
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE                              CIS 2008 
 

An Improved Particle Swarm Optimization Algorithm 
Based on Velocity Updating 

 

Jinglei Guo       Zhijian Wu      Zhejun Wu 
State Key Lab of Software Engineering   

Wuhan University 
Wuhan, China 

guojinglei@mail.ccnu.edu.cn,      zjwu9551@sina.com    jayily1011@163.com  
 

 
 

Abstract—The particle swarm optimization is a stochastic 
optimization technique for finding optimal regions of complex 
problems through the interaction of individuals in the swarm. In 
this paper the search trajectory of particle is analyzed. Based on 
the behavior of each particle, the factors which affect the 
convergence and the convergence rate are discussed.  
Furthermore, an improved particle swarm optimization 
algorithm is proposed based on the new velocity updating 
equation. The new algorithm is applied to some benchmark 
problems, the numerical experiments show that the new 
algorithm has better performance than the standard PSO and 
PSO with inertia weight. 

Keywords—convergence precision, particle trajectory, 
convergence rate, particle swarm, social weight 

I.  INTRODUCTION  
Particle swarm optimization (PSO) is an evolutionary 

computation technique inspired by natural swarm behavior of 
searching food [1]. The PSO algorithm is first introduced by 
Eberhart and Kennedy [2]. In PSO, a member in the swarm, 
called a particle, represents a potential solution which is a 
point in the search space. Each particle moves with an 
adaptive velocity and stores the best position for the search 
space that has ever visited. The particle adjusts trajectory 
towards its own previous best position and the best previous 
position attained by any member of the whole swarm. The 
PSO algorithm performs well on many optimization problems. 
However, PSO is easy to relapse into local optimum in solving 
complex optimization problems and shows the slow 
convergence velocity in the late stage. In [3], Eberhart and Shi 
adopt an inertia weight in PSO algorithm. PSO with inertia 
weight shows superior performance on the convergence 
velocity. But it is also easy to run into local optimum. A PSO 
with a constriction factor is introduced by Clerc and Kennedy 
[4]. Some researchers investigated hybrid algorithm by 
combing PSO with other search techniques such as mutation, 
crossover, and so on [5]-[10]. With the accumulation of 
experience, PSO has been successfully applied to many 
optimization problems in engineering [11]-[13]. 

This paper is organized as follows. Firstly, section Ⅱ 
introduces the standard PSO and the PSO with inertia weight. 
Then, an improved PSO algorithm is proposed based on the 

analysis of particle trajectory in section Ⅲ. In section Ⅳ some 
numerical experiments are conducted. Finally, the discussion 
and conclusion are given in section Ⅴ. 

II. PARTICLE SWARM OPTIMIZATION ALGORITHM 
Each particle in swarm has its own velocity and position in 

different time. D is the dimension of the search space. The 
formula of updating position and velocity are described as 
follows: 

   
)(*2*

)(*1*

2

11

tt

tttt

xgbestrandc
xpbestrandcvv

−+
−+=+ ,                   (1) 

    11 ++ += ttt vxx ,                                  (2) 

where },,,{ 21 tDttt vvvv =  and },,,{ 21 tDttt xxxx =  are the 
velocity and position of the ith particle at time t; tpbest  is the 
best previous position that the ith particle has ever visited; 

tgbest  is the best position discovered by the whole position. 
1c  and 2c  are the cognitive parameter and social parameter 

respectively, both are positive number. 1rand  and 2rand  are 
random number in the range ]1,0[ . The velocity equation has 
three elements: the current velocity of particle, the recognition 
ability which presents itself experience of the particle and the 
social part which shows the ability of information sharing in 
swarm. 

Since the PSO has been put forward, some researchers  
commit to improving the performance of PSO algorithm. In 
[3], Eberhart and Shi introduce inertia weight ω  into (1), the 
velocity formula is updated as 

)(*2*
)(*1*

2

11

tt

tttt

xgbestrandc
xpbestrandcvv

−+
−+=+ ω

.                     (3) 

The inertia weight ω  is used to balance the global and 
local search abilities. A large inertia weight is more 
appropriate for global search, and a small inertia weight 



         

facilitates local search. In [3], ω  decreases linearly from 0.9 
to 0.4.  

