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Abstract—The paper studies a class of formation control
problem, i.e. the controllability for multi-agent systems. The
contribution includes several necessary and/or sufficient condi-
tions for the controllability under multiple leaders and switching
topology. The results are not only necessary and/or sufficient,
but also indicate to a certain degree how the controllability
be impacted by the evolvement of the corresponding dynamic
networks and the switched interconnection topologies.

Index Terms—Multi-agent systems, controllability, switched
systems, graph theory.

I. INTRODUCTION

Distributed coordination of networks of dynamic agents has
attracted a great deal of attention in recent years[1]-[10]. This
is partly due to broad applications of multi-agent systems
in, e.g. the cooperative control of unmanned aerial vehicles,
and technology improvements allowing smaller, more versatile
robots and other types of agents.

The controllability problem was put forward for the first
time for multi-agent systems by Tanner in [5], and then
developed in [6], [7], [8], [9], [10]. The problem is on how
the interconnected systems can be steered to specific positions
by regulating the motion of a single system that plays the
role of the group leader. This is what the so-called the
group can be controlled. This requires the characterization of
conditions under which the leaders can move the followers
into any desired position or configuration [6]. That is, to derive
conditions for a group of systems interconnected via nearest
neighbor rules, to be controllable by one of them acting as a
leader [5].

It is essentially a kind of formation control problem. The
problem is transformed to a classical notion of controllability
in [5] with respect to a fixed interconnection topology and a
switched controllability problem in [9], [10] with respect to a
switching topology. One of the features for the controllability
problem studied in [5], [9], [10] is that the leader is assumed
unidirectional, i.e. the leader’s neighbors still obey the inter-
connection nearest neighbor rules, but the leader is indifferent,
and is free to pick any agent. Accordingly the leader does not
participate in the typical configuration updates, and merely acts
as an external control signals. The leader is not affected by the
members whereas each member is influenced by the leader and
the other members.

Central to the investigation of formation control is the nature
of interconnection topologies. Some preliminary results on for-

mation control were derived with respect to the fixed topology,
which is a necessary step toward the more realistic dynamic
setting. For example, in addition to [3], [7], the feasibility
problem of achieving a specified geometric formation of a
group of unicycles was investigated in [4], where necessary
and sufficient graphical conditions for the existence of local
information controller to assure the asymptotic convergence
of the closed system were derived. Our goal is to consider the
formation control, which is reformulated as the controllability
problem in this paper, where the dynamics are influenced
by switching topologies and leaders. The first result is an
algebraic characterization of controllability. The disadvantage
of the result is that it does not provide any insights on the
impact of dynamic/switching topologies to the controllability.
The second result then tries to make up for this shortfall, which
shows that the controllability of multi-agent systems comes
down to the constructively design of a dynamic evolvement
pattern for the topologies of the corresponding dynamic net-
works. The results are helpful to a further understanding of the
relationship between the formation control and the dynamic
evolution of interconnection networks.

II. GRAPH THEORY PRELIMINARIES

Some notions in graph theory are recalled in this section.
An undirected graph G consists of a vertex set V =

{1, 2, · · · , N + 1} and an edge set E = {(i, j) : i, j ∈ V},
where an edge is an unordered pair of distinct vertices of V.
Two vertices i and j are neighbors if (i, j) ∈ E , and the
neighboring relation is indicated with j ∼ i. In this case we
say that j is a neighbor of i. The number of neighbors of each
vertex is its valency or degree. A path i0i1 · · · is is a finite
sequence of nodes such that ik−1 ∼ ik, k = 1, · · · , s, and a
graph G is connected if there is a path between any pair of
distinct nodes. The adjacency matrix A(G) of G is an |V|×|V|
matrix of whose ijth entry is 1 if (i, j) is one of G’s edges
and 0 if it is not. Any undirected graph can be represented
by its adjacency matrix, A(G), which is a symmetric matrix
with 0-1 elements. The valency matrix �(G) of a graph G is
a diagonal matrix with rows and columns indexed by V, in
which the (i, j)-entry is the valency of vertex i.

