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 Abstract—Multi-agent based planning techniques have been 
widely applied to various decision-making support applications. 
In this paper, we investigate how to apply multi-agent planning to 
collision avoidance in ship navigation.  We have developed three 
multi-agent-based planning algorithms: the independent 
planning for self-benefit purpose, the centralized planning for 
union-benefit purpose and the negotiation-based planning for 
mutual-benefit purpose. Having introduced collision avoidance 
planning, we present the developed planning algorithm in detail. 
We also report the experiments and some results. The 
experimental results illustrate the feasibility and validity of the 
multi-agent planning for collision avoidance.  
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I.  INTRODUCTION 
 To improve the safety of ship navigation, many research 
efforts have been focused on developing intelligent collision 
avoidance systems such as expert systems and decision-
making support systems [1, 2, 3, 4, 5, 6, 7]. However, few of 
such systems can be applied to a real navigation. The main 
reason is that those systems were developed for making 
decision on collision avoidance for a single ship or own ship 
other than a group of ships. In the real navigation, an effective 
solution of collision avoidance involves the coordination, 
cooperation, and interaction among ships and human 
behaviors. One way to incorporate such coordination or 
interaction among multiple ships into decision-making 
processes is to apply multi-agent techniques to collision 
avoidance. Multi-agent system (MAS) is emerging as an 
important software model for next generation computing 
problems that deal with distributed tasks in dynamic and 
heterogeneous environments and interested in the behavior of 
a set of autonomous agents solving a given problem. Within a 
multi-agent system, agents are able to solve problems either on 
their own requirements or on cooperation among ships. A ship 
navigating at sea can be looked as a rational and intelligent 
agent in MAS-based decision-making support systems, for a 
ship has the characteristics of personality, reactivity, 
adaptability, and autonomy that an agent might have. We have 
developed an MAS-based collision avoidance system for ship 
navigation using MAS techniques [8]. We focused on the 
design and implementation of the system architecture, agent 
BDI structure, and agent communication mechanism. In MAS-
based collision avoidance systems, collision avoidance 
planning is a principle component.   

Planning in collision avoidance is to establish an 

effective and safe ship-handling procedure or plan that is a 
sequence of actions for achieving a collision avoidance goal. 
Multi-agent planning is a useful approach for collision 
avoidance planning. Several techniques are available, 
including distributed planning, centralized planning, plan 
reconciliation, and organizational analysis [9, 10, 11, 12]. We 
have developed three planning algorithms: the independent 
planning for self-benefit purpose, the centralized planning for 
union-benefit purpose and the negotiation-based planning for 
mutual-benefit purpose. These algorithms are developed for 
either a single ship’s planning, or a group of ships’ planning 
on collision avoidance. In this paper, focusing on the multi-
agent planning for collision avoidance, we present the 
developed algorithms and experimental results. 

In Section 2, we describe collision avoidance plans; in 
Section 3, we present the developed multi-agent-based 
planning algorithms and give a brief overview of a multi-agent 
system; in Section 4, we report the experiments and results; 
and the final Section concludes the paper.  

II. COLLISION AVOIDANCE PLAN 

A. The representation of a collision avoidance plan 

 We describe collision avoidance plan as an actual ship-
handling procedure for collision avoidance.  Figure 1 shows a 
typical procedure between two ships (noted as Ship_AgentX). 
This procedure consists of four operation phases: holding, 
collision avoidance acting, returning to original course, and 
returning to scheduled route. In this work, we are focusing on 
the former three phases. To represent such a plan, some 
definitions are given as follows. 

Collision avoidance action begin

Collision avoidance action over 

and return original course begin 

Return original course over 
and return original route begin

 

Ship_Agent1

Ship_Agent2

ActionUnit-Action.O_Time 

ActionUnit-Return.O_Time 

SCA_ActionUnit-Hold.Time 

ActionUnit-Action.O_Size 
ActionUnit-Return.O_Size 

ActionUnit-Action.O_Type 

 
Fig.1 The typical collision avoidance process   

Definition 1, Operation type (noted as O_Type) is 
defined as an operation for collision avoidance. Given an 



encounter situation which is described using the number of 
encounter Ship_Agents (noted as SA_Num), encounter stage 
(noted as E_Stage) and encounter situation (noted as 
E_Situation), an operation type set (noted as Type_Set) for 
collision avoidance, can be denoted as. 

