

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

A Novel Decentralised Software Process Approach
For Realtime Navigation Of Service Robots

 S. Veera Ragavan,
School of Engineering,

Monash University Sunway Campus,
Bandar Sunway, Selangor, Malaysia.
Veera.ragavan@eng.monash.edu.my

Velappa Ganapathy,
.School of Engineering,

Monash University Sunway Campus,
Bandar Sunway, Selangor, Malaysia.

velappa.ganapathy@eng.monash.edu.my

Abstract— We present a novel decentralised architecture
for navigating and controlling a Service Robot based on
control of processes rather than control of discrete actions.
In a world of synchronous, tightly coupled multilayered (n-
tired), hierarchical systems for Service Robot applications
we propose an alternate architecture that is asynchronous,
loosely coupled to uncoupled, process based, and safe-fail.
The Modules and Components that have been developed
and tested for this asynchronous control architecture are
discussed and reported in this paper. The software
engineering concepts introduced make implementing the
control systems more flexible so that they can be
dynamically reconfigured with ease and can be upgraded
or adapted in a flexible manner. The resulting architecture
is simple, and can support a wide range of trade-offs that
can be manipulated easily at run-time.

Keywords—GPS, GIS, Service Robots, Robot Navigation,
GSM, OTA (over the air), System Architecture and
Design.

I. INTRODUCTION
Traditionally the control of generalised Service Robots

would require well-defined activities tightly coupled across
different hierarchies on single platform i.e. monolithic control
architecture.

In spite of an explosion of technology and methods, the
Service Robots are still not complex and in their early stages of
development. Many researchers specialize in one or more
areas/topics, which usually involve development of algorithms.
However, in order to test the competence on a real robot, a
complete system is needed involving a process based approach.
Many of these are required to run in parallel and need to
communicate both synchronously and asynchronously. It has to
also accommodate changing application requirements,
incorporate new technology, interoperate in heterogeneous
environments, and maintain viability in changing
environments. This puts a tremendous burden on the developer
if he or she has to build everything from scratch and hence a
delay in “Market ready” products.

We present a novel decentralised architecture for navigation
and control of Service Robots based on control of processes
rather than control of discrete actions. The current approach is

a loosely coupled integration of different process technologies
and computational mechanisms. It is our firm contention that a
well designed software architectural framework is necessary to
effectively leverage microcontrollers (read Service robots) ,
wireless networks (read Telematics, distributed wireless
networks) and process orchestration (read service) to address
problems of complexity, scale and reliability of networked
Service Robots.

This paper discusses our domain, existing architectures,
component and processes execution techniques and the
approach we took to integrate these to form a distributed
decentralised web enabled service that is robust and safe-fail.
The resulting architecture is simple, and can support a wide
range of trade-offs that can be manipulated easily at run-time.

II. THE SERVICE ROBOT DOMAIN

A. Layered Architecture and Hybrid approaches
Early robotic systems for single functions were designed as

control systems with a clear feedback model. A sensor
generates feedback, which is compared to the expected
feedback which is derived from a model of the system. Any
deviation is used to update the control signal so as to minimize
the error over time. As complexity grew and the robots needed
to perform more than one function, the perception-action loop
was extended to have a planning component. This was a natural
linear extension beyond traditional control towards modern day
Service Robots. This resulted in a hierarchical system having
an elaborate model of the world, using sensors to update this
model, and to draw conclusions based on the updated model.
Obviously it does not perform very well in dynamic and
unpredictable environments as the sensors and real world
models are usually inadequate. That the actions are not a direct
consequence of perception is perhaps the reason why it is also
called the sense-plan-act paradigm

Reactive approaches are often capable of autonomously
exploring new regions in the environment and, as there is no
fixed plan, they are generally able to respond rapidly to any
changes that may occur in the operating environment.
Moreover, they are more tolerant to uncertainties in sensor
measurements and the errors. Robots that were running reactive
behavior based systems performed very well, also in changing
environments. However, the purely reactive scheme is not
capable of performing complex tasks. A software architecture

based on purely reactive approach is usually monolithic and
requires rewriting of control software for even small changes in
the task, or environment.

