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Abstract— This paper proposes a novel optimization 

algorithm called Cellular Probabilistic Optimization Algorithms 
(CPOA) based on the probabilistic representation of solutions for 
real coded problems. In place of binary integers, the basic unit of 
information here is a probability density function. This 
probabilistic coding allows superposition of states for a more 
efficient algorithm. This probabilistic representation enables the 
algorithm to climb the hills in the search space. Furthermore, the 
cellular structure of the proposed algorithm aims to provide an 
appropriate tradeoff between exploitation and exploration. The 
proposed algorithm is tested on several numeric benchmark 
function optimization problems. Experimental results show that 
the performance of CPEA is improved when compared with 
other evolutionary algorithms like Particle Swarm Optimization 
(PSO) and Genetic Algorithms (GA). Furthermore, this 
improvement becomes particularly more significant for problems 
with higher dimension. 

Keywords— Evolutionary Algorithms, Probabilistic 
Evolutionary Algorithms, Optimization. 

I. INTRODUCTION 
Preserving diversity in population is a well known approach 

for improving the performance of evolutionary algorithms. A 
diversity maintaining mutation is proposed in [1] to improve 
the performance of GA. A fuzzy controller for adjusting 
crossover rate and mutation rate is proposed in [2] that 
maintain the diversity in the population. For solving a closed-
loop time optimal path planning problem, [3] uses a multi-
objective diversity controlled genetic algorithm. Reference [4] 
uses a chaotic mutation in genetic algorithm for training 
artificial neural networks. The chaotic mutation is very efficient 
for maintaining the population diversity during the 
evolutionary process of GA. 

Reference [5] presents a genetic algorithm with population 
diversity handling to maximize user satisfaction during 
composition of web services. An improved multi-objective 
diversity control oriented genetic algorithm which is 
chromosome representation independent is proposed in [6].  
For the optimization of frequency response masking FIR digital 
filters over the double base number system multiplier 
coefficient space, [7] presents a novel diversity controlled 
genetic algorithm. In another work In order to overcome 
premature convergence in GA, [8] proposes a novel adaptive 
genetic algorithm with adaptive crossover probability based on 
diversity maintaining. An especial population selection policy 
is proposed in [9] based on the combination of population 

diversity handling and simulated annealing that enhance the 
convergence of genetic algorithm. Diversity based fuzzy 
adaptive search method for parallel GA is proposed in [10] to 
improve the performance of GA. For decreasing the 
computation complexity of GA, [11] uses a small population 
for GA. In order to improve the diversity in small populations 
they reinitialize the converged individuals. 

The diversity of the population is also effective on the 
performance of other population based optimization algorithms 
such as the particle swarm optimization (PSO) as reported in 
[12]. In [13] a novel PSO is proposed that reinitializes the 
particles with poorer fitness to maintain the diversity in the 
population. Another approach for maintaining diversity in the 
population is using quantum particles. Reference [14] proposes 
a method of controlling the diversity in quantum behaved PSO 
to enable the particles to escape the sub optima more easily. 

Quantum Evolutionary Algorithm (QEA) is an approach in 
which chromosomes are coded after quantum states of 
electrons in a probabilistic fashion. The resulting architecture is 
highly suitable to preserve diversity, i.e. each chromosome 
consists of m Q-bits that is equivalent to 2m states. In quantum 
informatics, the basic carrier of information is not a bit but a 
quantum system with two states such as in an atom, an ion or a 
photon with two polarized directions, or the Q-bit. A Q-bit is in 
a linear superposition state and is used to specify the 
amplitudes of two states.  In [15, 16] quantum-inspired 
evolutionary algorithms are investigated for a class of 
combinatorial optimization problems in which quantum 
rotation gates act as update operators. This quantum rotation 
gate is also used in a novel parallel quantum GA for 
hierarchical ring model and infinite impulse response (IIR) 
digital filter design [17]. Reference [18] proposes quantum 
evolutionary algorithm for multi-objective optimization and 
quantum rotation gate. 

