

For the given observations of overcomplete ICA, assume
the total number of original signals is known and the
number of observed signals m is less than the number of
the original signals n. Using the image space reconstruction
algorithm in equation (8), the observation Xy signals are
reconstructed. Now we can obtain the estimations of the
missing observations. We have the following general steps for
the proposed overcomplete ICA algorithm:

Step 1: For the given observations x, = (1, %2, ..., Tm)s
start the image space reconstruction algorithm (equation (8))
to compute mixing matrix A for the initial estimations of the
n original sources AZXO =8 = (51,82, ..., 5n);

Step 2: Determine the distribution for all components in
the original source vector s and predict the n-m observations
Xm = (Tmt1s Tm2, ..., Tn) Using equation (4);

Step 3: Put the predictions in step 2 and the given observa-
tions together to form n observations. Choose ICA algorithm
(12) to estimate the n component vector 8 = (1, S2, ..., Sn)
which will be the eventual estimations of the original sources.

IV. SIMULATIONS

To test the efficiency of the proposed overcomplete ICA
algorithm, we employ a group of the speech signals for the
simulation. All the original signals in the experiment are
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Fig. 2. The Observed Signals

considered as Laplacian model in the experiment. Figure 1 is
the three original speech signals generated from The ICALAB
Package: for Signal Processing[16]. These three signals are
mixed with a 3x3 random mixing matrix. We can choose any
two of these mixed signals as the observations. Fig 2 is the two
mixed signals of the three original signals. Using the image
space reconstruction algorithm and the regression ICA, those
two mixtures are first utilized to estimate the third observation.
Then by employing the ICA algorithm in (12) with equivalent
numbers of mixtures and original sources, these three mix-
tures are used to estimate the original signals. Fig 3 is the
reordered estimations of the original signals. It is clearly, the
simulation shows good quality for the algorithm. Of course,
the separations critically depends on the predictions generated
by the mixtures in figure 2 and the probability distributions
of the original sources. Similar to other overcomplete ICA
algorithms, the eventual estimations here still have some noise.
For this algorithm, the limitation is, comparing to the total
number of the originals, the number of the missed observations
is small, and also, the distributions for all the original signals
should be identical, otherwise, this algorithm may be hard to
predict the missing observations for different distributions.

V. CONCLUSION

In the situation of that the number of observations of mix-
tures is less than the original signals, by employing regression
ICA algorithm and the image space reconstruction algorithm,
a new overcomplete ICA algorithm can achieve very good
estimations of the original sources. For the new algorithm, it
particularly depends on the prediction accuracy in regression
ICA. If we have previous knowledge about the distributions of
the original signals, we can estimate the n-m unknown mixed
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Fig. 3. The Estimated Signals

signals for the overcomplete ICA, and then the overcomplete
ICA can be transformed into standard ICA. Comparing with
standard ICA, most currently overcomplete ICA algorithms
can not separate mixtures as good as Standard ICA did since
we don’t have enough observations. The advantages of this
algorithm are, for some particular signals, if their distributions
are all identical, the computation is simple and the estimations
have very good results. One of the most important results is
if the predication of x,, is accurate, then our new algorithm
can estimate the original sources with very high quality. The
simulation result in Figure 3 shows that the estimations of
the original sources are not exactly the permutation of the
original sources and they still have some noise in the estimated
results. This indicates that currently the overcomplete ICA
algorithm can not achieve the best estimations. How to make
the overcomplete ICA have more efficient estimations is one
of the most interesting topics which needs to discuss further.
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