O_Type⊆Type_Set := < SA_Num, E_Stage, E_Situation >  
(1) 

Where, Type_Set = {STANDON, TURN, TURNSTBD, 
TURNPORT, INCSPEED, DECSPEED, STOP}. 

Definition 2, Operation size (noted as O_Size) is defined 
as a range of the course changing or speed changing for a 
Ship_Agent. 

Definition 3, Operation time (noted as O_Time) is 
defined as a period time for taking action for avoiding the 
collision given a risk threshold and the values of O_Type and 
O_Size. We note it as follows: 

O_Time := < O_Type, O_Size, Time satisfied (Risk ∣  
<logic∈Logic_Set>   Threshold) >                    (2) 

Where Logic_Set = {>, <}. 
Definition 4, Action Unit (noted as ActionUnit) is 

defined as a basic operation structure, consisting of O_Type, 
O_Size and O_Time. It is denoted as 

ActionUnit: = < O_Type, O_Size, O_Time>           (3) 
Definition 5, Action Plan (noted as ActionPlan) is 

defined as an operation process which contains a series of 
ActionUnits, i.e. 

ActionPlan := < ActionUnit1∣ActionUnit2∣… 
∣ActionUnitN>                              (4) 

The N is the number of phase in a collision avoidance 
plan. ActionUnit1 is the phase of ship holding (ActionUnit-
Hold). During this phase, a Ship_Agent will keep its original 
course and speed. So, O_Type is set to STANDON; O_Size 
is set to “zero”; and O_Time is set to a unknown numeric 
value. ActionUnit2 is the phase of collision avoidance acting 
(ActionUnit-Action). During this phase, a Ship_Agent will 
change its course or speed to a new one according to O_Type 
and O_Size. ActionUnit3 is the phase of returning original 
course (ActionUnit-Return). During this phase, a Ship_Agent 
will change its course or speed back to the original one. The 
ActionPlan can be represented as Table I. 

TABLE I 
REPRESENTATION OF A COLLISION AVOIDANCE PLAN 

ActionPlan := < 
ActionUnit-Hold.O_Type = STANDON 
ActionUnit-Hold.Size = 0 
ActionUnit-Hold.Time = Time satisfied (Risk > Threshold -Hold)  
ActionUnit-Action.O_Type = { TURNSTBD, TURNPORT, INCSPEED, 

DECSPEED, STOP} 
ActionUnit-Action.O_Size = x 
ActionUnit-Action.O_Time = Time satisfied (Risk < Threshold-Action) 
ActionUnit-Return.O_Type = Reversed (ActionUnit-Action. O_Type) 
ActionUnit-Return.O_Size = ActionUnit-Action.O_Size 
ActionUnit-Return.O_Time = Time satisfied (Risk < Threshold-Return) 

> 

B. The solution space 

A solution space (Ωp ) for a plan is three dimensional. 
The solution space of O_Type (Ωp-Type) consists of discrete 
values, and the solution space of O_Size (Ωp-Size) and O_Time 
(Ωp-Time) are continuous values within [x, y] and [0, z] 
respectively. Where x, y and z are numeric values for different 
O_Types (only course changing operation types are 
considered) and operation phases. They are shown in Table II 
and III. 

TABLE II 
DIFFERENT X AND Y FOR DIFFERENT 

O_TYPES. 

O_Size（°） 
O_Type 

x y 
STANDON 0 0 
TURN -40 40 
TURNSTBD 0 40 
TURNPORT -40 0  

TABLE III 
DIFFERENT Z FOR DIFFERENT 

OPERATION PHASES. 

Operation phase z（minute） 

ActionUnit-Hold 10 
ActionUnit-Action 20 
ActionUnit-Return 30  

Generally, we select the sampled discrete value for 
O_Size and O_Type instead of a continuous value in 
planning. For example, when O_Type is TURNSTBD, value 
domain [0, 40] of O_Size can be sampled as {5, 10, 15, 20, 
25, 30, 35, 40} and the value domain [0, 20] of O_Time can 
be dispersed as {2, 4, …,20} with sampling every 2 minutes. 
For fase searching purpose, we describe a solution space as a 
tree shown in Figure 2. Once SA_Num, E_Stage and 
E_Situation are determined, collision avoidance planning will 
search the solution space using the deep-first searching 
strategy, i.e., with O_Type→O_Size→O_Time order. For a 
given O_Type, such as TURN, the solution space sizes of 
ActionUnit-Hold, ActionUnit-Action and ActionUnit-Return 
are 5, 160 and 15 respectively. The maximum solution space 
size will be 5×160×15=12000. 