While the above algorithms have reported good success in 
application of QEA and its variants on several problems, this 
paradigm is inherently defined for problems with binary 
representation. For real coded problems, the problem in real 
domain must first be mapped to a binary coding before 
optimization by QEA. This approximation can introduce 
undesirable limitations and errors for QEA on real coded 
problems.  

The advantage of QEA is in the superposition of its states, 
i.e. each quantum chromosome can represent any superposition 
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of states simultaneously. This characteristic increases the 
diversity of the population and improves the exploration of the 
algorithm without loss of exploitation. Imitating the concept of 
superposition of states, this paper proposes a novel 
optimization algorithm for real coded problems that, similar to 
QEA, has a probabilistic structure that aims to take advantage 
of superposition of states. Furthermore, a cellular interaction 
architecture is proposed that promotes local 
interaction/leadership for better exploitation/exploration of 
local neighborhoods. 

The reminder of this paper is organized as follows. In 
Section II, the proposed cellular probabilistic optimization 
algorithm (CPOA) is explained. In Section III the best 
parameters for the proposed algorithm is found. The 
experimental results are discussed in Section IV, and finally we 
conclude the proposed algorithm in Section V. 

II. THE  PROPOSED CELLULAR PROBABILISTIC 
OPTIMIZATION ALGORITHM 

The advantage of QEA is the superposition of states i.e. 
each quantum individual can represent any superposition of 
states simultaneously. But QEA is suitable only for the binary 
coded problems, and for the problems with real parameters this 
algorithm may not work well due to approximation error during 
binary-real conversions. This paper proposes a probabilistic 
optimization algorithm for real coded problems that, similar to 
QEA, has a probabilistic representation. 

A. Representation 
In evolutionary algorithms to date, the representation of 

solutions onto individuals can be classified as: binary, numeric, 
symbolic and recently Q-bit. The proposed Probabilistic 
Optimization Algorithm uses a new probabilistic representation 
for solutions called P-value. This representation aims to 
preserve better diversity. A P-value individual is a string of P-
values. A P-value is defined as: 
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Where µ is the mean and σ is the standard deviation of a 
Gaussian probability density function. The value of µ is in the 
range of ul ≤≤ µ where l and u are the lower and the upper 
bounds of the search space, respectively. A P-value individual 
is defined as a string of P-values: 
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Where k=1,2,…,m. And m is the dimension of the search 
space. This probabilistic representation makes the diversity of 
the population higher than in other non-probabilistic 
representations and hence each individual is able to represent 
all of values of the entire search space simultaneously. 

B. Cellular POA 
Cellular POA is a structured evolutionary algorithm in which 
the individuals are located in a lattice like environment and 
each individual interacts only with its neighbors. In CPOA, the 
connections among neighbors helps the algorithm to exploit 

possible solutions of the algorithm, and the overlapped small 
neighborhoods help the algorithm to explore the search space 
because the induced slow diffusion of solutions through the 
population provides a kind of exploration [23]. So the 
importance of cellular structure for CPOA is that the fitness 
and genotype diversity in the population is preserved for a 
long number of generations. The structure of the CPOA which 
is used in this paper is shown in Fig. 1. 

The pseudo code of CPOA is considered as: 
Procedure CPOA 
begin 
       t=0 

1. initialize P(0) in a cellular structure. 
2. make X(0) by observing the values of 

P(0). 
3. evaluate X(0). 
4. for all real solutions xij

0 in X(0) do 
begin 

5. find Nij in X(0). 
6. select real-valued solution x with 

best fitness in Nij and store it in 
Bij 

end 
7. while not termination condition do 

begin 
t=t+1 

8. make X(t) by observing the values of 
P(t-1) 

9. evaluate X(t) 
10. update P(t) based on Bij and X(t) 

using update operator. 
11. for all real solutions xij

t in X(t) do 
begin 

12. find Nij in X(t). 
13. select possible solution x with 

best fitness in Nij. 
14. if x is fitter than Bij save x in Bij. 
15. if R(0,1)<rµ reinitialize µij

t
  randomly. 

