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Abstract— Linearized equations of motion for a motorcycle 

with small roll angles are derived and used to design a robust 
cascade control scheme that stabilizes the motorcycle over a 
range of speeds. Stabilization is achieved by measuring the roll 
angle and its rate of change, and controlling the steering torque. 
The approach is validated via simulations and experiments 
performed with a radio-controlled scooter.  
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I.  INTRODUCTION  
Motorcycles are inherently unstable systems subjected to 

non-holonomic contact constraints. Due to the non-holonomic 
constraints at the point of contact between the tire and the 
ground, in absence of slipping only longitudinal movement is 
feasible. These make the development of an autonomous or 
tele-operated motorcycle especially challenging and very few 
studies have been devoted to this topic. The vast majority of 
studies related to motorcycles dynamics focus on the stability 
of uncontrolled motorcycles and the vibration modes that result 
from external disturbances (e.g. side wind). Two modeling 
approaches have been used: analytical equations, which are 
linearized around small roll and steering angles, and multi-
body representation. The latter typically results in a large 
number of state variables and is not suitable for controller 
design purposes. The former approach was initiated by 
Whipple [1], who was the first to present a fully general set of 
equations of motion for a bicycle. Dohring [2] presented a 
linear set of motion equations for a motorcycle based on the 
Newton-Euler equations. This approach was further 
investigated by Weir [3] who assumed that slip was present at 
the tire-ground point of contact. Weir further assumed that the 
forces at the point of contact are proportional to the slip angle. 
An alternative approach based on Lagrange equations was 
presented by Neimark and Fufaev [4] and further extended by 
Hand [5]. Other models have been developed over the years, 
and a thorough critical survey can be found in [5].  

As noted before, few studies focused on motorcycle control, 
and each study used a custom model. Getz and Marsden [6] 
developed a control algorithm for a very simplified bicycle 
model, using the steering angle and forward velocity as control 
variables. The bicycle was modeled as a point mass, wheels 
inertia was neglected, and geometry was simplified in that 
steering head angle and trail were both assumed to be zero. 
Beznos et al. [7] used two fast spinning gyroscopes as actuators 
to keep a bicycle upright. Iuchi et al. [8] developed a 
stabilization controller for a bicycle traveling along a straight 
line at a predetermined constant speed. Finally, Yi et al. [9] 
presented 2006 a trajectory tracking and balancing control 

algorithm for an autonomous motorcycle. They used the 
bicycle model derived in [6] and extend it by including rake 
angle and trail. A controller based on steering angle and rear 
wheel torque was derived in order to track an arbitrary 
trajectory while maintaining stability, and the proposed control 
system was validated by numerical simulations. 

In the present study, the linearized equations of motion for 
a motorcycle were developed in a thorough manner using a 
Newtonian approach (Section III), and a stabilizing robust 
controller was synthesized based on these equations (Section 
IV). The control scheme was validated through simulations 
(Section V) and implemented on a scooter operated via remote 
control (Section VI).  

II. EXPERIMENTAL SYSTEM 
A 50cc scooter with automatic variable transmission was 

retrofitted to be operated by remote control. A microchip 
PIC18F8520 microprocessor was installed on the motorcycle 
and received throttle, brake and roll angle commands via an 
R/C receiver. The roll angle was measured by a dynamic gyro-
enhanced inclinometer (Microstrain FAS-G) and the roll rate 
was measured using a gyroscope (Silicon Sensing Systems, 
CRS02). Both analog signals were acquired by the 
microcontroller at a sampling rate of 10kHz and averaged at 
50Hz. Every 20ms, the microcontroller, which was 
programmed in C language, issued pulse width modulated 
(PWM) commands to the throttle, brake and steering motors 
via appropriate H-bridges. Steering, on which this study 
focused, was controlled by a 24V DC motor with a 1:45 
reduction transmission gear. Fig.1 shows the scooter and its 
physical properties are detailed in the Appendix.  
 

 
 

Figure 1.  Picture of the experimental system



         

 

III. DYNAMIC MODEL 
The following assumptions were made for deriving the 

equations of motion of a motorcycle: 
• There exists enough friction between tires and road to 

prevent sliding. 