 SA_Num, E_Stage and E_Situation 

STANDON TURN STOP … 

-40 -35 +40 … 

2 4 20… 

O_Type 

O_Size 

O_Time 

 
Fig. 2 The solution tree and its searching order. 

C. Plan Evaluation 

Plan evaluation plays an important role in collision 
avoidance planning. In this work, we proposed a preference 
function for evaluating plans. The function is used to compute 
a preference value for each plan based on three preference 
elements: an action scene preference (noted as Scene_Pref), an 
action cost preference (noted as Cost_Pref) and an action risk 
preference (noted as Risk_Pref).  

Scene_Pref is given by navigation experts. With different 
encounter situations, action distances and pass types between 
two ships, preference values are different. For example, if two 



ships are heading on with a long action distance and left side 
pass type, then Scene_Pref is given as 8.5. But if the action 
distance becomes short, Scene_Pref  is given as 5.5.  

Cost_Pref is a sum of the action time cost (Time_Cost), 
course changing cost (Course_Cost) and deviating distance 
cost (Dist_Cost) from its original route. Time_Cost is decided 
by a total action time of the three operation phases and can be 
computed by Equation (5). Course_Cost is decided by an 
actual course change size and an optimal course change value 
( CourseΓ ) which is given out by navigation experts. The 
Course_Cost is calculated by Equation (6) and where 7.0=λ  
and 5.0=λ  for right and left turn respectively. Dist_Cost is 
determined by an actual deviating distance (Dist) and a 
deviating distance threshold ( DistΓ ) which is also given out 
by navigation experts. It is calculated by Equation (7). 

Time_Cost = (ActionUnit-Hold.O_Time + ActionUnit-
Action.O_Time + ActionUnit-Return.O_Time ) / 60     (5) 

Course_Cost =
( )
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Risk_Pref is used to measure the efficiency of the action 
and determined by a sum of the maximum risk (Max_Risk) 
and average risk (Ave_Risk) among ships while a collision 
avoidance action is taken.  

The preference function is given in Equation (8). The 
larger the preference value is, the better the performance of a 
collision avoidance plan is. The plan with the maximal 
preference value is selected as an optimal plan in collision 
avoidance planning. 

Preference = Scene_Pref - Cost_Pref - Risk_Pref     (8) 

III. MULTI-AGENT PLANNING ALGORITHMS 
 Before presenting the algorithms, we introduce briefly a 
multi-agent-based decision-making developed for ship 
collision avoidance. 

A. Multi-agent-based systems for collision avoidance 

A multi-agent-based system consists of System_Agent, 
Union_Agent and Ship_Agent [8, 13, 14, 15]. A ship is 
modeled as a Ship_Agent with agent characteristics such as 
perception, memory, communication, emotion, action, 
learning, and thinking. A System_Agent controls systems and 
manages the Ship_Agents such as Ship_Agent life cycle 
management. When risk is detected, several Ship_Agents are 
involved automatically to form a “dynamic society”, which is 
called a union in our system, for working together. A 
Union_Agent assigned to a union manages the union data and 
makes union plans. In practice, a Union_Agent may be taken 
on by VTS (Vessel Traffic System). The basic architecture of 
the system is shown in Figure 3. 
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Memory Action
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Communication 

Ship_Agent 

…… 

Ship_Agent

Ship_Agent

Union_Agent 

System_Agent

Interaction  

 
Fig.3 The architecture of multi-agent-based systems 

Based on the architecture of multi-agent-based systems and 
the characteristics of a Ship_Agent, we developed three 
algorithms using multi-agent planning techniques [16].  