The incidence matrix In(G) of G is an |V| × |E| matrix,
with one row for each node and one column for each edge.
Suppose edge e = (i, j). Then column e of In(G) is zero
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except for the i-th and j-th entries, which are +1 and −1,
respectively. The Laplacian matrix L(G) of a graph G, where
G = (V, E) is an undirected, unweighted graph without graph
loops (i, i) or multiple edges from one node to another, is an
|V|× |V| symmetric matrix with one row and column for each
node defined by

L(G)i,j =


di, if i = j (number of incident edges)

−1, if i �= j and ∃ edge (i, j)
0, otherwise.

Given a graph G, its associated matrices In(G) and L(G) have
the following properties: (a) L(G) is always symmetric and
positive semidefinite; (b) zero is always a eigenvalue of L(G)
with 1n, the vector of ones, being the associated eigenvector,
and the algebraic multiplicity of the zero eigenvalue is equal
to the number of connected components in the graph; (c)
In(G)(In(G))T = L(G), and L(G) = �(G) −A(G).

III. PROBLEM FORMULATION AND MAIN RESULTS

Consider a multi-agent system consisting of N + nl agents
with simple, first order dynamics:

M :

{
ẋi = ui, i = 1, . . . , N

ẋN+j = uN+j , j = 1, . . . , nl

(1)

where xN+j are leaders. The dimension of xi could be
arbitrary, as long as it is the same for all agents. For the
simplicity of presentation, we will analyze only for the one-
dimensional case. The analysis is valid for any dimension n,
with the difference being that expressions should be rewritten
in terms of Kronecker products. Once the linkages between
agents are known, an interconnection graph can be defined to
describe the interconnection network.

Definition 1. [5] The interconnection graph, G = {V, E}, is
being defined as an undirected graph consisting of :

• a set of nodes, V = {v1, . . . , vN , vN+1, . . . , vN+nl
},

indexed by the agents in the group, and
• a set of edges, E = {(ni, nj) ∈ V × V|ni ∼ nj},

containing unordered pairs of nodes that correspond to
interconnected agents.

Interconnections come true through the input ui

ui = −
∑
j∈Ni

(xi − xj), i = 1, · · · , N ; j = 1, · · · , N + nl,

(2)
where Ni = {j | vi ∼ vj ; j �= i} is the set of indices of
the agents that are interconnected to vi, i.e., the neighboring
set of vi. Interconnections with the leader are now assumed
unidirectional: the leader’s neighbors still obey (2), but the
leader is indifferent, and is free to pick uN+j , j = 1, . . . , nl

arbitrarily. With x = (x1, · · · , xN+nl
)T being the stack vector

of all the agent states, we will have

ẋ = −Lx, (3)

where L is the Laplacian matrix of the graph of intercon-
nections. Rename the agents and then the multi-agent system
reads

M :

{
yi

∆= xi, i = 1, . . . , N

zj
∆= xN+j , j = 1, . . . , nl

with y being the stack vector of all yi, z the stack vector of
all zj , and u the stack vector of all uN+j , j = 1, . . . , nl, one
can write the system in the form:[

ẏ
ż

]
= −

[
F R
0 0

] [
y
z

]
+

[
0
u

]
where F is the matrix obtained from L after deleting the last
nl rows and nl columns, and R is the N × nl submatrix
consisting of the first N elements of the deleted columns.
Then the dynamics of the followers that correspond to the y
component of the equation can be extracted as

ẏ = −Fy − Rz. (4)

Remark 1. The selection of leaders xN+j , j = 1, . . . , nl, is
indifferent, and it is free to pick any agents. The subsequent
analysis is effective for any selected leaders.