• The change of forward velocity is quasi-static. 

• The road is flat and horizontal. 

• Only small deviations from straight ahead motion 
during which the motorcycle is vertical are considered. 

• The tires are of negligible width. 

• The motorcycle is symmetrical. 

The motorcycle is viewed as consisting of two sub-
assemblies (Fig. 2): 

• The front sub-assembly which includes the front wheel, 
the front fork and the steering axis. 

• The rear sub-assembly which consists of the rear 
wheel, the motorcycle's chassis and the engine. 

Using the symbols defined in the Appendix, the lateral 
acceleration of whole motorcycle is: 

xf xr t t t t f tF F m h x m l m d mVθ ψ θ+ = − − −  (1) 
In (1), the left-hand terms are the lateral forces exerted on the 
tires at the contact points by friction. The first right-hand side 
term is the contribution of roll angular acceleration of the 
motorcycle, the second term is the contribution of yaw angular 
acceleration of the motorcycle, the third term is centripetal 
acceleration of the motorcycle and the fourth term is the lateral 
acceleration of front assembly due to steering. 
 

The roll equation is:  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Figure 2.  Schematic representation of the motorcycle and definition of the 

main variables used in the model 
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In (2), the first and second left-hand side terms are the 
contributions of the time derivatives of the angular 
momentums of the whole motorcycle about the rear contact 
point. The third term is the contribution of the time derivative 
of angular momentum of the steering assembly about the 
steering axis. The fourth term is the gyroscopic moment due to 
the yaw angular velocity of the motorcycle and the fifth term 
is the gyroscopic moment due to the roll angular velocity of 
the front assembly. The sixth term is the moment required for 
lateral (centripetal) acceleration of the center of mass. The first 
right-hand side term is the moment exerted by the weight of 
the leaning motorcycle, the second term is the moment exerted 
by weight of the steered front assembly (being out of the 
symmetry plane of the motorcycle), the third term is the 
moment exerted by the normal force acting at the front contact 
point on the steered front assembly and the fourth term 
denotes external disturbances roll moment, such as for 
instance side-wind.  
 

The yaw equation is: 
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In (3), the first and second left-hand side terms are the 
contributions of the time derivative of the angular momentums 
of the whole motorcycle about the rear contact point. The third 
term is the contribution of the time derivative of the angular 
momentum of the steering assembly about the steering axis. 
The fourth term is the gyroscopic moment due to the roll 
angular velocity of motorcycle and the fifth term is the 
gyroscopic moment due to the steering angular velocity of the 
front assembly. The sixth term is the moment required for the 
lateral (centripetal) acceleration of the center of mass. The 
right-hand side of (3) is the moment exerted by the lateral 
force at the front wheel contact point about the Z-axis. 
 

The equation for the steering torque (front assembly) is: 
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In (4), the first, second and third left-hand side terms are the 
contributions of the time derivatives of the angular momentum 
of the front assembly about the steering axis. The fourth and 
fifth terms are the gyroscopic moments due to the roll and yaw 
angular velocity of the front assembly, respectively. The sixth 
term is the moment required for lateral (centripetal) 
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acceleration of the front center of mass. The first right-hand 
side term is the steering torque, the second term is the moment 
exerted by the front lateral force at the front wheel contact 
point, and the third and fourth terms are the moments exerted 
by the normal force and by the weight of the front assembly 
when out of the symmetry plane of the motorcycle.  
 

Assuming no slip between the tires and the road yields a 
geometric constraint that can be used to eliminate θ as 
follows. From Figs. 3 and 4,  

f
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  (5) 

and therefore: 
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Also,  
)cos λ(ψβ =   (7) 

and  

tan( ) wCβ R=  (8) 

where β is the effective steering angle. For small angles: 

wCβ R=  (9) 

where R is the turning radius, and 
.

