
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Multi-agent Planning for Ship Collision Avoidance

Yuhong Liu Chunsheng Yang Xuanmin Du
Merchant Marine College Institute for Information Technology

Shanghai Maritime University National Research Council
Shanghai Marine Electronic

Equipment Research Institute
Pudong Avenue 1500, Shanghai, China Ottawa, ON K1A 0R6,Canada Jindu Road 1500, Shanghai, China

yhliu@cen.shmtu.edu.cn Chunsheng.Yang@nrc-cnrc.gc.ca duxuanmin@21cn.com

 Abstract—Multi-agent based planning techniques have been
widely applied to various decision-making support applications.
In this paper, we investigate how to apply multi-agent planning to
collision avoidance in ship navigation. We have developed three
multi-agent-based planning algorithms: the independent
planning for self-benefit purpose, the centralized planning for
union-benefit purpose and the negotiation-based planning for
mutual-benefit purpose. Having introduced collision avoidance
planning, we present the developed planning algorithm in detail.
We also report the experiments and some results. The
experimental results illustrate the feasibility and validity of the
multi-agent planning for collision avoidance.

 Keywords—multi-agent planning, collision avoidance,
coordination, negotiation

I. INTRODUCTION
 To improve the safety of ship navigation, many research
efforts have been focused on developing intelligent collision
avoidance systems such as expert systems and decision-
making support systems [1, 2, 3, 4, 5, 6, 7]. However, few of
such systems can be applied to a real navigation. The main
reason is that those systems were developed for making
decision on collision avoidance for a single ship or own ship
other than a group of ships. In the real navigation, an effective
solution of collision avoidance involves the coordination,
cooperation, and interaction among ships and human
behaviors. One way to incorporate such coordination or
interaction among multiple ships into decision-making
processes is to apply multi-agent techniques to collision
avoidance. Multi-agent system (MAS) is emerging as an
important software model for next generation computing
problems that deal with distributed tasks in dynamic and
heterogeneous environments and interested in the behavior of
a set of autonomous agents solving a given problem. Within a
multi-agent system, agents are able to solve problems either on
their own requirements or on cooperation among ships. A ship
navigating at sea can be looked as a rational and intelligent
agent in MAS-based decision-making support systems, for a
ship has the characteristics of personality, reactivity,
adaptability, and autonomy that an agent might have. We have
developed an MAS-based collision avoidance system for ship
navigation using MAS techniques [8]. We focused on the
design and implementation of the system architecture, agent
BDI structure, and agent communication mechanism. In MAS-
based collision avoidance systems, collision avoidance
planning is a principle component.

Planning in collision avoidance is to establish an

effective and safe ship-handling procedure or plan that is a
sequence of actions for achieving a collision avoidance goal.
Multi-agent planning is a useful approach for collision
avoidance planning. Several techniques are available,
including distributed planning, centralized planning, plan
reconciliation, and organizational analysis [9, 10, 11, 12]. We
have developed three planning algorithms: the independent
planning for self-benefit purpose, the centralized planning for
union-benefit purpose and the negotiation-based planning for
mutual-benefit purpose. These algorithms are developed for
either a single ship’s planning, or a group of ships’ planning
on collision avoidance. In this paper, focusing on the multi-
agent planning for collision avoidance, we present the
developed algorithms and experimental results.

In Section 2, we describe collision avoidance plans; in
Section 3, we present the developed multi-agent-based
planning algorithms and give a brief overview of a multi-agent
system; in Section 4, we report the experiments and results;
and the final Section concludes the paper.

II. COLLISION AVOIDANCE PLAN

A. The representation of a collision avoidance plan

 We describe collision avoidance plan as an actual ship-
handling procedure for collision avoidance. Figure 1 shows a
typical procedure between two ships (noted as Ship_AgentX).
This procedure consists of four operation phases: holding,
collision avoidance acting, returning to original course, and
returning to scheduled route. In this work, we are focusing on
the former three phases. To represent such a plan, some
definitions are given as follows.