Definition 2. A follower subgraph Gf of the interconnection
graph is the subgraph induced by the follower set Vf . Simi-
larly, A leader subgraph Gf is the subgraph induced by the
leader set Vl.

Definition 3. The multi-agent system (1) is said to be control-
lable under leaders xN+j , j = 1, . . . , nl, and fixed topology if
system (4) is controllable.

Since the interconnection graph G is time variant, the
dynamic (4) can be viewed more reasonably as a system in
switching networks, which can be written in the form

ẏ = −Fσ(t)y − Rσ(t)z, (5)

where σ(t) : R
+ → M

∆={1, 2, · · · ,M} is the switching
signal/sequence to be designed. Given a switching signal
σ(t) : [t0, tf ] → M , we refer to t0, t1, · · · , ts−1 with
t0 < t1 < · · · < ts−1 as the switching time sequence, and
σ(t0) = i0, σ(t1) = i1, · · · , σ(ts−1) = is−1 as the switching

index sequence. Let hi
∆= ti+1 − ti, i = 0, 1, · · · , s − 1,

and ts
∆= tf . We denote by π

∆={(i0, h0) · · · (is−1, hs−1)} a
switching signal. The length of π is s. Throughout the pa-
per, we denote by L(π) the length of π. To investigate the
controllability under switched dynamic networks and selected
leaders, we give the following definitions.

Definition 4. The multi-agent system (1) is said to be control-
lable under leaders xN+j , j = 1, . . . , nl and switched topology
if system (5) is controllable.

The system (5) is controllable if for any nonzero state y ∈
R

N , there exist a switching sequence π and input z such that
y(0) = y, and y(tf ) = 0. We denote by C the controllable
state set of system (5).



Definition 5. {F1, · · · , FM} is said to be the switching
topology set of system (1).

Since a given σ(t) represents an evolvement of the inter-
connection topology, we give the following definition.

Definition 6. A given switching signal σ(t) is said to be a
dynamic evolvement pattern of the corresponding dynamic
networks of the multi-agent system (1). A dynamic evolve-
ment pattern is said to be periodic, if there is a subset
{j1, · · · , js} of M such that the switching index sequence
is {j1, · · · , js, j1, · · · , js, · · · }; otherwise it is said to be
aperiodic.

The interconnection topology is embodied in Fi. The
switching topology set {F1, · · · , FM} contains all the possible
topology structures. The switching signal σ(t) describes the
dynamic behavior of networks. Naturally, the problem that
how controllability is impacted by the evolution of switching
dynamical networks deserves careful study. In particular, we
will denote ourselves to the study of how to determine σ(t)
so that the interconnection system is controllable.

Definition 7. Assume G1,G2 are two subgraphs induced from
the original graph G. It is said that G1 and G2 are linked if
there is a path between one of the nodes of G1 and one of the
nodes of G2.

We denote by Gc1 , . . . , Gcγ
, the γ connected components

in the follower subgraph Gf . In subsequent arguments, the
following assumption is made.

Assumption 1. The leader subgraph Gl is linked to each of the
connected components Gc1 , . . . , Gcγ

of the follower subgraph
Gf .

It is worth noting that the assumption does not require the
interconnection graph G be connected.Accordingly it is a less
conservative condition than connectedness.

Let L = (aij) be the (N +nl)× (N +nl) Laplacian matrix
of G associated with multi-agent systems (1). Assume that
Li1,...,iη

is such a submatrix obtained by deleting the i1th,. . . ,
iηth rows and i1th,. . . , iηth columns of L, i1, . . . , iη ∈
{1, . . . , N + nl}. The following is required for investigation
of the controllability.

Lemma 1. Under Assumption 1, LN+1,...,N+nl
is a positive

definite N × N matrix.

The proof of this lemma is omitted due to the space
limitation. The readers are referred to [16] for the detailed
proof of this result.

