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Abstract － For a Parallel Kinematic Machine (PKM), 
encoders may be used to measure the relative change in length of 
the strut but they cannot detect any deformation of the strut due 
to thermal expansion and load. To obtain this type of data 
displacement should be directly measured for each strut. The use 
of inertial sensors provides a possible solution for the PKM strut 
length measurement. However, due to the dynamic 
characteristics of an inertial system and the effect of the machine 
tool environment, the inertial data contained bias error, 
misalignment and wide band random noise, and thus resulted in 
system position inaccuracy. In this paper, an inertial sensor based 
dynamic measurement system is introduced. Errors contained in 
the measurement system are analysed. To suppress the residual 
error which causing drifting error in position due to double 
integration process, an external measurement is used to estimate 
the system state variables through Kalman Filter data fusion. 
Results from these data processing methods applied are 
presented and analysed. 

Keywords－ Inertial sensors, Parallel Kinematic Machine 
(PKM), Dynamic measurement, Signal processing, Kalman 
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I． INTRODUCTION 
Inertial sensors are normally used in inertial navigation 

systems to provide vehicle guidance information. Inertial 
measurement involves measuring vehicle accelerations using 
accelerometers and angular velocity using gyroscopes. The 
main feature of inertial navigation systems (INS) is that they 
do not rely on the transmission or reception of external signals 
apart from the sensing of the physical motion of the vehicle. 
The self-contained, non-jammable, and autonomous properties 
make inertial systems particularly suitable for military 
navigation applications [1-3]. Today inertial navigation 
systems are used in all types of commercial and military 
aircraft, ships, tanks, submarines, missiles of all sizes, and 
space vehicle boosters [4].  

In recent years, inertial sensors have been adopted for 
industrial robot applications and machine tool calibration [5, 
6]. Accurately measuring of the position and orientation of a 
robot end-effector is the most critical issue for calibrating of 
robotic devices. Current robot system use the methods of 
theodolites, laser interferometers, vision systems, and 

coordinate measuring machines to acquire these 
measurements. These techniques require a large number of 
end-effector measurements and they are either too slow or 
overly expensive or both [7]. Furthermore, all of these 
systems impinge on the work envelope and thus make difficult, 
if not prohibit, their on-line use[8]. The Variax machine at the 
University of Nottingham, made by Giddings and Lewis Ltd, 
is such an example shown in Figure1(a). The Variax is a 
Parallel Kinematic Machine (PKM) which has the advantage 
of being more rigid, more agile and more accurate than that of 
traditional (serial link) machine tool structures [9-12]. Due to 
the use of the expensive laser interferometer for each parallel 
strut, the Variax machine can achieve about 12~14μm 
dynamic position accuracy [13]. Bur for the Tricept® TR600 
shown in Fig.1(b), a hybrid parallel/serial structure robot, a 
prevalent encoder measurement device was used for each strut 
measurement. From data test results [14], the linear position 
error of the Tricept robot is about 0.62mm over a machine 
travel of 400mm, and this error is scalable over distance. 
Under certain circumstance, the Tricept robot has severe 
cutting deflection and could reach ±2.5mm. The main reason 
is that an encoder can only measure motor shaft or ball screw 
rotation when it is mounted on either the motor shaft or on the 
ball screw and convert to the relative change in length. It 
cannot measure any deformation of the structure caused by 
mechanical effects such as backlash, wear and thermal 
expansion.  These errors in strut length measurement will be 
propagated to the pose of the PKM TCP (Tool Centre Point) 
through a forward kinematic model and result in a decrease of 
positional accuracy. 