V θR =  (10) 

 
Combining (7), (9) and (10) yields: 
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Summing (6) and (11) yields: 
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Figure 3.  Yaw of rear assembly due to steering of front 

 
Figure 4.  Turning motorcycle viewed from above 

Finally, substituting (12) into (2) and (4) yields the 
linearized equations of motion that are used to design the 
controller: 
 
Roll equation: 

1 2

21 1 2

f f xx xx
yy t t y yz yz

w w w f r

fxx xx xx
t t

f w w f r

t t
w

C C I ICosT x m gh x F T V T
C C C r r

CI I ICosCos m h V
r C C r r

Cosm h g M
C

λ

χ

    λ′− + + ψ + − + −        
  λ− λ − ψ + − + −       

λ− + ν ψ =


 (13) 

 
Steering equation: 
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IV. CONTROLLER DESIGN 
A feedback control loop was designed to stabilize the 

motorcycle for speeds ranging from 2.5 [m/s] to 6.5 [m/s]. All 
the physical properties of the motorcycle, such as masses, 
moments of inertia and locations of centers of masses were 
measured or determined experimentally (see Appendix). A 5-
15% uncertainty was considered in eight of these parameters 
(see Appendix) and the quantitative feedback theory (QFT, 
e.g. [10]) approach was used to design a cascade controller as 
depicted in Fig. 5, using the software developed in [11]. 
Following the standard QFT procedure, design specifications 
for the outer loop were defined in time-domain and translated 
into frequency-domain specifications (Fig. 6). In addition, it 
was required that the sensitivity of both loops be smaller than 
8 dB for all frequencies, which ensured stability. The feedback 
controller of the outer loop (G1) was designed assuming that 
the inner loop would be sufficiently regulated so that it could 
be approximated temporarily as 1. A simple proportional gain 
that brought the bandwidth within the desired range was used 
(Fig. 7): 

  
1 15G =  (15)  

 
After designing G1, the tolerance and sensitivity bounds for 

the inner loops were computed (Fig. 8) and the following 
controller was found to meet the specifications: 
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Figure 5.  Cascade control loop 
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Figure 6.  Design specifications in the time domain (bottom frame) and 

frequency domain (top frame) 

 
Figure 7.  Outer loop sensitivity bounds and system controlled with G1 under 

the temporary assumption that the inner controlled plant = 1. 

 
Figure 9 shows the actual outer loop recalculated with the 

controller G2. It can be seen that although the actual inner loop 
differed significantly from unity (as assumed at the first design 
stage, Fig. 7), the outer loop remained stable and met the 
specifications.  
 

Finally, the following prefilter was added to adjust the 
system bandwidth according to the specifications (Fig. 10): 
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Since the actual controllers were implemented on a digital 
microcontroller with a sampling rate of 50 Hz, G2 and F were 
translated into their respective discrete-time forms using the 
matched zero-pole translation:  
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The loop-shaping design was checked with these discrete 
controllers and the loops were found to meet the design 
requirements (not shown).  

 

 
Figure 8.  Inner loop sensitivity bounds and system controlled with G1 and G2 

 
Figure 9.  Outer loop sensitivity bounds and system controlled with G1 and G2 

 
Figure 10.  Specifications and closed loop with prefilter. 

V. SIMULATION RESULTS 
Before carrying out actual tests with the motorcycle, 
simulations based on (13) and (14) were conducted to check 
the ability of the controllers to stabilize the motorcycle over 
the desired range of speeds. The Matlab Simulink model is 
shown in Fig.11, and it can be seen that quantizers were 
included to account for the resolutions of the sensors and 
actuator. Typical results are presented in Figs 12 and 13 that 
show the roll angle and the steering angle in response to  
 

• a 10 degrees step command at time 0 

• a 10 Nm steering torque disturbance between t = 3 and 
t=3.1 seconds  



         

 
Figure 11.  Simulilnk block diagram model  

  
• a 100 Nm roll torque disturbance between t = 4 and 

t=4.1 seconds. 

In Fig. 12 the various curves correspond to different 
parameter values and velocities. It can be seen that for all 
parameter values and velocities the motorcycle remains stable 
despite the strong disturbances. 
 

Figure 13, which presents the steering angle for forward 
velocity of 4 [m/s], shows that the initial direction of steering 
is opposite to its steady state value, which is due to the non-
minimum phase nature of the steering angle response to a 
desired roll angle and is known by motorcyclists as "counter 
steering".  
 