Given a matrix A ∈ R
N×N , and a linear subspace W ⊆

R
N , We denote 〈A|W〉 ∆=

∑N
i=1 Ai−1W. It follows that 〈A|W〉

is a minimum A-invariant subspace that contains W. Given
B ∈ R

N×p, let ImB denote the image space of B. For
notational simplicity, we denote by 〈A|B〉 the 〈A|ImB〉. For

system (5), consider the nested subspace sequence defined by

W1 =
M∑

k=1

〈−Fk| − rk〉 ,Ws+1 =
M∑

k=1

〈−Fk|Ws〉, s = 1, 2, · · ·
(6)

The following result is on the controllability of system (5).

Lemma 2. System (5) is controllable if and only if WN =
R

N .

Proof: The result is a direct consequence of Theorem 1
in [14], or the main result in [15] and [11].

Theorem 1. Consider an interconnected system with nl lead-
ers and switching networks described by (5). Denote Ri =
[r1i, . . . , rnli]. Then z can control the dynamics of all the other
states if the following conditions are satisfied:

1) With respect to each Fi, the eigenvalues of Fi are distinct
from each other, i = 1, · · · ,M.

2) With respect to each Fi, the eigenvectors of Fi are not
orthogonal to rki; k = 1, . . . , nl; i = 1, · · · ,M.

Proof: In order to facilitate the statement, we prove the
result only for the situation N = 3, nl = 2, and M = 2.
The general case can be proved in the same manner. In what
follows, WN will be calculated at first.

Since Fi is symmetric, it can be expressed as

−Fi = −UiDiU
T
i = UiD̂iU

T
i

∆= Hi, i = 1, · · · ,M,

where D̂i
∆=−Di, Ui is an orthogonal matrix. Denote

(−Fi,−Ri)
∆= (Hi, Bi) , one has

〈Hi|Bi〉 =
N∑

j=1

Hj−1
i ImBi = Ui

N∑
j=1

D̂j−1
i ImB̂i,

where B̂i
∆= UT

i Bi. Set D̂i
∆= diag

{
d̂1i, . . . , d̂Ni

}
,

B̂i
∆=

[
b̂i1, b̂i2

]
, and b̂ik

∆=
[
b̂
(1)
ik , . . . , b̂

(N)
ik

]T

, it can be
seen that

〈Hi|Bi〉 = ImΓi (7)

with

Γi
∆=Ui




b̂
(1)
i1 d̂1ib̂

(1)
i1 · · · d̂N−1

1i b̂
(1)
i1

b̂
(2)
i1 d̂2ib̂

(2)
i1 · · · d̂N−1

2i b̂
(2)
i1

...
...

. . .
...

b̂
(N)
i1 d̂Nib̂

(N)
i1 · · · d̂N−1

Ni b̂
(N)
i1

 ,


b̂
(1)
i2 d̂1ib̂

(1)
i2 · · · d̂N−1

1i b̂
(1)
i2

b̂
(2)
i2 d̂2ib̂

(2)
i2 · · · d̂N−1

2i b̂
(2)
i2

...
...

. . .
...

b̂
(N)
i2 d̂Nib̂

(N)
i2 · · · d̂N−1

Ni b̂
(N)
i2




= [Ui, Ui]
[

Λi1

Λi2

] [
Ξi

Ξi

]
,



where

Λik
∆=


b̂
(1)
ik

. . .

b̂
(N)
ik

 ,Ξi
∆=


1 d̂1i · · · d̂N−1

1i

1 d̂2i · · · d̂N−1
2i

...
...

. . .
...

1 d̂Ni · · · d̂N−1
Ni


As a consequence,

W1 = ImΘ1, (8)

where

Θ1
∆= [U1, U1, U2, U2] diag{Λ11,Λ12,Λ21,Λ22}

× diag{Ξ1,Ξ1,Ξ2,Ξ2}.
Next, we consider W2. By definition, it is given by

W2 = 〈H1|W1〉 + 〈H2|W1〉
= 〈H1|B1〉 + 〈H2|B2〉 + H1 〈H2|B2〉 + H2

1 〈H2|B2〉
+ H2 〈H1|B1〉 + H2

2 〈H1|B1〉 . (9)

Let UT
ij

∆= UT
i Uj . Then Uij is an orthogonal matrix since

Ui, Uj are orthogonal matrices. To express W2 further, the
following matrix Θ2 is introduced.