Collision avoidance action begin

Collision avoidance action over

and return original course begin

Return original course over
and return original route begin

Ship_Agent1

Ship_Agent2

ActionUnit-Action.O_Time

ActionUnit-Return.O_Time

SCA_ActionUnit-Hold.Time

ActionUnit-Action.O_Size
ActionUnit-Return.O_Size

ActionUnit-Action.O_Type

Fig.1 The typical collision avoidance process

Definition 1, Operation type (noted as O_Type) is
defined as an operation for collision avoidance. Given an

encounter situation which is described using the number of
encounter Ship_Agents (noted as SA_Num), encounter stage
(noted as E_Stage) and encounter situation (noted as
E_Situation), an operation type set (noted as Type_Set) for
collision avoidance, can be denoted as.

O_Type⊆Type_Set := < SA_Num, E_Stage, E_Situation >
(1)

Where, Type_Set = {STANDON, TURN, TURNSTBD,
TURNPORT, INCSPEED, DECSPEED, STOP}.

Definition 2, Operation size (noted as O_Size) is defined
as a range of the course changing or speed changing for a
Ship_Agent.

Definition 3, Operation time (noted as O_Time) is
defined as a period time for taking action for avoiding the
collision given a risk threshold and the values of O_Type and
O_Size. We note it as follows:

O_Time := < O_Type, O_Size, Time satisfied (Risk ∣
<logic∈Logic_Set> Threshold) > (2)

Where Logic_Set = {>, <}.
Definition 4, Action Unit (noted as ActionUnit) is

defined as a basic operation structure, consisting of O_Type,
O_Size and O_Time. It is denoted as

ActionUnit: = < O_Type, O_Size, O_Time> (3)
Definition 5, Action Plan (noted as ActionPlan) is

defined as an operation process which contains a series of
ActionUnits, i.e.

ActionPlan := < ActionUnit1∣ActionUnit2∣…
∣ActionUnitN> (4)

The N is the number of phase in a collision avoidance
plan. ActionUnit1 is the phase of ship holding (ActionUnit-
Hold). During this phase, a Ship_Agent will keep its original
course and speed. So, O_Type is set to STANDON; O_Size
is set to “zero”; and O_Time is set to a unknown numeric
value. ActionUnit2 is the phase of collision avoidance acting
(ActionUnit-Action). During this phase, a Ship_Agent will
change its course or speed to a new one according to O_Type
and O_Size. ActionUnit3 is the phase of returning original
course (ActionUnit-Return). During this phase, a Ship_Agent
will change its course or speed back to the original one. The
ActionPlan can be represented as Table I.

TABLE I
REPRESENTATION OF A COLLISION AVOIDANCE PLAN

ActionPlan := <
ActionUnit-Hold.O_Type = STANDON
ActionUnit-Hold.Size = 0
ActionUnit-Hold.Time = Time satisfied (Risk > Threshold -Hold)
ActionUnit-Action.O_Type = { TURNSTBD, TURNPORT, INCSPEED,

DECSPEED, STOP}
ActionUnit-Action.O_Size = x
ActionUnit-Action.O_Time = Time satisfied (Risk < Threshold-Action)
ActionUnit-Return.O_Type = Reversed (ActionUnit-Action. O_Type)
ActionUnit-Return.O_Size = ActionUnit-Action.O_Size
ActionUnit-Return.O_Time = Time satisfied (Risk < Threshold-Return)

>

B. The solution space

A solution space (Ωp) for a plan is three dimensional.
The solution space of O_Type (Ωp-Type) consists of discrete
values, and the solution space of O_Size (Ωp-Size) and O_Time
(Ωp-Time) are continuous values within [x, y] and [0, z]
respectively. Where x, y and z are numeric values for different
O_Types (only course changing operation types are
considered) and operation phases. They are shown in Table II
and III.

TABLE II
DIFFERENT X AND Y FOR DIFFERENT

O_TYPES.

O_Size（°）
O_Type

x y
STANDON 0 0
TURN -40 40
TURNSTBD 0 40
TURNPORT -40 0

TABLE III
DIFFERENT Z FOR DIFFERENT

OPERATION PHASES.