16. if R(0,1)<rσ reinitialize σij
t
  randomly. 

end 
end 

end 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  The structure of the Cellular CPOA for a lattice with the size 
of S 
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CPOA has a cellular population of the probabilistic 
individuals. The population of probabilistic individuals is 
represented as: 

{ }SjiptP t
ij ,...,2,1,|)( ==  

 Where t is generation number and S is the size of lattice-
like population. The probabilistic individual’s pij

t are defined 
as: 
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Where m is the number of P-values in the probabilistic 
individual, i.e., the string length of the P-valued individuals, 
i,j=1,2,…,S, S is the size of lattice-like population, i,j shows the 
location of the q-individual in the lattice-like population and t 
is the generation number of the evolution. 

The procedure of CPOA is described as follows: 

1. In the initialization step we set: 
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for i,j=1,2,…,S and k=1,2,…,m. Where S is the size of 
lattice-like population, m is the size of probabilistic 
individual i.e. the dimension of search space, lk, uk are the 
lower bound and the upper bound of k-th dimension of 
search space and a is a constant number. 

2. In the observe step in iteration 0, the real valued solutions 
},...2,1,|{)0( 0 SjixX ij ==  are made by observing the 

probabilistic individuals },...,2,1,|{)0( 0 SjipP ij == . The real 
valued individual xij

0 is a possible solution for the problem. 
The observing operation is performed as: 

),( ,,,
t

kij
t

kij
t
kij Gx σµ=′                                                       (3) 









′≤
<′<′

≤′
=+

t
kijkk

k
t

kijk
t

kij

k
t

kijk
t

kij

xuu
uxlx

lxl
x

,

,,

,
1

,  

Where G(.,.) is a Gaussian random number generator. Here 
each real valued individual xij

t is a string of real values 
which is a possible solution for the real coded problem. 

3. In this step all the real valued individual’s xij
0 are evaluated 

with fitness function. 

4. In this step the “for” loop is run for all real solutions xij
0. 

5. The neighbors of real solution xij
0 are found and stored in 

Nij. 

Suppose that the size of lattice is S and the probabilistic 
individual located at (i,j) is represented as pij (i,j=1,2,…,S). The 
neighbors of the individual pij are then defined as: 

{ }ijjijijijiij pppppN ,,,, ′′′′′′=  

Where: 
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Figure 2.  Parameter setting for CPOA, GA and PSO for Generalized Rastrigin's Function. a) The parameters of CPOA for a and η are set to a1…a5=( 0,0.01,0.1,1,2,5), η1…η5= ( 
0.995,0.99,0.98,0.95,0.9). b) The parameters of CPOA for δ and η are set to δ1…δ5=( 0,0.01,0.1,1,2,5), η1…η5= ( 0.995,0.99,0.98,0.95,0.9). c) The parameters of CPOA for rµ and rσ are 

set to δ1…δ5=( 0,0.01,0.1,1,2,5), η1…η5= ( 0.995,0.99,0.98,0.95,0.9). d) The mutation rate and crossover rate of GA is  m1…m6=(0.001,0.002,0.004,0.008,0.016,0.02), c1 … c6=( 
0.1,0.2,0.4,0.6,0.8,1). e) The parameters of PSO is set to c1…c6=( 0.002,0.005,0.01,0.05,0.1,0.4) and w1…w6=(0.2,0.5,1,1.2,1.5,2). All results are averaged over 50 runs. 
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6. The best real solution x in Nij is found and stored to Bij. 

7. The algorithm runs until termination condition is satisfied. 
Termination condition here is when maximum number of 
iterations is reached. 

8. In this step real valued individuals X(t) are made by 
observing the probabilistic individuals P(t-1). 

9. The real solutions are evaluated by fitness function. 

10. In this step P(t) is updated based on the values of B(t) and 
X(t). The update operator is performed as: 
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for i,j=1,2,…,S and k=1,2,…,m. Where R(.,.) is a uniform 
random number generator, 0<η<1 and δ is considered as 
Table. I.  

