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Abstract—Non conventional imaging sensors have
been intensively investigate in recent works. Research
is conducted to design devices capable to provide
panoramic views with no need of mozaicing process.
These devices combine optical lenses and/or non planar
reflective surface with standard pinhole camera. We
present in this paper an analysis of pixels rearranged
sensor adapted to distortions induced by mirrors. Par-
ticularly, we aim to identify photosites distributions
that compensate the non constant resolution for a given
reflective surface. Our analysis is applied to a wide set of
commonly used reflective surfaces in panoramic vision.
Synthetic datas are produced in order to substantiate
the geometric properties since such sensors do not exist
yet.

I. Introduction

Standard vision sensors provide almost constant spatial
resolution image such that a wide range of linear oper-
ators can be applied for signal processing. Scene objects
and their projections on image plane are linked only by
the Thales relation, hence metrics of the scene can be
computed. Straight lines are projected as straight lines on
image plane and the projections are equiareal if distances
to the sensor are constant.
If one is familiar with the perspective camera image for-
mation, it is less trivial to apprehend sensor models that
are intensively studied for their panoramic property. Non
linear devices are used to enlarge the field of view : non
planar reflective surfaces and/or wide angle lenses that
do not comply with Gauss condition. The trade-off of the
broadened field of view is the non linearity of the imaged
signals. Resulting projections are aphylactic. The measures
performed on images are highly complexified and most of
the traditional image processing operators are no more
appliable.
Intensive works are carried out on the design of omnidi-
rectionnal vision imaging sytems and on their signal inter-
pretation. Distortions induced by lenses or reflection from
mirrors are described as ”deviation” from the perspective
model and a metric to quantify them is introduced [1].
Reducing distortions may be non relevent especially when
one does not need to synthetized correct prespective views.
Many omnidirectional researches aim to design vision sys-
tems that possess only some specific geometric charac-
teristics. This is specially true for mirror based systems

and often, the concerned property is the spatial resolution
preservation. Different constraint can be fixed for this
purpose depending on how one interprets the meaning
of ”constant resolution”. However, any of the proposed
solution compute the mirror shape with differential meth-
ods [2], [3], [4], [5], [6]. Often an equi-areal sensor is also
preserving angular resolution in the sense that two equal
solide angles are mapped to equal surfaces on the image
plane, but this is not always true. All proposed solutions
to these problems are mirror shape design oriented, hence
catadioptric sensor design is mainly a matter of mirror
conception.
One other alternative to the problem it to focuse the
analysis to the image plane. Because standard photosen-
sitive sensors are coupled to a non linear device, the first
reaction is to reshape the mirror (or the lens). Now, what if
one can rearranged the photosites on the ccd/cmos sensor
in order to fit it to the mapping? We explore here a
generic method to determine how the photosensitive device
should be designed, assuming the mirror shape is fixed,
in order to fullfill a given imaging property. Commonly
manufactured ccd/cmos sensors are designed as linear
arrays, where photosites are regularly spaced. Up to our
knowledge, there is no photosensitive sensor designed for
distorsions compensation. However we can underline the
existence of previous works on foveal sensors [7], [8]. These
photosensors have their photocells rearranged like a retina,
that is the resolution is decreasing from its center to its
border. Though they are the only space variant resolution
ccd/cmos sensors, they do not suit our purpose. However
theses results give some proof of feasibility to our approach
especially concerning the implementation part.
Our contribution is described in the context of catadioptric
systems. The 2th section exposes the formalization of the
problem for general case and for cases implying most
commonly used mirror. The 3th section gives detailed
calculus for commonly used mirror. In the 4th section, we
synthetize the pixels arrangement for the area (respectively
angular) preserving photosensor. Results and comments
are discussed as conclusion in the last section.
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II. Formalization

A catadioptric sensor image formation is decomposed
into two projections : a projection to a reflective surface
followed by the projection to the focus plane. The main
constraints we fixe for our work are the following : the
mirror in use is a smooth surface with a revolution axis
aligned with the optical axis of the camera. The first
constraint is almost implicite since commonly used mirror
is designed this way. If these requirements are satisfied, one
can examine the projection by only considering the mirror
profile i.e. intersection of the mirror and a plane containing
the optical axis (see figure 1 for a generic scheme).
We examine here two kind of pixels rearrangement that
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Fig. 1. Left figure : reflection sampling by standard ccd (regularly
spaced pixels). The photocells projected to the mirror define non
constant length arcs Ck for a given mirror shape. Right figure :
arbitrarily sampled mirror surface. Rays intersections with the image
plane define a new pixels rearrangement.

are fundamentaly different and both can achieve interest-
ing image properties. The first solution aims to affect a
same quantity of pixels to image surfaces that have same
area on the mirror, we refer to it as the “aeral” solution.
The second solution is angular resolution preserving as we
mentioned in the introduction, it is refered as the“angular”
solution.