The PSO is prone to fall into the local optimum position 
with too small velocity and probably skips over the global best 
position with a too large velocity. Thus, the velocity of particle 
is limited between a low bound minv  and an upper bound maxv  
in some PSO algorithms. 

III. PARTICLE TRAJECTORY ANALYSIS AND IMPROVED PSO 
ALGORITHM 

Eberhart and Shi propose an improved method in which 
inertia weight is gradually reduced during evolution, but the 
theory analysis of the decreasing inertia weight is not 
mentioned. In this section, the particle trajectory and 
convergence about PSO are discussed.  

    Let 111 randc ∗=ϕ , 222 randc ∗=ϕ , 21 ϕϕϕ +=  and 
)()( 2121 ϕϕϕϕ ++= tt gbestpbestp . Equations (2) and (3) can 

be translated into  

    )(1 ttt xpvv −+=+ ϕω .                           (4) 

By using (4), (2) can be changed to  

    )(1 tttt xpvxx −++=+ ϕω .                      (5) 

Then, let tt xpy −= . Equations (4) and (5) can be 
transformed into 

    ttt yvv ϕω +=+1 , 

    ttt yvy )1(1 ϕω −+−=+ .                     (6) 

So, (6) can be described in matrix form 

tt HBH ⋅=+1 ,                                  (7) 

where 



=

t

t
t x

vH , and 





−−= ϕω
ϕω

1B . 

Suppose that we know the ith particle’s initial state 0H . 
Through iteration method, (7) can be deduced to 

0
1

1 HBH t
t

+
+ = .                                 (8) 

A. PSO Convergence Analysis 
Firstly, the definition of the sequence convergence in 

mathematics should be discussed.  

Definition 1: Let }{ na  be a sequence and let A  be a fixed 
number. If for any given 0>ε , there is a positive integer N 
such that the inequality ε<− Aan  is true for all Nn > , then 
we say the sequence has the limit A , which is denoted 
as Aann

=
∞→

lim . The sequence is also said to converge to A . 

    Theorem 1: A nn×  matrix X  is diagonalizable if and 
only if X  has n distinct eigenvalues. 

    Suppose that 1e  and 2e  are the distinct eigenvalues of 
B . There exists a matrix 22×Y  which make the flowing formula 
true. 

    



==−

2

11

0
0
e

eLYBY                              (9) 

    Let tt YHS = , (7) and (8) can be changed to  

    tt SLS ⋅=+1 ,                                   (10) 

    0
1

1 SLS t
t ⋅= +
+ .                                (11) 

    From the definition 1 and theorem 1, theorem 2 is 
deduced.  

Theorem 2: 0lim =
∞→ tt

S iff 1<ie  for all eigenvalues ( ie ) of 







−−= ϕω
ϕω

1B .  

The characteristics of matrix B are described as follows.  

    1) The determinant value of matrix B  is equal to ω , 
ω=jetB . 

    2) The eigenvalues of B  are 
2

)1(
2,1

∆±−+= ϕωe , 

where ωϕω 4)1( 2 −−+=∆ . 

      a) If 0≥∆ ( w21 ≥−+ ϕω ), the eigenvalues of B  are 
two real numbers. 

      b) If 0<∆ ( w21 <−+ ϕω ), the eigenvalues of B  are 
two complex numbers. 

    3) The product of eigenvalues is equal to ω , i.e. 
ω=⋅ 21 ee . 

B. PSO Convergence Rate 
In PSO algorithm, the eigenvalues 2,1e  have great influence 

on convergence rate of algorithm. 

Definition 2: Let }{ kxA = and }{ kyB =  be sequence with 
limit ς  and ξ  respectively. If 0)()(lim =−−

∞→
ςξ nnn

xy , that is 
said that B  converges faster than A . 

From the above preliminary discussion, theorem 2 is 
deduced. 