Θ2
∆= [U1, U1 , U2D̂2U

T
21, U2D̂2U

T
21, U2D̂

2
2U

T
21, U2D̂

2
2U

T
21,

U2, U2, U1D̂1U
T
12, U1D̂1U

T
12, U1D̂

2
1U

T
12, U1D̂

2
1U

T
12

]
× diag [Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ21,Λ22,Λ21,

Λ22,Λ21,Λ22]
× diag [Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2]

It follows from (7),(8) and (9) that

W2 = ImΘ2. (10)

Now we are in a position to compute WN = W3. By definition,
one has

W3 = 〈−F1|W2〉 + 〈−F2|W2〉 = 〈H1|W2〉 + 〈H2|W2〉
=W2 + H1W2 + H2

1W2 + H2W2 + H2
2W2

=W2 + H1H2 〈H1|B1〉 + H1H
2
2 〈H1|B1〉

+ H2
1H2 〈H1|B1〉 + H2

1H2
2 〈H1|B1〉

+ H2H1 〈H2|B2〉 + H2H
2
1 〈H2|B2〉 + H2

2H1 〈H2|B2〉
+ H2

2H2
1 〈H2|B2〉 . (11)

To proceed, the following two matrices are defined.

Θ3,1

∆=
[
U1D̂1U

T
12D̂2U12, U1D̂1U

T
12D̂2U12, U1D̂1U

T
12D̂

2
2U12,

U1D̂1U
T
12D̂

2
2U12, U1D̂

2
1U

T
12D̂2U12, U1D̂

2
1U

T
12D̂2U12,

U1D̂
2
1U

T
12D̂

2
2U12, U1D̂

2
1U

T
12D̂

2
2U12

]
× diag {Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ11,Λ12}
× diag {Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1}

and

Θ3,2

∆=
[
U2D̂2U

T
21D̂1U21, U2D̂2U

T
21D̂1U21, U2D̂2U

T
21D̂

2
1U21,

U2D̂2U
T
21D̂

2
1U21, U2D̂

2
2U

T
21D̂1U21, U2D̂

2
2U

T
21D̂1U21,

U2D̂
2
2U

T
21D̂

2
1U21, U2D̂

2
2U

T
21D̂

2
1U21

]
× diag {Λ21,Λ22,Λ21,Λ22,Λ21,Λ22,Λ21,Λ22}
× diag {Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2}

It can be seen from (7) that

ImΘ3,1 =H1H2 〈H1|B1〉 + H1H
2
2 〈H1|B1〉

+ H2
1H2 〈H1|B1〉 + H2

1H2
2 〈H1|B1〉 (12)

and

ImΘ3,2 =H2H1 〈H2|B2〉 + H2H
2
1 〈H2|B2〉

+ H2
2H1 〈H2|B2〉 + H2

2H2
1 〈H2|B2〉 (13)

Combining (10),(11),(12) with (13) yields

W3 = Im [Θ2,Θ3,1,Θ3,2] .