11. In this step the “for” loop is running for all real solutions 
xij

t. 

12. The neighbors of real solutions xij
t are found and stored in 

Nij. 

13. The best real solution x in Nij is found. 

14. If x is fitter than Bij store it to Bij. 

15,16. In CPOA we consider the reinitialization operator for 
exploring the search space. In these two steps if reinitialization 
condition is satisfied we reinitialize the µij

t and/or σij
t. 

The probabilistic representation of the CPOA enables it to 
climb the hills in the search space. Suppose that a probabilistic 
individual pij

t is located around a local optimum in the search 
space. According to the probabilistic representation of the 
individuals, an observation of the pij

t makes a possible solution 
xij

t near the probabilistic individual pij
t. If the observed 

individual xij
t has an inferior situation than Bij it is ignored; on 

the other hand if it has a better situation than Bij, the Bij is 
changed to xij

t. After this changing, the probabilistic individual 

pij
t moves gradually to Bij. This process continues until the 

probabilistic individual reaches the local optimum. This 
characteristic of CPOA makes each probabilistic individual 
able to perform a local random search in the search space, it 
means that the observation and updating operators have the 
roles of exploration of the search space; on the other hand, the 
restrictive connectivity between the individuals in the cellular 
structured population performs a global search on the search 
space. The cellular structure of CPOA joint to the 
reinitialization operator, make CPOA a powerful algorithm for 
exploring the search space. So in the proposed algorithm, the 
observing operator in conjunction with updating operator have 
the exploitation role, and the restrictive connectivity and re-
initialization operators have the exploration role. 

III. PARAMETER SETTING 
For evaluating the proposed algorithm CPOA is compared 

with PSO and GA. In CPOA, GA and PSO there are some 
parameters that must be found. For comparing these algorithms 
at first the best parameters for these algorithms are found. This 
Section tries to find the best parameters for these algorithms. 

In this paper the PSO algorithm is considered as [19]: 
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Where c1 and c2 are two positive constants, R(.,.) is a 
uniform random number generator, w is the inertia weight, 
pbestt

i is the best position which particle i has achieved, gbestt is 
the best particle position which the overall swarm has achieved 
and t is the iteration number of the algorithm. 

There are some parameters in CPOA, PSO and GA that 
must be tuned; they are crossover rate and mutation rate in GA, 
c1, c2 and w in PSO and a, δ, η and reinitialization probability 
in CPOA. For finding these parameters 14 numeric benchmark 
functions are used (see appendix A). It is obvious that the best 
parameters for each algorithm are problem dependent, so this 
paper finds the best parameters for each benchmark function 
independently. 

The mutation in GA is considered as: for each allele of each 
chromosome, mutate the allele with probability of mutation. 