It must be emphasized that although much faster 
controllers with higher bandwidths could be synthesized to 
yield better simulated performances, in practice it was 
observed that such controllers resulted in awakening un-
modeled vibration modes of the motorcycle (due to chassis 
flexibility) and resonances due to nonlinearities in the loop 
(such as the backlash of the steering motor gear, minor as it 
may be). In addition, the controllers were intentionally kept as 
simple as possible since this allowed operation of the 
microcontroller in fixed-point mode, which ensured fast 
calculations. Attempts to implement more complex controllers 
that required much slower calculations performed in floating-
point mode showed that the disadvantages of the slower 
computations outweighed the theoretical benefits of such 
complex controllers. 

VI. EXPERIMENTS 
Experiments using the motorcycle described in Section II 

were conducted, and short video clips of these tests can be 
found at   
http://www.technion.ac.il/~linkerr/unmanned_motorcycle . 
These tests validated the ability of the controller to stabilize 
the system. However, due to the limited memory space 
available in the microcontroller, continuous recording of the 
roll angle and roll rate was not possible. Therefore, a data-
logging device is being added for this purpose and detailed 
results will be presented in a future paper.  

 
Figure 12.  Simulated roll angle for various speeds and parameter values 

 
Figure 13.  Simulated steering angle for speed of 4 [m/s] 

VII. CONCLUSION 
Linearized equations of motion for a motorcycle were derived, 
and the various parameters included in the model were 
estimated by simulation and/or CAD (Computer Aided 
Design) modeling. This model was used to design a robust 
cascade feedback controller that stabilizes the motorcycle for 
velocities ranging from 2 [m/s] to 6.5 [m/s]. After validation 
of the controller through simulation, the controller was 
implemented on an experimental radio-controlled scooter and 
the tests demonstrated the ability of the controller to stabilize 
the system.  
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APPENDIX  
Model parameters 
Parameter Description Measured 

Value 
Cw Wheel base 1.08 [m] 
Cf Mechanical trail 86.53 [mm] 
λ Steering head angle 27˚ 
rr Rear wheel radius 0.205 [m] 
Ixx1 Front wheel inertia, about 

wheel axis 
0.0431 [kgm2] 
 

lr 
 

Horizontal distance from rear 
contact point to rear COG 

0.4 [m] ±15% 

hr 

 

Vertical distance from rear 
contact point to rear center of 
mass 

0.4096 [m] 
±15% 

mr Mass of rear assembly 105.3572 [m] 
±15% 

Iyyr yy moment of inertia of rear 
assembly, about front COG, 
measured in rear coordinate 
system  

4.7235 [kgm2] 
±15% 

Izzr zz moment of inertia of rear 
assembly, about front COG, 
measured in rear coordinate 
system 

11.2341 
[kgm2] ±15% 

Iyzr yz product of inertia of rear 
assembly, about front COG, 
measured in rear coordinate 
system 

0.2204[kgm2] 

mf Mass of front assembly 13.9242 [kg] 
±5% 

lf Horizontal distance from front 
COG to front tire contact 
point 

-0.1073 [m] 

hf Height of front COG 0.4110 [m] 
Ixxf  xx moment of inertia of front 

assembly, about front COG, 
measured in front coordinate 
system 

1.1421 [kgm2] 

Iyyf yy moment of inertia of front 
assembly, about front COG, 
measured in front coordinate 
system 

1.1467 [kgm2] 
±15% 

Izzf zz polar moment of inertia of 
front assembly, about front 
COG, measured in front 
coordinate system 

0.0530 [kgm2] 
±15% 

Iyzf yz product of inertia of front 
assembly, about front COG, 
measured in Front coordinate 
sys. 

-0.0120 [kgm2] 

Rf Front wheel radius 0.205 [m] 
 

Ixx2 Polar mass moment of inertia 
of rear wheel, about wheel 
axis 

0.0431 [kgm2] 
 

ψ Steering angle  
χ Roll angle  
θ Heading angle of motorcycle  
d Distance of front COG from 

steering axis 
4.5 [mm] 

 
Constitutional relationships 
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