A. Aeral solution

1) Radial sampling: A standard ccd sensor has
regularly spaced pixels, arranged in rows and columns but
one can see that the samples back projected to the mirror
define non equal length arcs hence same area surfaces
is not being projected into same area surfaces on image
plane. Conversly if we constraint the mirror to be sampled
into constant length arcs, their projections produce a non
regularly spaced pixels set.
We define ccd sensors with adapted pixels arrangement
according to the observations. The mirror is first sampled
into constant length curves, then the samples are
perspectively projected to image plane. As the figure 2
shows, their coordinates along the x-axis (i.e. the xk) set
the photocells arrangement up to a scale.

For a better comprehension of the problem formaliza-
tion, we introduce the following definitions (with figure 2
as illustration) :
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Fig. 2. The mirror is segmented into equal length arcs Ck. Each
Ck is bounded by sk and sk+1. If sk is the arc length of the kthe
sample, then xk is the cartesian coordinate along the x-axis of the
point associated to sk

• Let M(s) be the arc length parametrization of the
mirror profile.

• M is segmented into n curves of fixed length L0. We
note sk the arc length of each sample. Ck is the kth
arc and its length is Lk =

∫ sk+1

sk
ds = L0.

• Since ds =
√

dx2 + dy2, we can write as a function of
x :

Lk =
∫ xk+1

xk

√
1 + f(x)dx (1)

assuming f = dy
dx and xk = x(sk).

• If F is set as a primitive of
√

1 + f(x), we have Lk =
F (xk+1)−F (xk) = L0. Thus, one can see that F (xk) is
the generic term of an arithmetic sequence satisfying
:

F (xk) = kL0 ⇒ F (xk)
L0

= k (2)

If equation(2) has solution, we can compute the xk

for k taking value in N. The set {xk} gives the pixels
arrangement up to a scale since the plane defined by y = 0
is parallel to the focus plane. This arrangement guarantees
that arcs along radial direction are equivalently mapped.

2) Azimuthal sampling: So far, we have analysed a
method to reaffect the photosites radially according to our
areal constraint. We have now to examine the rearrange-
ment problem along directions orthogonal to the radial
one i.e. the azimuthal directions (defined from the rota-
tion along the optical axis). Obviously, constant angular
sampling is not suitable for the purpose. We rather fix
the sampling rule as follows : the number of pixels used
to image circles centered at the optical axis should be
proportionnal to their perimeters. Hence each arc of length
ds is imaged by n pixels and pixels size is constant in
azimuthal directions (figure 3).

B. Angular solution
1) Radial sampling: Early used mirror shapes are de-

signed with easy-to-handle geometric properties, especially
the one preserving a unique center of projection. In the
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Fig. 3. The mirror is sampled azimuthally since the catadioptric
device has an axis of revolution. In order to comply with the areal
constraint, arcs of circles centered to the optical axis of same length
ds are imaged by a same number of pixels n.

cases of catadioptric sensors, this consists to insure that
the projection to the mirror has a unique center and that
center is mapped to the camera’s one. Only a small class of
mirrors is able to satisfy this preservation [9], such mirrors
are conics of revolution with the pinhole camera coaxially
placed on one of their foci.
These configurations are said single viewpoint constrained
and one can easily apprehend the constant angular resolu-
tion property with them. However this turns to be much
harder to define when the imaging device has no more
a unique center of projection. Light rays incident to the
mirror are not converging in a single point, they follow
paths that are tangent to a virtual surface that is known
as the caustic. This surface depends only on the position
of the light source and on the mirror geometry. Now, if
we consider the ccd sensor as the light source, the caustic
can be estimated if both the relative position between the
mirror and the camera and the shape of the mirror are
known. Readers should refer to [10], [11] to determine the
analytic equation of this surface. However, if no analytic
solution is available (for whatever the reason), numeric
estimation is still available via method described in [12].
Figure 4 shows a mirror profile and its caustic C with
respect to the camera position. Each point on the mirror
is mapped to only one element of the caustic, hence a
sampling of it is mapped to a sampling of the mirror.
Incident rays to M are tangent to C then we sample
C such that the angle defined by the tangents of two
consecutive samples remains constant. This gives us the
radial rearrangement by projecting the sampling of the
mirror to the image plane.