TABLE I.  LOOKUP TABLE OF µ∆ . )(xf  IS THE FITNESS OF REAL 

SOLUTION t
ijx AND )(bf IS THE FITNESS OF ijB  

kijx , > kijB ,  )()( bfxf ≥  µ∆  

False  False  δ  

False  True  - δ  

True  False  - δ  

True  True  δ  

TABLE II.  THE BEST PARAMETERS FOR GA, PSO AND CPOA 

 GA PSO CPOA 
 m c c1,c2 w a δ η rµ rσ 

Schwefel 2.26 0.004 1 0.1 1 1 0.02 0.098 0.002 0.002 

Rastrigin 0.004 1 0.01 0.2 0.1 0.005 0.095 0.002 0.002 

Ackley 0.008 1 0.05 0.2 0.1 0.005 0.995 0.002 0.002 

Griewank 0.004 1 0.01 0.2 0.1 0.005 0.99 0.002 0.002 

Penalized 1 0.004 1 0.005 0.5 0.01 0.005 0.095 0.02 0.002 

Penalized 2 0.004 1 0.01 0.2 0.1 0.005 0.995 0.002 0.002 

Michalewicz 0.004 1 0.4 0.5 0.1 0.002 0.98 0.002 0.002 

Goldberg 0.004 1 0.005 0.5 1 0.005 0.99 0.002 0.002 

Sphere Model 0.004 1 0.01 0.2 1 0.005 0.98 0.002 0.002 

Schwefel 2.22 0.004 1 0.005 0.5 0.1 0.005 0.995 0.002 0.002 

Schwefel 2.21 0.008 0.8 0.01 0.5 0.1 0.01 0.995 0.002 0.002 

Dejong 0.008 0.1 0.005 0.5 0.1 0.005 0.995 0.002 0.002 

Rosenbrock 0.004 1 0.005 0.2 0.1 0.005 0.99 0.002 0.002 

Kennedy 0.008 0.1 0.005 1 2 0.005 0.9 0.002 0.002 



         

The changing operation is performed as changing the value of 
allele to a random number between the lower and the upper 
bound of the search space. The pseudo code of mutation 
operator is considered as: 
Procedure mutation 
begin 
1. for all individuals xt

i in Xt do 
2. for all alleles xt

i,k in xt
i do 

3. if R(0,1)<mutation rate 
4. xt

i,k=R(lk,uk) 
end 
Where R(.,.) is a uniform random number generator, xt

i,k is 
k-th allele of i-th individual in the population in generation t 
and lk  and uk are the lower bound and the upper bound of the 
search space respectively. 

Fig. 2 shows the parameter setting of CPOA, GA and PSO 
for Generalized Rastrigin's Function. In this figure the 
horizontal axis is the parameters of the algorithm and the 
vertical axis is the best results averaged over 50 runs. Table II 
summarizes the best parameter setting for the 14 benchmark 
functions. The method of finding the best parameters for the 
algorithms for all benchmark functions is the same as Fig 2. 
We use a three stage process for finding the best parameters for 
CPOA. At first we determine the best parameters for a and η by 
considering constant numbers of δ=0.005 and rµ and rσ equal to 
zero. After finding the best values for a and η we determine the 

best parameters for δ and η by considering a equal to the best 
parameter found in the first stage and rµ and rσ equal to zero. 
And finally in the third stage we determine the best parameters 
for rµ and rσ. In this stage we consider the constant values for a, 
δ and η that are equal to the best parameters found in previous 
stages. 

IV. EXPERIMENTAL RESULTS 
In this paper the dimension of the problems is set to m=100, 

250, 500 and 1000. The population size for all of the 
experiments is set to 25, and maximum generation termination 
condition is used. All results are averaged over 50 runs. The 
parameters of the algorithms (a, δ, η and reinitialization 
probability for CPOA, mutation rate and crossover rate for GA 
and c1, c2 and w in PSO) are considered as the best values that 
are found in Section III. The structure of QEA is considered as 
the structure proposed in [15]. 

Table III summarizes the experimental results of CPOA, 
GA and PSO for m=100, 250, 500 and 1000 for 14 benchmark 
functions. As indicated by all of the benchmark functions, the 
proposed algorithm consistently has a better performance than 
PSO. The functions which are discussed are proposed for 
minimization and have a global minimum with some local 
minima. Because the algorithms are designed for 
maximization, we redefine them to maximize –f(x). As it seems 
in most of benchmark functions the performance of CPOA is 

TABLE III. EXPERIMENTAL RESULTS OF THE FOURTEEN NUMERICAL FUNCTION OPTIMIZATION PROBLEMS. THE NUMBER OF RUNS WAS 50. MEAN AND STD 
REPRESENT THE MEAN BEST STANDARD DEVIATION OF 50 RUNS RESPECTIVELY 