B. Algorithm 1: independent planning with self-benefit 
purpose 

Independent planning for self-benefit purpose is developed 
for each individual ship, which plans its own collision 
avoidance plan and executes the plan without any 
communication and coordination with other ships. From the 
viewpoint of multi-agent planning, this algorithm is fully 
distributed. In this algorithm, a Ship_Agent searches its own 
solution space for feasible plans, and sort them with their 
preference value. The algorithm is shown in Table IV.  

TABLE IV 
ALGORITHM 1: INDEPENDENT PLANNING FOR SELF-BENEFIT PURPOSE 

Input: the basic information of each Ship_Agent, solution space (S) 
Output: the plans in the solution queue Sp. 
For each Ship_Agent do 

Sp ← Φ ; 
ActionUnit-Hold.O_Time =SearchUnitHold( START_RISK_LEV, S); 
If !(∃ ActionUnit-Hold.O_Time∈Ωp-Time), then end this planning. 
Else (∃ ActionUnit-Hold.O_Time∈Ωp-Time) 

ActionUnit-Action.O_Type ⇐<SA_Num, E_Stage, 
E_Situation>; 

While Ωp-Size != Φ do 
ActionUnit-Action.O_Size ← v_Size∈ Ωp-Size ; 
Delete v_Size from Ωp-Size ; 
ActionUnit-Action.O_Time = SearchUnitAction 

( MIN_RISK_LEV,S); 
If ∃ ActionUnit-Action.O_Time∈Ωp-Time then 

ActionUnit-Return.O_Time = Search UnitReturn 
(SED_RISK_LEV, S); 

Sp ← ActionPlan; 
End 

End 
End 
PlanEvaluation(Sp);  // calculating preference value for each plan and 

sorting plans 
End 
Return Sp. 

The algorithm involves the following steps. First, each 
Ship_Agent searches the ActionUnit-Hold.O_Time. Second, 
the algorithm determines ActionUnit-Action.O_Type. For each 
ActionUnit-Action.O_Size value, the algorithm only keeps the 
least ActionUnit-Action.O_Time value that satisfied the 



threshold. If all three parameters of ActionUnit-Action are 
found, then the ActionUnit-Return.O_Time will be searched. 
After that, a potential collision avoidance plan is created and 
stored in the solution queue. Finally, the plans in the solution 
queue are evaluated and sorted according to their preference 
values. The plan generated for a Ship_Agent may be conflict 
or inconsistent because there is no communication and conflict 
checking among Ship_Agents. 

C. Algorithm 2: centralized planning with union-benefit 
purpose 

With the development of communication techniques, many 
ships can communicate each other or with VTS. For such 
practice, a centralized-based algorithm for collision avoidance 
planning is more efficient. Such centralized planning 
algorithm could benefit a group of ship (so-called union). In a 
union, a Union-Agent makes collision avoidance plan and 
distributes it to each Ship_Agent in the union. The pans are 
executed parallel among Ship_Agents. Some communication 
and coordination among Ship_Agents are necessary for plan 
execution and distribution.  Table V shows the details of 
Algorithm 2. 

TABLE V 
ALGORITHM 2: CENTRALIZED PLANNING FOR UNION-BENEFIT PURPOSE 

Input: basic information of each Ship_Agents in the union, solution space 
(S) 
Output: the plans in the solution queue Sp 
For each Union_Agent do 

Sp ← Φ ; 
DetermineUnionSolutionSspace ( Ωp-TypeSzie, O_Type, O_Size); 
While Ωp-TypeSize != Φ do 
        For ∀ Ship_Agent ∈ union do 

           <ActionUnit-Action.O_Type, ActionUnit-Action.O_Size> ← 
<v_Type, v_Size>∈Ωp-TypeSzie 

        End  
ActionUnit-Action.O_Time = Search UnitAction (MIN_RISK_LEV); 
If ∃ ActionUnit-Action.O_Time∈Ωp-Time then Sp ← ActionPlan End 
End 
 PlanEvaluationAndDistribution(Sp);  // calculating preference value and 

distributing plans 
End 
Return Sp. 

The algorithm 2 consists of the several steps. First step is 
to create a union solution spaces by combining all solution 
space from each Ship_agent. Second step is to search potential 
solution from the ActionUnit-Action operation phase. For 
efficiency, we only search spaces of O_TYPE and O_TIME. 
For all possible O_TYPE and O_TIME, we create an action 
plan and add it to the queue. The last step is to evaluate each 
plan by computing their preference. A plan with maximal 
preference is selected and assigned to each Ship_Agent as the 
collision avoidance plan. 