Furthermore, by computation, one has

Θ
∆= [Θ2,Θ3,1,Θ3,2]

= [U1, U1 , U2D̂2U
T
21, U2D̂2U

T
21, U2D̂

2
2U

T
21, U2D̂

2
2U

T
21,

U2, U2, U1D̂1U
T
12, U1D̂1U

T
12, U1D̂

2
1U

T
12, U1D̂

2
1U

T
12,

U1D̂1U
T
12D̂2U12, U1D̂1U

T
12D̂2U12, U1D̂1U

T
12D̂

2
2U12,

U1D̂1U
T
12D̂

2
2U12, U1D̂

2
1U

T
12D̂2U12, U1D̂

2
1U

T
12D̂2U12,

U1D̂
2
1U

T
12D̂

2
2U12, U1D̂

2
1U

T
12D̂

2
2U12, U2D̂2U

T
21D̂1U21,

U2D̂2U
T
21D̂1U21, U2D̂2U

T
21D̂

2
1U21, U2D̂2U

T
21D̂

2
1U21,

U2D̂
2
2U

T
21D̂1U21, U2D̂

2
2U

T
21D̂1U21, U2D̂

2
2U

T
21D̂

2
1U21,

U2D̂
2
2U

T
21D̂

2
1U21

]
× diag {Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ21,Λ22,Λ21,

Λ22,Λ21,Λ22Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,

Λ21,Λ22,Λ21,Λ22,Λ21,Λ22,Λ21,Λ22}
× diag {Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,

Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,

Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2} .

It can be found that

Θ = [U1, U1 , U2, U2, U2, U2, U2, U2, U1, U1, U1, U1, U1, U1,

U1, U1, U1, U1, U1, U1, U2, U2, U2, U2, U2, U2, U2, U2]

× diag
{

I, I, D̂2, D̂2, D̂
2
2, D̂

2
2, I, I, D̂1, D̂1, D̂

2
1, D̂

2
1,

D̂1, D̂1, D̂1, D̂1, D̂
2
1, D̂

2
1, D̂

2
1, D̂

2
1, D̂2, D̂2, D̂2, D̂2,

D̂2
2, D̂

2
2, D̂

2
2, D̂

2
2

}
× diag

{
I, I, UT

21, U
T
21, U

T
21, U

T
21, I, I,UT

12, U
T
12, U

T
12,

UT
12, U

T
12, U

T
12, U

T
12, U

T
12, U

T
12, U

T
12,

UT
12, U

T
12, U

T
21, U

T
21, U

T
21, U

T
21, U

T
21, U

T
21, U

T
21, U

T
21

}
× diag

{
I, I, I, I, I, I, I, I, I, I, I, I, D̂2, D̂2, D̂

2
2, D̂

2
2,



D̂2, D̂2, D̂
2
2, D̂

2
2, D̂1, D̂1, D̂

2
1, D̂

2
1, D̂1, D̂1, D̂

2
1 , D̂2

1

}
× diag {I, I, I, I, I, I, I, I, I, I, I, I, U12, U12, U12,

U12, U12, U12, U12, U12, U21, U21, U21, U21,

U21, U21, U21, U21}
× diag {Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ21,Λ22,Λ21,

Λ22,Λ21,Λ22Λ11,Λ12,Λ11,Λ12,Λ11,Λ12,Λ11,

Λ12,Λ21,Λ22,Λ21,Λ22,Λ21,Λ22,Λ21,Λ22}
× diag {Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,Ξ2,

Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ1,Ξ2,Ξ2,Ξ2,

Ξ2,Ξ2,Ξ2,Ξ2,Ξ2} .

Since Fi, and then D̂i = −Di is nonsingular due to Lemma
1, and both Ui and Uij are orthogonal matrices, one has

rank Θ = N if |Λik| �= 0, and |Ξi| �= 0,

i = 1, . . . , M ; k = 1, . . . , nl. Denote Ui
∆=[u1i, u2i, · · · , uNi],

Ri = [r1i, . . . , rnli]. Then b̂
(j)
ik = −uT

jirki; i = 1, . . . , M ;
k = 1, . . . , nl; j = 1, . . . , N. It follows that

|Λik| �= 0, i = 1, . . . , M ; k = 1, . . . , nl.