Operation phase z（minute）

ActionUnit-Hold 10
ActionUnit-Action 20
ActionUnit-Return 30

Generally, we select the sampled discrete value for
O_Size and O_Type instead of a continuous value in
planning. For example, when O_Type is TURNSTBD, value
domain [0, 40] of O_Size can be sampled as {5, 10, 15, 20,
25, 30, 35, 40} and the value domain [0, 20] of O_Time can
be dispersed as {2, 4, …,20} with sampling every 2 minutes.
For fase searching purpose, we describe a solution space as a
tree shown in Figure 2. Once SA_Num, E_Stage and
E_Situation are determined, collision avoidance planning will
search the solution space using the deep-first searching
strategy, i.e., with O_Type→O_Size→O_Time order. For a
given O_Type, such as TURN, the solution space sizes of
ActionUnit-Hold, ActionUnit-Action and ActionUnit-Return
are 5, 160 and 15 respectively. The maximum solution space
size will be 5×160×15=12000.

 SA_Num, E_Stage and E_Situation

STANDON TURN STOP …

-40 -35 +40 …

2 4 20…

O_Type

O_Size

O_Time

Fig. 2 The solution tree and its searching order.

C. Plan Evaluation

Plan evaluation plays an important role in collision
avoidance planning. In this work, we proposed a preference
function for evaluating plans. The function is used to compute
a preference value for each plan based on three preference
elements: an action scene preference (noted as Scene_Pref), an
action cost preference (noted as Cost_Pref) and an action risk
preference (noted as Risk_Pref).

Scene_Pref is given by navigation experts. With different
encounter situations, action distances and pass types between
two ships, preference values are different. For example, if two

ships are heading on with a long action distance and left side
pass type, then Scene_Pref is given as 8.5. But if the action
distance becomes short, Scene_Pref is given as 5.5.

Cost_Pref is a sum of the action time cost (Time_Cost),
course changing cost (Course_Cost) and deviating distance
cost (Dist_Cost) from its original route. Time_Cost is decided
by a total action time of the three operation phases and can be
computed by Equation (5). Course_Cost is decided by an
actual course change size and an optimal course change value
(CourseΓ) which is given out by navigation experts. The
Course_Cost is calculated by Equation (6) and where 7.0=λ
and 5.0=λ for right and left turn respectively. Dist_Cost is
determined by an actual deviating distance (Dist) and a
deviating distance threshold (DistΓ) which is also given out
by navigation experts. It is calculated by Equation (7).

Time_Cost = (ActionUnit-Hold.O_Time + ActionUnit-
Action.O_Time + ActionUnit-Return.O_Time) / 60 (5)

Course_Cost =
()

2

2_.

0.1 Course
CourseSizeOActionActionUnit

e Γ×
Γ−−−

− λ (6)

<Γ
≥

=

 0

ΓDistif DistDistDist/
ΓDistIf Dist

Dist_Cost (7)

Risk_Pref is used to measure the efficiency of the action
and determined by a sum of the maximum risk (Max_Risk)
and average risk (Ave_Risk) among ships while a collision
avoidance action is taken.

The preference function is given in Equation (8). The
larger the preference value is, the better the performance of a
collision avoidance plan is. The plan with the maximal
preference value is selected as an optimal plan in collision
avoidance planning.

Preference = Scene_Pref - Cost_Pref - Risk_Pref (8)

III. MULTI-AGENT PLANNING ALGORITHMS
 Before presenting the algorithms, we introduce briefly a
multi-agent-based decision-making developed for ship
collision avoidance.

A. Multi-agent-based systems for collision avoidance

A multi-agent-based system consists of System_Agent,
Union_Agent and Ship_Agent [8, 13, 14, 15]. A ship is
modeled as a Ship_Agent with agent characteristics such as
perception, memory, communication, emotion, action,
learning, and thinking. A System_Agent controls systems and
manages the Ship_Agents such as Ship_Agent life cycle
management. When risk is detected, several Ship_Agents are
involved automatically to form a “dynamic society”, which is
called a union in our system, for working together. A
Union_Agent assigned to a union manages the union data and
makes union plans. In practice, a Union_Agent may be taken
on by VTS (Vessel Traffic System). The basic architecture of
the system is shown in Figure 3.