D. Algorithm 3: negotiation-based planning with mutual-
benefit purpose 

To overcome the limitation of Algorithm 1, we developed 
a negotiation-based planning algorithm with mutual-benefit 
purpose. Relying on the communication among ships, 
negotiation is to form a joint decision and make each ship 

reach an individual goal. Generally, the negotiation process 
consists of several negotiation cycles. Each cycle has an 
initiator and one or more responders, the former will propose 
its opinion (a selected plan) while the latter will respond on the 
proposals, accepting or rejecting the plan. There are two kinds 
of management strategies: an initiator selects and sends the 
next plan in its solution queue (strategy 1), and one of the 
responders is chosen as a new initiator for sending its 
proposed plan (strategy 2). The algorithm with these two 
strategies is described in Table VI. 

TABLE VI 
ALGORITHM 3: NEGOTIATION-BASED PLANNING FOR MUTUAL-BENEFIT 

PURPOSE 

Input: Sp from algorithm 1. 
Output: negotiation true (with the consistent multiagent plan Pc) or 

negotiation false. 
Initiator ← Ship_Agent max risk ∈ negotiation , responder← other 

Ship_Agents ∈ negotiation; 
For ∀ Ship_Agent ∈ negotiation do 

If Ship_Agent = = initiator then 
If ∃ Pi∈ Sp, then 

        Imi (informing message) ← Pi and delete Pi from Sp; 
        Sq (sending queue) ← Imi; 

Else   strategy 1 return false; 
 strategy 2 Initiator ← Ship_Agent!= initiator , responder ← 

Ship_Agent= = initiator  
End  
If ∃ Imi ∈ Sq then 

 Rq (receiving queue) of other Ship_Agents ← Imi and delete Imi 
from Sq; 

End 
If ∃ Rmi (responding message) ∈ Rq then 

If ∀ Rmi = = “Accept”, then return true and Pc ← Pi; 
Else  if strategy2 then Initiator ←Ship_Agent!= initiator , 

responder ← Ship_Agent= = initiator  
End  

End 
End  

End  
If Ship_Agent = = responder then 

If ∃ Rmi ∈ Sq then 
Rq of the initiator ← Rmi and delete Rmi from Sq; 

End  
If ∃ Imi ∈ Rq then 

Pi ← Imi; Response Ri (“Accept” or “Reject”) ⇐ Pi;  
Rmi ← Ri; Sq ← Rmi; 

             End  
End  

    If strategy 2 then 
        If !(∃ Pi∈ Sp) for ∀ Ship_Agent, then return false End 
    End  

End  

Algorithm 3 relies on Algorithm 1. We assume that each 
Ship_Agent can run Algorithm 1 to generate its own plans 
first. Then, Algorithm 3 will adjust these plans based on the 
negotiation among agents. In the end, a feasible and 
reasonable plan is established to benefit each ship and to avoid 
the inconsistence of the collision avoidance plans. 

IV. EXPERIMENTS AND RESULTS 
 We implemented the proposed algorithms in a multi-
agent-based simulation system for collision avoidance. We 
conducted some experiments for validating the applicability 



and usefulness of these algorithms. In this section, we report 
some experimental results, which demonstrate how the 
developed algorithms work through a typical encounter 
situations between two ships.  

Figure 4 illustrates how Algorithm 1 works for a heading 
on encounter situation. Each line stands for a plan for each 
Ship_Agent and the red one is the optimal plan. In (a), the 
planning results of each Ship_Agent are turn to right with 
different size and time. For Ship_Agent1, the preference of 
each plan is {4.001244, 4.207060, 4.376547, 4.417589, 4.289188, 
4.033006, 3.741820, 3.496831} corresponding course changing 
degrees which vary  from 5° to 40° every 5°. One plan, which 
has the following attributes: ActionUnit-Hold.O_Time=2, 
ActionUnit-Action.O_Type=TURNSTBD, ActionUnit-
Action.O_Size=20°, ActionUnit-Action.O_Time=8, ActionUnit-
Return.O_Time=2, is selected because it has the highest 
preference value among the plans. When two ships are closer 
to each other, the plans will be different as shown in (b). In 
other words, the ActionUnit-Action.O_Type turns out to TURN 
from TURNSTBD. Meanwhile, each Ship_Agent can also turn 
left to avoid collision. In the example (c), if Ship_Agent1 turns 
left while Ship_Agent2 turns to right at that moment, the 
situation will become much worse. To avoid such situation, 
the developed Algorithm 1 has to obey the navigation rules 
and traffic law at sea. 