⇐⇒b̂
(j)
ik = −uT

jirki �= 0, i = 1, . . . , M ; k = 1, . . . , nl;
j = 1, . . . , N,

⇐⇒For each Fi, the eigenvectors of Fi are not orthogonal

to rki; k = 1, . . . , nl; i = 1, · · · ,M,

and

|Ξi| �= 0, i = 1, · · · ,M,

⇐⇒

∣∣∣∣∣∣∣∣∣
1 d̂1i · · · d̂N−1

1i

1 d̂2i · · · d̂N−1
2i

...
...

. . .
...

1 d̂Ni · · · d̂N−1
Ni

∣∣∣∣∣∣∣∣∣
=

∏
1≤q<p≤N

(
d̂pi − d̂qi

)
�= 0, i = 1, · · · ,M

⇐⇒For each Fi, the eigenvalues of Fi are distinct

from each other, i = 1, · · · ,M.

The above analysis shows that rankΘ = N if Conditions 1,
2 are fulfilled. Since dimWN = N ⇐⇒ rankΘ = N, the
result then follows from Lemma 2. The proof of the general
situation can be conducted in the same way. The difference
consists in the expression of WN , which becomes more and
more complex as the state dimension N and the number of
subsystems M increase.

Although Theorem 1 presents a condition on controllability,
it does not exhibit any information on the evolution of dynamic
interconnection networks. In what follows we will consider
the design of switching signals. To this end, the following
definition is necessary.

Definition 8. Given a dynamic evolvement pattern π =
{(i0, h0) · · · (is−1, hs−1)}, denote tf =

∑s−1
j=0 hj , the control-

lable state set C(π) of π with respect to system (5) is defined

by

C(π) ={y| there exists an input z(t), t ∈ [0, tf ], such that

y(0) = y and y(tf ) = 0}.
Clearly, C =

⋃
∀π C(π). To state the result, we need to

introduce some notations. Let µ = min{k| Wk = Wk+1, k =
1, 2, · · · }, where Wk is the subspace iteratively defined in (6).
It can be seen that µ can be equivalently defined by µ =
min{k| dimWk = dimWk+1, k = 1, 2, · · · }. Denote dk =
dimWk, �1 = d1, �k = dk − dk−1, k = 2, 3, · · · , µ, and
d = dimWN . Obviously, dµ = d, and Wµ = WN . Let ρk =
dim 〈−Fk| − rk〉 , k ∈ M , and β = maxk∈M{ρk}. We have
the following observations.

Lemma 3. The multi-agent system (1) is controllable under
switching topology and the leaders xN+j , j = 1, . . . , nl; if and
only if there exists an aperiodic dynamic evolvement pattern
πb such that the controllable state set of πb, i.e. C(πb) satisfies

C(πb) = R
N .

Moreover the evolvement pattern πb can be constructively
designed with its length, i.e. the number of switchings involved
in πb, satisfying

µ(µ + 1)
2

≤ L(πb) ≤
µ∑

k=1

k�k − β + 1. (14)

Proof: It follows from the Theorem 1 in [12](or the
Theorem 1 in [13]) that for systems (5), there exists a switching
signal πb with its length satisfying (14) such that C(πb) = C,
where C is the controllable subspace of systems (5), namely
the controllable subspace of systems (1) under the leader xN+1

and switching topology. Accordingly, the multi-agent system
(1) is controllable if and only if C(πb) = R

N . Moreover, due
to the proof of the Theorem 1 in [12](or the Theorem 1 in
[13]), the evolvement pattern πb can be designed according to
the following steps:

1) Compute W1, and choose a group of basis vectors
ξ1, · · · , ξd1 for W1. A concrete procedure is as fol-
lows: Firstly, choose a group of basis vectors ξ1,··· ,ξτ1,1

for 〈−F1| − R1〉 . Then expand them to ξ1,··· ,ξτ1,1 ,
ξτ1,1+1,··· ,ξτ2,1 , which form a basis for 〈−F1| − R1〉 +
〈−F2| − R2〉 . Continuing this process, one can find
a basis ξ1, · · · , ξτ1,1 , ξτ1,1+1, · · · , ξτ2,1 , · · · , ξτl1−1,1+1,
· · · , ξτl1,1 for W1, where τl1,1 = d1.