Theorem 2: The PSO algorithm converges faster when the 
eigenvalue 0→ie . 

Proof: Suppose that 0
1''

1 SLS
t

t ⋅=
+

+  and 0
1

1 SLS t
t ⋅= +
+ . So 



         









=









⋅









==−−

−
++

++

n

n

n

n

n

n
nn

tt

ee
ee

e
e

e
eLLSS

)(0
0)(

0
0

0
0)0()0(

2
'
2

1
'
1

1

2

1
'
2

'
111'

1
'

1

.     (12) 

From definition 2 we know '
1+tS  converges faster than 1+tS  

iff 1' <ii ee .That is ii ee <' . 

Theorem 3: When 0→ω , the PSO gets higher 
convergence rate. 

    Proof: From theorem 2 we know the PSO algorithm 
converge fast if e tends to 0. If ∆→−+ 2)1( ϕω , 02,1 →e . That 

is ωϕωϕω 4)1()1( 22 −−+→−+ . We can get 0→ω . 

The inertia weight ω  decreases linearly from a large value 
(0.9) to a small one (0.4) during the PSO run. At the beginning 
of the run, PSO has more globally search ability because of the 
large inertia weight, whereas at the end of the process, it has 
more local search ability and has high efficiency in 
convergence because of the small inertia weight. From above 
discussion, we proposed an improving velocity formula, 

)(*)21(*
)(*1*

2

11

tt

tttt
xgbestc

xpbestrandcvv
−−+
−+=+

ω
ω                (13) 

In (13), we bring a new social weight )21( ω−  to the social 
part. When the inertia weight decreases, the social weight 
increases. The small social weight makes the global best 
position tgbest  have minor impact on the velocity updating. So 
at the beginning run, PSO with large inertia weight and small 
social weight is conductive to global search. At the end of the 
run, the large social weight makes the best position’s 
information have a great effect on the swarm search behavior. 
So PSO with small inertia weight and large social weight 
facilitates information sharing and improves the convergence 
rate at the end of the run. 

The structure of the PSO with social weight (SWPSO) is 
described as follows. 

Begin 

Initialize particle swarm 

{ randomly generate the position ( ix ) of each particle and 
the associated velocity ( iv ); 

ipbest  is equal to ix  for each particle i ; 

calculate the best position of the swarm ( gbest ); 

} 

while not {stopping criterion} do 

{  update the velocity of each particle by using (13); 

update the position of each particle by using (2), and 
limit the position between ],[ maxmin xx ; 

calculate the ipbest  for each particle i ; 

    calculate the gbest  of the swarm; 

} 

End 

IV. EXPERIMENT RESULT AND DISCUSSION 

A. Test Function 
In order to demonstrate the performance of the new 

algorithm SWPSO proposed in this paper, the numerical 
experiments are conducted on the following five benchmark 
functions.  

1) Sphere function 

      ∑
=

=
n

i
ixxf

1

2
1 )( .                               (14) 

2) Rosenbrock function 

       ))1()(100()( 2
100

1

2
12 −+−=∑

=
+ i

i
ii xxxxf .         (15) 

3) Rastrigrin function 

       ∑
=

+−=
n

i
ii xxxf

1

2
3 )10)2cos(10()( π .             (16) 

4) Greiwank function 

       1)cos(
4000

1)(
1 1

2
4 +−= ∑ ∏

= =

n

i

n

i

i
i

i
x

xxf .          (17) 

5) Schaffer function 

       222

222

5 ))(001.00.1(
5.0)(sin

5.0)(
yx

yx
xf

++
−+

−= .        (18) 

    For the above five functions, the dimension, search 
range and the optimal value are listed in table Ⅰ. 

TABLE I.  THE PARAMETERS USED IN BENCHMARK FUNCTION 

Function Name Dimension 
n 

Range 
[xmin,xmax] 

Optimal 
Value 

Sphere function f1 30 [-100,100] 0 

Rosenbrock function f2 30 [-2.048,2.048] 0 

Rastrigrin function f3 30 [-5.12,5.12] 0 

Griewank function f4 30 [-600,600] 0 

Schaffer function f5 2 [-100,100] 1 



         

B. Parameter Settings and Experimental Results 
We use two different methods to evaluate the algorithm’s 

performance: 1) assessing the convergence precision and the 
convergence rate with the fixed generation of evolution; 2) 
assessing the generation of evolution for achieving the 
precision which is set ahead. 