On the other hand deliberative navigation methods
generally assume that the obstacles in the environment in
which a robot moves are known in terms of their physical
location and dimensions. The navigation task is then to plan a
path that is both collision free and satisfies certain optimization
criteria. The classical deliberative approach to navigation is
based entirely on planning and on explicit symbolic models of
the world exhausts the computation resources all along the way
[1]. Even more, it does not seem to operate successfully in a
dynamic changing world. It has difficulties in dealing with
sensors' errors as well. The models it uses are not realistic; it
appears that the world is too complicated to be presented
completely. Whenever an attempt to create a complete model
that includes all the essential knowledge needed to deal with
the uncertainties and surprises of the real world, the model
became enormously big and the planning too expensive in time
and computer resources.

B. Hybrid Approaches
A hybrid approach, combining low-level reactive behaviors

with higher level deliberation and reasoning, has since then
been common among researchers [2, 3]. For a long time now
the hybrid systems are usually modeled as having three layers
as shown in Figure 1; one deliberative, one reactive and one
middle layer [4] and this approach remains vastly
unchallenged.

Figure 1. Three Layer ATLANTIS architecture [4]

The Lowest Layer or control layer is mainly reactive with
no decision making and the process computations at this layer
use the least amount of CPU time and tightly coupled to the
Sensor-Actuator layer.

The Middle level or grey layer bridges the gap between the
two layers [3] and is usually a Rule based layer or a finite state
machine deciding which set of behaviours should be running. It
also acts as a supervisory layer and catches failures of the
reactive layer and then executes deliberative plans. The highest
level of activities like planning, world modeling is done at this

level and these are the areas that need significant computing
resources. The advances in distributed computing techniques
and communication infrastructure are leveraged in the
proposed architecture to offer a decentralized control system.

III. DECENTRALISED HYBRID SOFTWARE APPROACH
The hybrid deliberate/reactive approach has proven very

successful, practical and robust in a large number of
implementations, and it appears that there is general agreement
among the research community that this is the best type of
architecture for Service Robots. However, some types of
modules are hard to force into any particular layer. In a general
framework, it is imperative that no special architecture is
preferred for enforcement and a good support for builders of
the hybrid deliberate/reactive architecture is important so that
the framework supports parallel execution of behaviours. This
is precisely where this proposed architecture scores above the
other architectures.

The major problems for robotics today lie, not in the
hardware but on the software side. There are plenty of well
functioning and robust algorithms developed by competent
researchers readily available [5]. Each new implementation
would provide significant gains in the performance and
capabilities but it will be lost due to non portability and reuse
issues.

While the lowest layer or reactive layer has to be embedded
on the robot controller due to the obvious fact that this layer
requires the highest response and lowest CPU time, the
Middleware layer helps us to switch from the repository of
allowable robot behaviours. What was essentially an AI Rule
Based Behaviour Switching now graduates to a Location Based
Behavior Switching in the current architecture.

In contrast to the “earlier” or traditional approaches to
software reuse, which are built on the paradigm of a set of
libraries containing many small building blocks, object-
oriented frameworks allow the highest common abstraction
level between a number of similar systems to be captured in
terms of general concepts and structures. The result is a generic
design that can be instantiated for each object system
constructed [19].

The Object oriented framework [11, 12, and 13] is ideally
suited for capturing the elements common to a family of related
systems. In this sense, the framework is essentially a large
design pattern capturing the essence of one specific kind of
object system. The bulk of the system functionality is captured
in the framework, which is maintained as a single entity. Each
software system using framework is an instantiation of that
framework [19].

In a distributed system or multiprocessor, middleware
allocates system resources, giving requests to the operating
systems on the individual processors to implement those
decisions. One of the key differences between middleware and
software libraries are that middleware manages resources
dynamically. In a uniprocessor, the operating system manages
the resources on the processor (for example, the CPU itself, the
devices, etc.) and software libraries perform computational
tasks based on those allocations.