Since the accuracy of a machine tool solution is generally 
far higher than the required of a pure navigation system, high-
grade inertial sensors are normally adopted to satisfy the high 
demand. Despite the advantages of an inertial measurement 
system, the high cost seriously limits the practical applications 
in the area if industrial robots and machine tools. However, 
the newly developed solid-state inertial sensors provide the 
possibility for these applications due to their advantages of 
being small size, low-cost, and self-contained [15-19]. In this 
work, a low-cost, solid-state inertial sensor was used for the 
dynamic position measurement of a PKM machine. The 
objectives are to investigate the application feasibility of an 
inertial system and develop a new approach to improve PKM 



strut length measurement by installing inertial sensors (an 
accelerometer and a gyroscope) to each strut (shown in Fig. 2), 
instead of use of the expensive laser interferometers.   

 

 

 

 

 

 

  

 

    
Fig. 1 Structures of two typical PKMs with different strut length 

measurement methods: Variax using laser interferometers and Tricept using 
encoders 
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Fig. 2  Accelerometer and gyroscope mounted on each strut to measure 

the increment of strut length 

In this paper, a low-cost inertial dynamical positioning 
system is introduced and evaluated. The system was 
implemented on the parallel kinematic machine (PKM) strut 
to provide the linear position measurement of the machine. 
Section II describes the inertial dynamic positioning system 
including the PKM strut measurement structure and the 
experimental setting. Section III performs the inertial system 
error analysis. In Section IV, an external measurement 
correction method through Kalman filtering is presented and 
some experimental results are shown and compared. Section 
V gives the evaluation and conclusions. 

II． AN INERTIAL DYNAMIC MEASUREMENT 
SYSTEM 

In order to investigate the feasibility and to understand the 
performance of inertial sensors applied for a PKM strut 
measurement, a simplified PKM strut rig was used as our 
experimental platform shown in Fig.3. In this work, a 8304B2 
accelerometer was mounted on the strut and used to measure 
the strut movement. The change of the strut length can be 
obtained through a double numerical integration process. The 
proposed system comprised several modules: inertial 
measurement module, encoder measurement module and 
PKM strut motion module. For the inertial measurement 
module, it consists of a DC capacitive accelerometer, a 16-bit 
DAQ card, an amplifier or power supply to trim out offset of 

the accelerometer, and a 68-pin connection box. As the 
external measurement of the inertial system used in the 
Kalman filter, the encoder measurements (position or velocity) 
on PKM-Strut test bed were obtained through a Heidenhain 
lK121 counting card, which splits and output the motion 
signal. The PKM strut motion is controlled through the 
NextMove WorkBench software and the controller [20]. A 
Renishaw laser interferometer is used in the system to provide 
the reference position for the proposed inertial measurement 
system.  

 

III． SYSTEM ERROR ANALYSIS 
In an inertial measurement system, measurement errors are 

generally due to mechanical imperfections in the sensors and 
electrical imperfections in the associated instrumentation. 
These errors were categorized into three types: inertial sensor 
errors, misalignment error and computational process errors. 
Based on the system error analysis and determination, the 
measurement signal ( Mxa ) from an accelerometer may be 
expressed in terms of an applied acceleration and measured 
error items as follows:   
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where Rxa represents the real acceleration applied in the 
direction of the sensing axis; Mxa  represents the measured 
acceleration; sfK  is the scale factor of the accelerometer, or 
sensitivity; ya and za are the accelerations applied 
perpendicular to the sensitive axis; yS and zS  represents the 
cross-coupling factors; ab is zero bias error (or offset error); 

SFe  is scale factor error caused by temperature's change; gxe  
represents the misalignment error in initial position; w  
represents random noise. 

In this work, the experimental work is carried out on a 
one-axis movement (x-axis), so the Equation (1) can be 
simplified as 
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Fig. 3 Experimental setup for the PKM strut length measurement 

system 

a) Variax Machine b) Tricept TR600 
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Among these errors, the accelerometer bias error, the scale 
factor error and the misalignment error are predictable items 
and thus can be compensated for. If using a symbol to 

represent these predictable error items gxSFa
sf

p eeb
K

a ++=
1δ , 

we can get:  
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The incremental velocity and position can then be 
obtained by integrating Equations (3): 
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where, RxV and RxP represents the real velocity and position 
along the direction of the sensing x-axis; MxV and MxP  
represents the measured velocity and position along x-axis; 

∫wdt  and ∫∫wdt is the once and twice integral to the random 
error.  