1) The convergence precision and rate analysis with fixed 
generation 

These experiments’ goal is to compare three PSO 
algorithms including the SWPSO, PSO with inertia weight 
(WPSO)[3] and standard PSO[2]. The population size is set to 
30 and the maximum number of iterations is set to 5000. The 
cognitive parameter 1c  and social parameter 2c are set to 2. 
The inertia weight ω deceases linearly from 0.9 to 0.4. In all 
experiments, the algorithms are run 30 times, the mean values 
of optimal solutions for 30 runs are presented in table Ⅱ. 
Figure 1 shows the fitness evolutionary curves of five 
Benchmark functions for three algorithms. 

TABLE II.  THE MEAN VALUE IN FIVE BENCHMARK FUNCTIONS 

Function Name PSO WPSO SWPSO 

Sphere function f1 15948.073267 0.000000 0.000000 

Rosenbrock function f2 888.126245 57.282964 12.1022187 

Rastrigrin function f3 264.111239 57.7570860 27.271351 

Griewank function f4 141.592531 0.028655 0.006781 

Schaffer function f5 1.000000 1.000000 1.000000 
 

0 1000 2000 4000 50003000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

iteration number

fit
ne

ss

PSO

WPSO

SWPSO

                      
 (a) Sphere function 

                       
(b) Rosenbrock function 

fit
ne

ss

 
                (c) Rastrigrin function 

 

fit
ne

ss

                  
(d) Greiwank function 

 

fit
ne

ss

                    
(e) Schaffer function 

Fig 1 The convergence characteristics of test functions 
 

By analyzing the values in table Ⅱ and the convergence 
curves in fig 1 , we can conclude that the SWPSO has the best 
performance on the convergence rate and convergence 
precision among the PSO, WPSO and SWPSO for the above 
five functions. 

2) The convergence rate analysis with fixed accuracy 

In these experiments, the population size is set to 30 and 
the maximum number of iterations is set to 10,000. When the 
required accuracy is achieved the optimization process is 
terminated. The required precisions about Benchmark 
functions are listed in table Ⅲ.In table Ⅲ, *f  is the optimal 
value, f  is the experimental value. The parameters are same 



         

as the experiment in 1). Each approach (PSO, WPSO, EPSO) 
runs 20 times for all test functions. Table Ⅳ lists the average, 
maximum and minimum number of iterations needed  for each 
approach and gives the successful rate(SR), where SR=the 
number of run in which precision is achieved/the total number 
of run. 

TABLE III.  THE REQUIRED ACCURACY OF THE FIXED ACCURACY 
EXPERIMENTS 

Function Name Required Accuracy 

Sphere function f1 01.0* <− ff  

Rosenbrock function f2 100* <− ff  

Rastrigrin function f3 125* <− ff  

Griewank function f4 05.0* <− ff  

Schaffer function f5 0001.0* <− ff  

 

TABLE IV.  THE RESULTS FOR THE FIXED ACCURACY EXPERIMENTS 

Iterative Times  Benchmark 
Code Mean Min Max 

SR 

PSO 10000  10000 10000 0% 

WPSO 5375 5265 5517 100% 1f  

SWPSO 1221 1192 1287 100% 

PSO 10000 10000 10000 0% 

WPSO 4500 3369 10000 90% 2f  

SWPSO 765 591 784 100% 

PSO 10000 10000 10000 0% 

WPSO 4364 3732 4931 100% 3f  

SWPSO 933.5 765 1102 100% 

PSO 10000 10000 10000 0% 

WPSO 7703 6639 10000 90% 4f  

SWPSO 2087 1746 2375 100% 

PSO 1038 1038 1038 100% 

WPSO 897 50 1260 100% 5f  

SWPSO 216 216 216 100% 

 

From table Ⅳ, it can be seen that SWPSO achieves the 
target precision for all five Benchmark functions, but PSO 
obtains the target precision only for Schaffer function. 
SWPSO uses the least iteration times for the same goal 
precision and the same function among PSO, WPSO and 
SWPSO. 