Overview of some relevant software systems (implemented
architectures) can be found in [20.] Examples of existing
systems are AuRA, Task Control Architecture, Saphira,
Teambots, Smartsoft, Mobility, Player/stage, MIRO [20],
LICA [19], ORCA [18], BERRA [16], PeLote [15] and
Loosely coupled Layered architecture for Robot Autonomy
CLARAty.[14].

Middleware is software infrastructure that has been used to
successfully integrate and manage software for complex
distributed systems [8]. Middleware is generally constructed to
provide communication between application software and
processes in P2P, client-Server or Publish - Subscribe models.
Most middleware addresses a particular domain such as web
services, RTOS etc and define simple and uniform
architectures for developing applications in the domain.
Standard mechanisms for defining software interfaces and
functionalities encourage the development of well-defined and
reusable software. The Middleware concepts introduced make
implementing the control systems more flexible so that they
can be dynamically reconfigured with ease and can be
upgraded or adapted in a flexible manner. An appropriate
Middleware would allow software components to be integrated
easily and provide standard functionalities such as support for
robustness and fault tolerance, which can be easily reused in
most applications.

We present a novel decentralized architecture as shown in
Figure 2 for navigating and controlling a service robot based on
control of processes rather than control of discrete actions.

By Process we mean a system element that is independent,
and can be freely deployed and versioned. This approach
loosely couples the various layers into process components that
are well defined entities that can be replaced or made redundant
without affecting the rest of the systems. It is shown here how
they can be developed and tested separately and integrated later
building on the Middleware Framework to provide a systematic
approach to developing software that would be easy to
integrate, manage, and reuse.

Figure 2. Decentralized System Architecture

IV. IMPLEMENTATION, INTEGRATION AND EXPERIMENTAL
TEST SETUP.

The implementation of the distributed software engineering
concepts introduced in the earlier section permits our Service
Robot application to be dynamically reconfigured with ease

and to be upgraded or adapted in a flexible manner using the
P2P, Client Server and Producer-Consumer models.

Figure 3. Producer Consumer Middleware Model

The robot communicates to communication server (GPRS
Data Acquisition Module, Data Validation and Command
Dispatch Modules located in different physical locations
through a secure web connection) in a P2P mode using GPRS /
TCP/IP. We utilized Falcom StepIII Telematic modules [9]
with Middleware (PFAL commands) to dynamically configure
and process the sensor modules like GPS units, distance
sensors and video camera. The communication between the
Telematic terminal and the robot GPIO’s (General Purpose
Input and Outputs) is shown in the Figure 4.

Figure 4. Telematic unit – Function Blocks in Falcom - Step III.

The Robot communicates with the sensors through the
event channels in the Publish – Subscribe mode through the
GPIO’s. The control components are software modules that
perform the tasks of path planning, goal seeking, obstacle
avoidance target tracking and localisation. The sensor

components consist of device drivers and hardware. The
sensors used here are GPS, vision systems and IMU and there
exists a loose coupling through the Middleware providing an
abstract communication channel referred to in the Figure 3 as
Event Channel. The sensors register with the event channel as
publishers of data (e.g. camera as image data and GPS as
position data) and Process components (e.g. Obstacle
avoidance and target tracking) are subscribers. Subscribers get
the data from whatever is available from the publishers and
new publishers can be added at will.

A. GPRS Data Acquisition Module
A heterogeneous asynchronous communication process

spread over four process layers and two physical layers is at the
core of this design process as shown in Figure 5. The
Communication Server Module was developed based on
Client/Server architecture to acquire the GPS data over a GPRS
network using a TCP/IP connection. In regions of poor GSM
coverage the module switches to SMS for command transfer.
GPS devices running on GSM/GPRS SIM cards were
configured as clients to stream positional information to a Test
Communication Server which had to be located external to the
university network due to static IP/Firewall restrictions. The
units streamed data directly from GPS devices to an external
communication server which performed the processes of data
acquisition and validation functions before passing on the data
for Data Fusion.