 100=m  
 CPOA GA PSO QEA 
  MEAN STD MEAN STD MEAN STD MEAN STD 

Schwefel 4.52×104 
4.12
×10

3 

3.90×1
04 

4.99
×10

2 

9.74×1
03 

1.47
×10

3 

3.39×1
04 

2.80
×10

3 

Rastrigin -92.93 13.2
8 

-
136.68 

12.0
9 

-
822.30 

42.4
5 

-
2.05×1

03 

2.62
×10

2 

Ackley 0.51 0.11 -5.25 0.40 -8.69 0.47 -
17.245 0.11 

Griewank 0.73 0.02 -0.36 0.06 -1.00 0.17 -39.39 6.64 

Penalized 1 61.87 5.20 33.74 27.1
4 

-
671.41 

653.
10 

-
1.70×1

05 

2.37
×10

3 

Penalized 2 -13.43 3.95 -
192.87 

35.6
6 

-
523.10 

125.
36 

-
3.94×1

04 

4.69
×10

3 
Michalewicz 18.71 2.00 78.02 2.03 13.78 1.94 22.58 2.63 

Goldberg 91.64 1.38 92.57 0.54 57 2.09 39.43 3.37 

Sphere Model  -3.73×101 2.63 
-

3.99×1
03 

4.21
×10

2 

-
1.07×1

04 

1.74
×10

3 

-
4.65×1

05 

5.66
×10

3 

Schwefel 2.22 -5.98×10-2 
5.45
×10-

3 

-
3.19×1

0-1 

2.41
×10-

2 

-
8.26×1

0-1 

7.09
×10-

2 
-5.072 0.47 

Schwefel 2.21 -6.63 0.75 -53.65 3.11 -26.30 3.89 -
176.04 5.18 

Dejong 1.37×101 5.52 
-

1.20×1
04 

4.85
×10

3 

-
1.37×1

04 

5.40
×10

3 

-
2.83×1

07 

5.88
×10

6 

Rosenbrock -9.94×101 0.49 
-

7.11×1
02 

1.04
×10

2 

-
6.01×1

02 

8.97
×10

1 

-
1.03×1

05 

2.5×
104 

Kennedy -1.15×10-5 
1.04
×10-

7 

-
1.30×1

0-1 

1.88
×10-

2 

-
1.20×1

01 
3.85 -1.96 1.44 

 
 250=m  
 CPOA GA PSO QEA 



         

better than GA, except in Michalewicz Function. Also the 
performance of CPOA in all problems is better than PSO. The 
performance of the CPOA shows that the convergence speed of 
this algorithm on the problems with small numbers of local 
optima is very high. This is because the probabilistic 
representation of the algorithm performs a local random search 
on the local optima. The proposed algorithm has a better 
performance than QEA because QEA is designed for binary 
coded problems [15].  

V. CONCLUSION 
The proposed Probabilistic Evolutionary Algorithms, 

similar to Quantum EA, aim to increase population diversity by 
their probabilistic nature; but unlike QEA, PEAs are applicable 
to the real-coded problems. Furthermore, the cellular 
architecture promotes better exploitation of local 
neighborhoods and avoids premature convergence. The 
proposed approach shows superior performance when applied 
to 14 benchmark problems and compared with GA and PSO. 
There are some open questions in this algorithm, such as the 
optimum (δ, η and reinitialization probability) parameters for 
CPOA. It is obvious that the optimality of the parameters is 
problem dependent, but what are the optimal parameters for a 
specific problem? Second is if the algorithm remains superior 
in other real coded problems such as training neural network 
and fuzzy systems. 

APPENDIX 
There are some benchmark numerical functions for testing 

the optimization algorithms. Here we used 14 benchmark 
functions for testing the algorithms: 

Generalized Schwefel's Problem 2.26 [21], Generalized 
Rastrigin's Function [21], Ackley's function [21], Generalized 
Griewank Function [21], Generalized Penalized Function 1 
[21], Generalized Penalized Function 2 [21], Michalewicz 
Function [20], Goldberg & Richardson Function [22], Sphere 
Model [21], Schwefel's Problem 2.22 [21], Schwefel's Problem 
2.21 [21], Dejong Function 4 [20], Rosenbrock Function [22], 
and Kennedy multimodal function generator [22]. 

These functions have some local minima and a global 
minimum. Since they are used for maximization, –f(x) is used 
as fitness value. 
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