Ship_Agent

Environment

Ship_Agent

Thinking

Learning
Memory Action

Emotion

Perception

Communication

Ship_Agent

……

Ship_Agent

Ship_Agent

Union_Agent

System_Agent

Interaction

Fig.3 The architecture of multi-agent-based systems

Based on the architecture of multi-agent-based systems and
the characteristics of a Ship_Agent, we developed three
algorithms using multi-agent planning techniques [16].

B. Algorithm 1: independent planning with self-benefit
purpose

Independent planning for self-benefit purpose is developed
for each individual ship, which plans its own collision
avoidance plan and executes the plan without any
communication and coordination with other ships. From the
viewpoint of multi-agent planning, this algorithm is fully
distributed. In this algorithm, a Ship_Agent searches its own
solution space for feasible plans, and sort them with their
preference value. The algorithm is shown in Table IV.

TABLE IV
ALGORITHM 1: INDEPENDENT PLANNING FOR SELF-BENEFIT PURPOSE

Input: the basic information of each Ship_Agent, solution space (S)
Output: the plans in the solution queue Sp.
For each Ship_Agent do

Sp ← Φ ;
ActionUnit-Hold.O_Time =SearchUnitHold(START_RISK_LEV, S);
If !(∃ ActionUnit-Hold.O_Time∈Ωp-Time), then end this planning.
Else (∃ ActionUnit-Hold.O_Time∈Ωp-Time)

ActionUnit-Action.O_Type ⇐<SA_Num, E_Stage,
E_Situation>;

While Ωp-Size != Φ do
ActionUnit-Action.O_Size ← v_Size∈ Ωp-Size ;
Delete v_Size from Ωp-Size ;
ActionUnit-Action.O_Time = SearchUnitAction

(MIN_RISK_LEV,S);
If ∃ ActionUnit-Action.O_Time∈Ωp-Time then

ActionUnit-Return.O_Time = Search UnitReturn
(SED_RISK_LEV, S);

Sp ← ActionPlan;
End

End
End
PlanEvaluation(Sp); // calculating preference value for each plan and

sorting plans
End
Return Sp.

The algorithm involves the following steps. First, each
Ship_Agent searches the ActionUnit-Hold.O_Time. Second,
the algorithm determines ActionUnit-Action.O_Type. For each
ActionUnit-Action.O_Size value, the algorithm only keeps the
least ActionUnit-Action.O_Time value that satisfied the

threshold. If all three parameters of ActionUnit-Action are
found, then the ActionUnit-Return.O_Time will be searched.
After that, a potential collision avoidance plan is created and
stored in the solution queue. Finally, the plans in the solution
queue are evaluated and sorted according to their preference
values. The plan generated for a Ship_Agent may be conflict
or inconsistent because there is no communication and conflict
checking among Ship_Agents.

C. Algorithm 2: centralized planning with union-benefit
purpose

With the development of communication techniques, many
ships can communicate each other or with VTS. For such
practice, a centralized-based algorithm for collision avoidance
planning is more efficient. Such centralized planning
algorithm could benefit a group of ship (so-called union). In a
union, a Union-Agent makes collision avoidance plan and
distributes it to each Ship_Agent in the union. The pans are
executed parallel among Ship_Agents. Some communication
and coordination among Ship_Agents are necessary for plan
execution and distribution. Table V shows the details of
Algorithm 2.

TABLE V
ALGORITHM 2: CENTRALIZED PLANNING FOR UNION-BENEFIT PURPOSE

Input: basic information of each Ship_Agents in the union, solution space
(S)
Output: the plans in the solution queue Sp
For each Union_Agent do

Sp ← Φ ;
DetermineUnionSolutionSspace (Ωp-TypeSzie, O_Type, O_Size);
While Ωp-TypeSize != Φ do
 For ∀ Ship_Agent ∈ union do

 <ActionUnit-Action.O_Type, ActionUnit-Action.O_Size> ←
<v_Type, v_Size>∈Ωp-TypeSzie

 End
ActionUnit-Action.O_Time = Search UnitAction (MIN_RISK_LEV);
If ∃ ActionUnit-Action.O_Time∈Ωp-Time then Sp ← ActionPlan End
End
 PlanEvaluationAndDistribution(Sp); // calculating preference value and

distributing plans
End
Return Sp.