From Equations (3) to (5), the term of paδ  causes error in 
velocity growing linearly with time, and causes error in 
position growing quadratically with time. Errors in 
acceleration are amplified through integration process and 
cause an offset in the derived velocity and a drifting error in 
the position. Therefore, it is important for the inertial system 
to compensate for acceleration errors and thus curb errors 
increasing in the velocity and position.  

For the random error item, it contains noise and vibration 
changeable to the dynamic environment, and also involves 
variations in bias and scale factor due to temperature’s change. 
These random errors appeared in a wide-band range, 
overlapped with the signal of interest and cannot be easily 
compensated for. Through the double integration used in the 
inertial position system the random error portion ∫∫wdt  in 
Equations(5) will cause a growing error term known as 
Random Walk [3]. This integration process deteriorated the 
inertial position accuracy since the signal of the strut motion 
is in a low frequency range and is contaminated with noise. 
Fig.4 presents the Random Walk results from a series of zero-
g signals after the predictable errors compensated, the random 
errors show a non-deterministic behaviour in the derived 
position data.  

 

 

 

 

IV． EXTERNAL MEASUREMENT CORRECTION 
As we know that errors in the sensed measurement are 

processed in the same algorithms as the error-free component 
of the sensor output. Even a slight offset error can cause large 
position error which building up over time. Therefore error 
reduction and correction methods must be developed to 
minimise error effects and improve system accuracy. Fig.5 
shows the inertial measurement system error components and 
the corresponding error reduction methods applied.   
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Fig. 5  Inertial system error components and corresponding error reduction 

To reduce the residual errors in the inertial system, it is 
necessary to employ an external measurement to periodically 
correct the time-dependent inertial error. Kalman filter is 
therefore adopted in this paper to eliminate the error growth 
with time. In the linear position system, the system state 
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vector x contains position error, velocity error and 
acceleration error variables:  

[ ]Tavp xxx=x                                            (6) 

So the system model can be stated as: 
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where: px —linear position error; vx —linear velocity error; 

ax —linear acceleration error. When the movement is not 
along a horizontal direction, the accelerometer measurement 
will be influenced by gravity; T—sampling interval; w(k) —
input white noise with zero mean and known covariance 
matrix )(kQ . The process noise variance )(kQ  can be 
expressed as[1]: 
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where σ represents the standard error of the measured 
accelerometer data；t is the time interval of the Kalman filter. 

Since the encoder measurement is used to get the strut 
length, the measurement model can be easily established to 
relate with the state vector of the inertial system. The 
measurement model can be expressed as:  
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where, )(kz —position measurement from an encoder ；
H(k)—an identity transition matrix; v(k) —additive 
measurement white noise with zero mean and known 
covariance matrix )(kR . )(kR  depends on the accuracy of the 
measurements. If the measurement has an accuracy of 0.01m, 
then the value can be set 22)01.0( mRk = . 

In the KF algorithm, the initial conditions ( 0x , 0P ) and 
noise variance ( )0(Q , )0(R ) need to be initialised to 
implement the Kalman filtering recursive algorithm. The 
initial covariance matrix 0P  describe the uncertainty in x  
before the measurement, that is, 