Red line 

    

Red line 

  
(a)                                                     (b)   

Red line 

 
(c) 

Fig. 4 The examples of collision avoidance with Algorithm 1. 

 Figure 5 illustrates how Algorithm 2 works in planning. 
Figure 5’s (a) and (b)show the encounter scenario of two ships 
with head on and crossing. Since the combined solution space 
is much larger than one of Algorithm 1, and the number of 
potential plans is lager as well. The optimal plans are 
displayed in the form of green line. In (a), the optimal plan 
(Ship_Agent1 turns to right 40° and sails 8 minutes, 
Ship_Agent2 turns to right 10° and sails 8 minutes) has the 

preference value 13.673263, which is larger than 12.395982 
(the sum of 4.417589 and 7.978393 of two Ship_Agents’ 
maximal preference). Comparing with Algorithm 1, the union 
plan is more rational, economic and safe although it takes a 
longer time to make plan. In (b), Ship_Agent4 is planed to turn 
to left 40°, while Ship_Agent3 keeps its own course and 
speed. This decision is reasonable because Ship_Agent4 is 
faster than Ship_Agent3 (14 kts to 10 kts).  

Green line 

 
Green line 

  
(a)                                              (b) 

Fig. 5 The examples of collision avoidance with Algorithm 2. 
Figure 6 shows the results for Algorithm 3. The (a) shows 

the encounter situation of two ships and the potential plans 
generated by running Algorithm 1. Figure 6’s (b-1) to (b-5) 
and Figure 6’s (c-1) to (c-5) demonstrate two kinds of 
negotiation processes. The difference is that each process has 
different initiator. In (b-1), Ship_Agent1 is an initiator and 
sends its plan (turn to left 20° in 4 minutes) to a responder 
Ship_Agent2. Ship_Agent2 receives the plan and makes 
decision on rejection or acceptance of the plan. If the plan is 
rejected, the initiator sends next potential plan in next cycle, 
until a plan is accepted by a responder. Figure 6’s (b-2) to (b-
4) show these cycles. Finally, (b-5) shows that the plan (turn to 
right 30° in 4 minutes) is accepted by Ship_Agent2 and the 
negotiation process ends successfully. Figure 6’s (c-1) to (c-5) 
show another negotiation process in which Ship_Agent2 is an 
initiator and Ship_Agent1 is a responder. After several 
negotiation cycles as shown in (c-1), (c-2), (c-3) and (c-4), a 
plan (turn to right 25° in 6 minutes) is accepted by 
Ship_Agent1 as shown in (c-5). 

            
(a-1)                                    (a-2) 

     
(b-1)                                     (b-2) 



    
(b-3)                                     (b-4) 

     
(b-5)                                     (c-1) 

        
(c-2)                                     (c-3) 

    
(c-4)                                     (c-5) 

Fig. 6 The examples of negotiation-based planning (Algorithm 3). 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed applying multi-agent planning 

techniques to collision avoidance planning. Considering the 
real navigation constrains and environments, we have 
developed three multi-agent-based planning algorithms: the 
distributed independent planning for self-benefit purpose, the 
centralized planning for union-benefit purpose, and the 
negotiation-based planning for mutual-benefit purpose. 
Having introduced collision avoidance plan, we presented 
three algorithms in details. We have implemented these 
algorithms on a multi-agent-based simulation system. We 
conducted some experiments for validating the usefulness and 
applicability of the proposed algorithms. The experimental 
results demonstrated that these algorithms are useful and 
applicable for making decision on collision avoidance. As 
future work, we will work on adding domain knowledge and 
intelligent methods into planning procedure for enhancing the 
algorithms. We also need to improve the negotiation strategies 
and performance in case of more complicated encounter 
situations. 
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