The algorithm 2 consists of the several steps. First step is
to create a union solution spaces by combining all solution
space from each Ship_agent. Second step is to search potential
solution from the ActionUnit-Action operation phase. For
efficiency, we only search spaces of O_TYPE and O_TIME.
For all possible O_TYPE and O_TIME, we create an action
plan and add it to the queue. The last step is to evaluate each
plan by computing their preference. A plan with maximal
preference is selected and assigned to each Ship_Agent as the
collision avoidance plan.

D. Algorithm 3: negotiation-based planning with mutual-
benefit purpose

To overcome the limitation of Algorithm 1, we developed
a negotiation-based planning algorithm with mutual-benefit
purpose. Relying on the communication among ships,
negotiation is to form a joint decision and make each ship

reach an individual goal. Generally, the negotiation process
consists of several negotiation cycles. Each cycle has an
initiator and one or more responders, the former will propose
its opinion (a selected plan) while the latter will respond on the
proposals, accepting or rejecting the plan. There are two kinds
of management strategies: an initiator selects and sends the
next plan in its solution queue (strategy 1), and one of the
responders is chosen as a new initiator for sending its
proposed plan (strategy 2). The algorithm with these two
strategies is described in Table VI.

TABLE VI
ALGORITHM 3: NEGOTIATION-BASED PLANNING FOR MUTUAL-BENEFIT

PURPOSE

Input: Sp from algorithm 1.
Output: negotiation true (with the consistent multiagent plan Pc) or

negotiation false.
Initiator ← Ship_Agent max risk ∈ negotiation , responder← other

Ship_Agents ∈ negotiation;
For ∀ Ship_Agent ∈ negotiation do

If Ship_Agent = = initiator then
If ∃ Pi∈ Sp, then

 Imi (informing message) ← Pi and delete Pi from Sp;
 Sq (sending queue) ← Imi;

Else strategy 1 return false;
 strategy 2 Initiator ← Ship_Agent!= initiator , responder ←

Ship_Agent= = initiator
End
If ∃ Imi ∈ Sq then

 Rq (receiving queue) of other Ship_Agents ← Imi and delete Imi
from Sq;

End
If ∃ Rmi (responding message) ∈ Rq then

If ∀ Rmi = = “Accept”, then return true and Pc ← Pi;
Else if strategy2 then Initiator ←Ship_Agent!= initiator ,

responder ← Ship_Agent= = initiator
End

End
End

End
If Ship_Agent = = responder then

If ∃ Rmi ∈ Sq then
Rq of the initiator ← Rmi and delete Rmi from Sq;

End
If ∃ Imi ∈ Rq then

Pi ← Imi; Response Ri (“Accept” or “Reject”) ⇐ Pi;
Rmi ← Ri; Sq ← Rmi;

 End
End

 If strategy 2 then
 If !(∃ Pi∈ Sp) for ∀ Ship_Agent, then return false End
 End

End

Algorithm 3 relies on Algorithm 1. We assume that each
Ship_Agent can run Algorithm 1 to generate its own plans
first. Then, Algorithm 3 will adjust these plans based on the
negotiation among agents. In the end, a feasible and
reasonable plan is established to benefit each ship and to avoid
the inconsistence of the collision avoidance plans.

IV. EXPERIMENTS AND RESULTS
 We implemented the proposed algorithms in a multi-
agent-based simulation system for collision avoidance. We
conducted some experiments for validating the applicability

and usefulness of these algorithms. In this section, we report
some experimental results, which demonstrate how the
developed algorithms work through a typical encounter
situations between two ships.