011P is the initial mean square 
error in the knowledge of position px , 

022P is the initial mean 

square error in the knowledge of velocity vx , 
033P is the initial 

mean square error in knowledge of acceleration ax . The 
)(, jiPij ≠  measure the corresponding cross-correlation, and 

are supposed to be zero. The initial covariance matrix is given 
in the form of  
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The )(kR  matrix is defined based upon the accuracy of the 
external measurements. When the external measurements are 
accurate, the variance R can be tuned to a small value, so the 
result will be closer to the measurement than one with a large 
R.  In this application, the encoder has a line count 500 ppr in 
the PKM-Strut system, and the ratio of the belt transmission is 
3:1, the ball screw pitch is 5mm, so the positional accuracy of 
the encoder measurement is 0.003mm. Therefore, the initial 
value of )0(R can be set to )(003.0 22 mm . For the measured 
accelerometer data, the standard deviation σ  is about 

2/3.0 sm  for the PKM-Strut measurement. So the variance 
was initially selected as 422 /)30.0()0( smQ = . Based upon 
the system model, the measurement model, and the initial 
conditions, the Kalman filter recursive algorithm was 
implemented in Matlab 6.0 software. 

• Position estimate 

Through a suitable adjustment and tuning in the Kalman filter, 
the estimated position in a single run is shown in Fig.6 for a 
300mm PKM-Strut movement. Through the external 
measurement 

 
fused by the Kalman filtering algorithm, the estimated STD 
position error was reduced from 40 to 0.15mm when raw 
inertial data was used, and from 16 to 0.12mm when the pre-
corrected inertial data was used. With the pre-corrected 
inertial data used in the Kalman filtering, the positional 
accuracy was further improved by 20% of the accuracy of the 
raw inertial data used in the filter.  

• Velocity estimate 

In a Kalman filtering application, it is an important 
process to choose or tune the model noise covariance matrix 
Q and the measurement noise covariance matrix R. Fig.7 
shows the three velocity profiles when the Q is set to a 1002, 
12 and 0.012 values. Therefore, tuning is a delicate adjustment 
of both the Q and R matrices. When the parameters are 
properly tuned, the velocity estimate from the Kalman filter 
integration system can contain useful dynamic information to 
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Fig.6 Inertial position from raw data, estimated position by Kalman filter 

and reference position by laser interferometer



the controller, which an encoder measurement device failed to 
measure. 

For a large gain, due to a highly confident measurement, 
the covariance will diminish, which reflects the confidence 
supplied by that measurement. The main characteristics of the 
gain matrix are determined by the ratio of Q/R. A large Q will 
imply an inaccurate inertial system model. During the 
prediction stage the uncertainty in the inertial data will grow 
according to the amount of noise injected. When an external 
fix does occur, there is a greater possibility the inertial data 
will be corrected using the first available fix irrespective of 
the accuracy of this fix. A small R value will imply accurate 
external measurements and result in the inertial data closely 
following this external measurement fix. If the external 
measurements have high uncertainty and hence are noisy, then 
the corrected inertial data will also be noisy.  

 

 

 

 

 

 

 

 

 

 

V． EVALUATION AND CONCLUSION 
To effectively suppress inertial error growth, an external 

measurement has to be used to periodically update the inertial 
error. The Kalman filtering was therefore designed in this 
paper to update the inertial error through the integration of the 
inertial and encoder measurements for the linear movement. 
As a result, the Inertial/Encoder integration system corrected 
most of the inertial errors and improved the inertial 
positioning accuracy by 99% for the measurement. If the pre-
corrected inertial data is used in the Kalman filter, the 
positional accuracy was improved to 0.12mm, a further 20% 
improvement of the accuracy for the 300mm movement was 
achieved.   

Obviously, the proposed low-cost inertial positioning 
system at present cannot be expected to achieve as high 
dynamic accuracy as the Variax machine where expensive 
laser interferometers are used for each strut length 
measurement. But considering the achievable dynamic 
positional accuracy from the accelerometer-based 
measurement system and the advantage of being small size, 
low-cost, and self-contained, the inertial dynamic 
measurement system is a possible solution for the parallel 
kinematic machine to improve its dynamic positional accuracy.  
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Fig.7 Velocity estimate determined by Kalman filter tuning 