2) The choosing process divides the basis vectors
ξ1, · · · , ξd1 into l1 groups, namely, {ξ1, · · · , ξτ1,1},
{ξτ1,1+1, · · · , ξτ2,1}, · · · , {ξτl1−1,1+1, · · · , ξτl1,1}. With
respect to each group, one can design a switching sig-
nal. Consequently there are totally l1 switching signals
π1,1, · · · , πl1,1 designed for W1.

3) Since W1 ⊂ W2, the basis vectors of W1 can be
expanded to ξ1, · · · , ξd1 , ξd1+1, · · · , ξd2 which form a
basis of W2. Because ξd1+1, · · · , ξd2 belong to W2\W1,
ξd1+1, · · · , ξd2 can be divided into l2 groups of vectors,
namely, {ξd1+1, · · · , ξτ1,2}, {ξτ1,2+1, · · · , ξτ2,2}, · · · ,
{ξτl2−1,2+1, · · · , ξτl2,2}. With respect to each group, one



can design a switching signal. Consequently there are
totally l2 switching signals π1,2, · · · , πl2,2 designed for
W2.

4) Repeating the same process as step 3) for Ws,
s = 3, · · · , µ, one can design ls switching signals
π1,s, · · · , πls,s for Ws. Then, one can set πs = π1,s ∧
· · · ∧ πls,s.

5) Finally, the desired aperiodic dynamic evolvement pat-
tern πb can be designed as follows:

πb = π1 ∧ · · · ∧ πµ

= (π1,1 ∧ · · · ∧ πl1,1) ∧ · · · ∧ (π1,µ ∧ · · · ∧ πlµ,µ).

We refer to [12], [13] for the concrete design process and
expressions of π1,s, · · · , πls,s, s = 1, · · · , µ.

Let πh1,··· ,hM

∆= {(1, h1) · · · (M,hM )} , hi > 0, i =
1, · · · ,M. One has the following result.

Lemma 4. The multi-agent system (1) is controllable under
switching topology and the leaders xN+j , j = 1, . . . , nl; if
and only if there is a periodic dynamic evolvement pattern
π∧d

h1,··· ,hM
such that

C (
π∧d

h1,··· ,hM

)
= R

N .

Proof: The Theorem 2 in [11] shows that
C

(
π∧d

h1,··· ,hM

)
= C. The result then follows from this

fact.
Clearly, the number of switchings involved in π∧d

h1,··· ,hM
is

dM. To sum up, we state the following result.

Theorem 2. The multi-agent system (1) is controllable under
switching topology and the leaders xN+j , j = 1, . . . , nl; if
and only if there is a dynamic evolvement pattern π such that
C(π) = R

N . If π is aperiodic, it can be constructively designed
according to 1)-5) with the number of switchings satisfying
(14). If π is a periodic one, it can be in the form of π∧d

h1,··· ,hM

with the number of switchings not more than dM.

Remark 2. Theorem 2 implies that the dynamic evolvement of
switching networks plays an important role in the formation
control of multi-agent systems. It is shown that not only the
controllability can be characterized by the algebraic condition
in Theorem 1, but also the associated dynamic evolvement
pattern can be constructively designed according to Theorem
2. Note that all the results hold under the Assumption 1, which
is much less conservative the condition of connectedness.

IV. CONCLUSION

In this paper we study the controllability of multi-agent
systems in the framework of leader-follower, in which the
followers are interconnected via nearest neighbor rules, and
the leader takes the role of control input. Necessary and/or
sufficient conditions are derived as well as the dynamic
evolvement patterns are constructively designed for the system
to be controllable. The results show in some sense that the
formation of multi-agent systems could be greatly affected by
the evolution of dynamic interconnection topologies.
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