Figure 4 illustrates how Algorithm 1 works for a heading
on encounter situation. Each line stands for a plan for each
Ship_Agent and the red one is the optimal plan. In (a), the
planning results of each Ship_Agent are turn to right with
different size and time. For Ship_Agent1, the preference of
each plan is {4.001244, 4.207060, 4.376547, 4.417589, 4.289188,
4.033006, 3.741820, 3.496831} corresponding course changing
degrees which vary from 5° to 40° every 5°. One plan, which
has the following attributes: ActionUnit-Hold.O_Time=2,
ActionUnit-Action.O_Type=TURNSTBD, ActionUnit-
Action.O_Size=20°, ActionUnit-Action.O_Time=8, ActionUnit-
Return.O_Time=2, is selected because it has the highest
preference value among the plans. When two ships are closer
to each other, the plans will be different as shown in (b). In
other words, the ActionUnit-Action.O_Type turns out to TURN
from TURNSTBD. Meanwhile, each Ship_Agent can also turn
left to avoid collision. In the example (c), if Ship_Agent1 turns
left while Ship_Agent2 turns to right at that moment, the
situation will become much worse. To avoid such situation,
the developed Algorithm 1 has to obey the navigation rules
and traffic law at sea.

Red line

Red line

(a) (b)

Red line

(c)

Fig. 4 The examples of collision avoidance with Algorithm 1.

 Figure 5 illustrates how Algorithm 2 works in planning.
Figure 5’s (a) and (b)show the encounter scenario of two ships
with head on and crossing. Since the combined solution space
is much larger than one of Algorithm 1, and the number of
potential plans is lager as well. The optimal plans are
displayed in the form of green line. In (a), the optimal plan
(Ship_Agent1 turns to right 40° and sails 8 minutes,
Ship_Agent2 turns to right 10° and sails 8 minutes) has the

preference value 13.673263, which is larger than 12.395982
(the sum of 4.417589 and 7.978393 of two Ship_Agents’
maximal preference). Comparing with Algorithm 1, the union
plan is more rational, economic and safe although it takes a
longer time to make plan. In (b), Ship_Agent4 is planed to turn
to left 40°, while Ship_Agent3 keeps its own course and
speed. This decision is reasonable because Ship_Agent4 is
faster than Ship_Agent3 (14 kts to 10 kts).

Green line

Green line

(a) (b)

Fig. 5 The examples of collision avoidance with Algorithm 2.
Figure 6 shows the results for Algorithm 3. The (a) shows

the encounter situation of two ships and the potential plans
generated by running Algorithm 1. Figure 6’s (b-1) to (b-5)
and Figure 6’s (c-1) to (c-5) demonstrate two kinds of
negotiation processes. The difference is that each process has
different initiator. In (b-1), Ship_Agent1 is an initiator and
sends its plan (turn to left 20° in 4 minutes) to a responder
Ship_Agent2. Ship_Agent2 receives the plan and makes
decision on rejection or acceptance of the plan. If the plan is
rejected, the initiator sends next potential plan in next cycle,
until a plan is accepted by a responder. Figure 6’s (b-2) to (b-
4) show these cycles. Finally, (b-5) shows that the plan (turn to
right 30° in 4 minutes) is accepted by Ship_Agent2 and the
negotiation process ends successfully. Figure 6’s (c-1) to (c-5)
show another negotiation process in which Ship_Agent2 is an
initiator and Ship_Agent1 is a responder. After several
negotiation cycles as shown in (c-1), (c-2), (c-3) and (c-4), a
plan (turn to right 25° in 6 minutes) is accepted by
Ship_Agent1 as shown in (c-5).

(a-1) (a-2)

(b-1) (b-2)

(b-3) (b-4)

(b-5) (c-1)

(c-2) (c-3)

(c-4) (c-5)

Fig. 6 The examples of negotiation-based planning (Algorithm 3).

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed applying multi-agent planning

techniques to collision avoidance planning. Considering the
real navigation constrains and environments, we have
developed three multi-agent-based planning algorithms: the
distributed independent planning for self-benefit purpose, the
centralized planning for union-benefit purpose, and the
negotiation-based planning for mutual-benefit purpose.
Having introduced collision avoidance plan, we presented
three algorithms in details. We have implemented these
algorithms on a multi-agent-based simulation system. We
conducted some experiments for validating the usefulness and
applicability of the proposed algorithms. The experimental
results demonstrated that these algorithms are useful and
applicable for making decision on collision avoidance. As
future work, we will work on adding domain knowledge and
intelligent methods into planning procedure for enhancing the
algorithms. We also need to improve the negotiation strategies
and performance in case of more complicated encounter
situations.