2) Azimuthal sampling: Since we have to insure con-
stant angular resolution and given the fact that we set the
whole system with an axis of revolution, it will be sufficient
to sample the mirror with a constant angle interval. The
number of allocated pixels is then proportionnal to the
angular section (see figure 5).
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Fig. 4. Left figure shows the most general case where incident rays
are tangent to the caustic surface. We can determine how pixels
sould be placed in order to satisfy the constant angular resolution by
sampling the caustic such that the angle α defined by the tangents
associated to two consecutive samples are constant. Right figure
shows a special case where the caustic is reduced to a point : the
catadioptric device has a single viewpoint. The same method is still
appliable, but there is an easier solution. We set a unit sphere centered
on the viewpoint then it is sampled with a constant angular sampling.
We trace lines that pass through the center and through each sample.
The intersections of these lines with the mirror give the solution.

θ

Fig. 5. A constant angular sampling will satisfy the equi-angular
property, thus the number of pixels along azymuthal directions are
directly proportionnal to the angular section θ.

III. Photosites arrangement for commonly used
mirror

The systems that have a unique center of projection
are intensively used and designed, thus the most
commonly used mirror are conics of revolution. The pixels
arrangements for these configurations are analysed and we
focuse only on the radial sampling since our hypotheses
imply that the optical axis is also the revolution axis, the
azimuthal sampling is the same for each case.
We also give here analytic formulation only for the
areal solution. The angular solution will be computed
numerically according to section II, since C has often a
non easy to handle equation.

A. Parabola mirror

This kind of profile is widely used because the unicity
of the center of projection is preserved if the mirror
focus is placed at infinity. This is realised by inserting an
orthographic lens between the ccd sensor and the mirror.
If the mirror axis is set as the y-axis, its profile has the
generic form :

y = ax2 + c



According to previous statements (equation 1), the arc
length measured between xk and xk+1 is given as :

Lk =
∫ xk+1

xk

√
1 + 4a2x2dx.

After rearrangement and simplification, a primitive F of√
1 + 4a2x2 is :

F (xk) =
1
4a

(
2axk

√
1 + 4a2x2

k + ln
(

2axk +
√

1 + 4a2x2
k

))
Equation (2) gives xk as fonction of k, we solve it numer-
ically for k ∈ N. Figure 6 shows as exemple the mirror
profile sampling for fixed L0 and parameters a and c.
The projection of the samples on the x-axis is the pixels
arrangement i.e. the set of xk.

Fig. 6. Constant length arc segmentation of a parabola mirror profile
(red curve). Parameters are fixed a = 1, c = 0 and L0 = 0.2. Mirror
samples are marked by blue circles and the xk is marked by red circles.
The length of the projection of each arc decreases as k increases.

B. Hyperbola mirror

Mirror with hyperbola profile is also widely used in
panoramic imaging. The single projection center is insured
if the camera is placed at one of the mirror foci. Under
similar assumptions stated above, the mirror profile generic
forme is:

x2

a2
− (y − y0)2

b2
= 1

Thus, if we consider only the upper half of the curve :

y = y0 + |b|
√

x2

a2
− 1

However for the hyperbola curve, the primitive F (xk)
can only be numerically computed because of the elliptic
nature of Lk. Expressing xk with regard to k becomes much
more complexe.

C. Spherical mirror

The Mirror with circle profile does not comply with the
unique center of projection constraint unless the camera
is placed into the center of the mirror. Such configuration
is not relevant for omnivision purpose as the camera will
see the inside of sphere. We give a detailed explanation
here for both areal and angular solutions. This will give
a concrete exemple of the method that one can apply for
the two previous mirror.

Fig. 7. Circle is sample into same length arcs. For spherical mirror,
the sampling can be done without computing the integral since the
measured lengths are proportionnal to the angle of the sector defined
by two consecutive samples and xk = r cos(θk) if θk is the angle
measured between the kth sample and the y-axis.

1) Areal solution: With the optical axis set as the y-
axis, the profile has the generic form :

y = a−
√

r2 − x2

The sphere of radius r is centered at [0, a]t. This equation
gives only its lower half as we assume the camera is placed
below the mirror. Equation(1) becomes :

Lk =
∫ xk+1

xk

r√
r2 − x2

dx

and

F (xk) = r arctan

(
xk√

r2 − x2
k

)

For this profile, equation (2) has explicit analytic solution
:

xk =

√
r2 tan2

(
kL0

r

)
1 + tan2

(
kL0

r

)
Negative solutions are symetrics of the positive ones since
the y-axis acts as the optical axis. Figure 7 shows the mir-
ror sampling. Distances between xk decrease as k increases.