V. CONLUSIONS 
From the individual particle’s point of view, this paper 

studies the convergence and the convergence rate of PSO. 
Through research work, we discover the coefficients in 
velocity equation play an important role in convergence. 
Based on the analysis of the particle trajectory, an improved 
velocity updating method is proposed. In this new method, a 
social weight is employed into velocity equation. Social 
weight determines the impact of the global best position. PSO 
with large inertia weight and small social weight has a strong 
global search capability. When inertia weight is small and 
social weight is large, PSO facilitates local search and is 
conductive to convergence.  

Finally, the PSO with social weight is tested. In the 
experiments with fixed generation, SWPSO obtain remarkably 
higher precision than PSO and WPSO. Under the fixed target 
precision, SWPSO greatly reduces the iteration number. By 
comparing the results and the convergence graphs among 
these PSO algorithms, SWPSO has good search ability and 
converges fast. SWPSO also has good performance for 
balancing the global and local search. 

 

REFERENCES 
[1] Z. Michalewicz, Genetic Algortihm + Data structure = Evolution Programs, 

Springer-Verlag, Berlin: Heidelberg, 1996 
[2] J. Kennedy, and R. Eberthart, “Particle Swarm optimization”, Proceedings 

of the IEEE Congress on Neural Networks, 1995, pp.1942-1948 
[3] R. Eberhart, and Y. Shi. “Comparing inertia weights and constriction Factor 

in particle swarm optimization”. Proceedings of the IEEE Congress on 
Evolutionary Computation, San Diego, CA, 2001, pp. 84-88 

[4] M.Clerc and J.Kennedy, “The particle swarm – explosion, stability, and 
convergence in a multidimensional complex space”, IEEE Tans. Evol. 
Comput., vol. 6. Feb, 2002, pp.58–73. 

[5] P. J. Angeline, “Using selection to improve particle swarm optimization”, 
Proceedings of the IEEE Congress on Evolutionary Computation, 
Anchorage, AK, 1998, pp.84-89 

[6] M. Lovbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm, 
optimizer with breeding ans subpopulations,” Proceedings of the IEEE 
Congress on Evolutionary Computation, 2001, pp.469-471 

[7] X. Xie, W. Zhang, and Z. Yang, “A dissipative particle swarm 
optimizatopn,” Proceedings of the IEEE Congress on Evolutionary 
Computation, 2002, pp.1456-1461 

[8] F.Bergh and A.Engelbrecht, “A cooperative approach to particle swarm 
optimiation”,  IEEE Tans. Evol. Comput., vol. 8. Jun, 2004, pp.225–239. 

[9] T. Krink, J. S. Vesterstroem, and J. Riget, “Particle swarm optimization 
with spatial particle extension,” Proceedings of the IEEE Congress on 
Evolutionary Computation, Honolulu, HI, 2002, pp.1474-1479 

[10] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global 
minimizers through particle swarm optimization”, IEEE Tans. Evol. 
Comput., vol. 8. Jun, 2004, pp.211–224. 

[11] M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada and A. Elmaghraby, 
“An approach to multimodal biomedical image registration utilizing 
particle swarm optimiztion”, IEEE Tans. Evol. Comput., vol. 8. Jun, 
2004, pp.289–301. 

[12] L. Messerschmidt and A. Engelbrecht, “Learning to play games using a 
PSO-based  competitve learning approach”, IEEE Tans. Evol. Comput., 
vol. 8. Jun, 2004, pp.280–288. 

[13] Y. D. Vall, S. Mohagheghi and R. G. Harley, “Particle swarm 
optimization: basic concepts, variants and applications in Power 
Systems”, IEEE Tans. Evol. Comput., vol. 12. Apr, 2008, pp.171–195. 

 