ACKNOWLEDGMENT

 This paper is supported by HuoYingdong educational
fund grant (No.0254-05-FN580001) and shanghai educational
committee project (No.06FZ016).

REFERENCES
[1] Chunsheng Yang, “An Expert System for Collision Avoidance and Its

Application”, Ph.D. thesis. Hiroshima University, Japan. September 1995.
[2] Y. Sato and H. Ishii, “Study of collision-avoidance system for ships”.

Control Engineering Practice. vol. 6, pp. 1141-1149, 1998.
[3] Yuhong Liu, “A design and Study on Intelligence Collision Prevention

Expert System for Navigation,” Ph.D. thesis. Harbin Engineering
University, china. July 1999.

[4] C. Hwang, “The Integrated Design of Fuzzy Collision Avoidance and
H∞- Autopilots on ships,” The Journal of navigation. vol. 55, no.1,
pp.117-136. 2002.

[5] Y. Liu and W. Yang. “The structure Design of an Intelligent Decision
Support System for Navigation Collision Avoidance.,” IEEE The Third
International Conference on Machine Learning and Cybernetics. vol. 1.
pp 302-307, August 2004.

[6] Yuhong Liu, Xuanmin Du and Shenhua Yang. “The Design of a Fuzzy-
Neural Network for Ship Collision Avoidance”. ICMLC 2005. Lecture
Notes in Computer Science. vol. 3930. pp. 804-812. July, 2006.

[7] Shenhua Yang, Chaojian Shi, Lina Li, and Keping Guan, “Construction
of Simulation Platform for Vessel Automatic Collision Avoidance with
the Technologies of MAS and Navigational Simulato”r. JOURNAL OF
SYSTEM SIMULATION. Vol18, pp.686-690, 2006.

[8] Yuhong Liu, Chunsheng Yang and Xuanmin Du. “A Multiagent-Based
Simulation System for Ship Collision Avoidance”. Advanced Intelligent
Computing Technology and Applicatin-ICIC2007, in press, August
(2007).

[9] Zlatina Lubomirova Marinova. Planning in Multiagent System. MSc
Thesis. Sofia University. 2002.

[10]Mathijs de Weerdt, Adriaan ter Mors, and Cees Witteveen. “Multi-agent
Planning: An introduction to planning and coordination ” . Delft
University of Technology.

[11]Mathijs de Weerdt and Roman van der Krogt. “A Method to Integrated
Planning and Coordination ” . American Association for Artificial
Intelligence. 2002.

[12]Michael Bowling, Rune Jensen, and Manuela Veloso. “A Formalization
of Equilibria for Multiagent Planning ” . American Association for
Artificial Intelligence. 2002.

[13]Mark F. Wood, Scott DeLoach. “ An Overview of the Multiagent
Systems Engineering Methodology”. AOSE. pp. 207-222, 2000.

[14]ichael P.Georgeff, Barney Pell, Martha E. Pollack, Milind Tambe,
Michael Wooldridge. “The Belief-Desire-Intention Model of Agency“.
Lecture Notes in Computer Science. Vol. 1555. Proceedings of the 5th
International Workshop on Intelligent Agents V, Agent Theories,
Architectures, and Languages. Pp. 1-10, 1998.

[15]Chia-Lin Hsu, Hwai-Jung Hsu, Da-Ly Yang and Feng-Jian Wang.
“ Constructing a Multiple Mobile-BDI Agent System “ . The 14th
Workshop on OOTA. pp. 109-116., 2003.

[16]Jeffrey S. Cox and Edmund H.Durfee. “An Efficient Algorithm for
Multiagent Plan Coordination“. AAMAS’05. Utrecht, Netherlands. pp.
828-835., July 2005.