2) Angular solution: The analytic parametrization of
the caustic C(x) is determined by applying the definition
given in [10]. The tangent vectors can then be extracted
from it : T (x) = Ċ

|Ċ| . Then we choose an angular sampling
interval α and an arbitrary first sample (for example
the bottom of the mirror). The other samples are then
determined iteratively such that the angle formed by the
tangent of the current sample and the tangent of the next
one is equal to α.
The set of samples on the mirror is finally projected to

Fig. 8. It is equivalent to sample the caustic C (top curve) or the
mirror M (quarter circle) and the equi-angular preservation can be
achieved if we chose the points on C such that the angle α defined by
the corresponding tangents of two consecutive samples are constant
(red lines).

the image plane, producing the pattern that photosites
have to satisfy. Figure 8 illustrates the whole operation
for a spherical mirror of unit radius facing a the CCD
camera placed at it bottom.

The Azimuthal sampling is not specific to the mirror
shape providing the whole system has a symetry axis,
which is the case according the hypotheses. For both areal
and angular problems, we sample the mirror according to
the methods presented in section II.
For any given mirror profile, we can see that the deter-
mination of a correct pixels arrangement is equivalent to
”rectify” a smooth curve, in the sense of measuring the
length of an arc. This approach does not distinguish be-
tween central (i.e. single center preserving) or non central
imaging system.

IV. Simulation for the spherical mirror

In this section we simulate the photocells rearrangement
for both areal and angular solutions. The synthetic images
are produced in order to show how pixels size change along
radial and azimuthal directions. We assume that the mirror
is spherical and its axis is aligned with the camera’s one.

The choice of this configuration is due to the isotropic
geometry of the sphere that makes the alignement easier.
For the areal sampling, we have segmented the mirror
profile into 11 arcs of same length, and each circle is also
segmented into arcs of same length ds, choosen arbitrarily
(here 1

96 th of the greatest circle). The samplings in both
radial and azimuthal directions is the mapped to the image
plane, thus this gives the photocells arrangement. The
figure 9 reproduces it. Each (almost) square represents a
pixel and as one can see, the farer we are from the center,
the higher is the pixel density. The angular sampling

Fig. 9. This figure shows how photocells have to be placed and
shaped in order to image fairly (i.e. with same number of pixel) any
parts of the mirror that have equal area and of course that is visible
to the camera.

is easier to reproduce because of the constant angular
sampling. For the radial part, we segment the mirror profile
via the caustic with the value of α set arbitrarily (here
α = π

18 rad = 10 degree). Finally the azimuthal sampling
is performed with a constant angle of π

46 . The figure 10
shows of to place and shape the photocells. Each square
represents such a cell and one can see how its size change
with respect to its position. The pixel density change less
quickly than the previous case.

Fig. 10. The figure shows how to place and shpae the pixel in order
to affect the same quantity of pixels to equal solide angles. One can
see that the cells are thinner in the radial direction near the center.
They become squares in the middle and thin back (perpendicularly)
at the border.



V. Conclusion

Previous works on catadioptric views are only focused
on mirror design to manufacture omnidrectionnal systems
imbued with specific geometric properties. However no
works are proposed to study the ccd/cmos sensors that can
provide equivalent solutions. As an exemple of what can
one do with pixel arrangement, we present a photosensor
rearrangement that allocates the same numbers of pixels
for a same area surface on the mirror. We also present the
solution to get a constant angular projection in the sense
of a fair pixel allocation for equal solid angles.
Through the examples, we can see that the hardest part of
the problem is to sample correctly the mirror profile. This
problem is equivalent “rectify” smooth curves, in the sense
of measuring the length of an arc. This approach does not
distinguish central (i.e. single viewpoint) configurations
from the non central ones, hence we can apply it providing
the hypotheses are fulfilled. We have to underline the
major drawback for these systems : the pixel arrangement
is set for only one position of the photosensor relatively
to the mirror. If the camera’s pose relatively to the mirror
is shifted because of chocs or some non stable mechanism,
the imaging property is lost.
Finally, simulation results are presently scarce because
such systems do not exist. We got only the method to place
and shape the pixels, measures through synthetic datas
should be produced in order to confirm the efficiency of
the proposed approach in futur work.
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