The balance process of the Communication Services such
as data and alert processing, command and alert service
responses and configuration despatches was spread over a
remote system within the university campus through the web.
Therefore, data was collected externally, and the client
application was used to stream the bulk data to the Server for
processing.

Figure 5. Communication Process flow

Data received at the server was validated prior to
structuring based on the starting characters of the string
($GPRMC) and by checking whether the third element in the
string represents character ‘A’, which implies the validity of

the string. Once validated, each string was structured using
Sensor Bridge components.

Figure 6. Spatial Table containing GPS data

Structuring Data and Data fusion is done using Sensor
Bridge. Sensor Bridge is a component suite developed for
Visual Studio 2005. It can incorporate data from different types
of sensors and actuators. It consists of a hierarchy of class
structures designed to manipulate raw sensor data received.
Using Sensor Bridge, data received from different GPS devices
were structured into separate series tables created from Sensor
Bridge Components. Thereafter, the useful information such as
latitude, longitude, time, date and speed were extracted to be
stored for further processing. The inertial measurement
readings obtained through the GPIO of the GPS modules are
also streamed along with the position info to provide for near
real time location awareness.

B. Mobile Object Database and Database Management.
A Mobile Object Database (MOD) system was developed

using MySQL as the data repository to store the processed GPS
data. MySQL is an open source database management system,
noted mostly for its speed, reliability and flexibility.
Furthermore, MySQL incorporates spatial extensions under the
specification of the Open GIS Consortium (OGC), which is an
organization that groups many other organizations that
prescribes standards for GIS data processing. The Mobile
Object Database for this system was developed adhering to the
structure of the geometry types proposed by the OGC. Figure 6
depicts the structure of a spatial table created for a GPS device
using geometry type ‘POINT’ to store latitude and longitude
values.

Figure 7. Filtered and structured Position Information

A database connection between the MIS process and
MySQL was established using a .NET connector component
provided by MySQL. Data processed and structured into series
tables using Sensor Bridge components were written into
separate spatial tables to manage and store Geo-fences and
Route patterns that have either been acquired through reactive
navigation or through route patterns marked on the GIS system
as shown in Figure 7, which can be re-transmitted to the
Mobile robot through GPRS in order to navigate objects
successively.

C. Transmission of Routes and Virtual Boundaries
Geo-Fences are virtual boundaries the robot is supposed to

take to reach the goal or keep away. Geo-Fences and the route

vectors saved in the MOD are retrieved from the application to
be transmitted back to the corresponding Mobile devices as
shown in Figure 8. The Geo-Fences can also be created from
the Maps like Google Earth and the boundary information can
be sent to the Robot through the Telematic unit. PFAL (Device
Middleware) commands were used to configure predefined
routes and virtual boundaries in the GPS devices. For route
configuration, a virtual boundary was created within a 30m
radius for each waypoint in the route as required by the PFAL
commands. Figure 8 depicts the configuration of a route to be
transmitted to GPS devices.

Figure 8. Route planning and Geo-fence configuration “Over The air”

D. Over The Air (OTA) configuration and GPIO Enabling
and Disabling.
The device middleware and the GPRS link enable

configuring and reconfiguring the devices as many times as
required and this is effectively used to change the control
program and actions remotely to use the robot for different
services without having to make any major changes to the
design, hardware or software. Sample configuration scripts sent
over the air to the device is shown below in Figure 9.

Figure 9. Middleware configuration scripts sent over GPRS and SMS

The GPIO’s data requests can be enabled or disabled “on
the fly” through Over The Air Commands to optimise on the
performance of the mobile device that is resource and energy
starved. Video camera for instance which consumes huge
amounts of battery power can be switched on ,off or at
optimised rates at any time based on events or by the operator.
Figure 10 shows the Middleware commands that are sent
through GPRS or SMS to dynamically configure, enable or
reconfigure the GPIO’s.

Figure 10. GPIO’s Enabling and Disabling Events “Over The Air”

E. Geographic Information System (GIS)
A GIS system is a technique that manipulates, integrates

and maps geographical information based on positional
coordinates. (Latitude / Longitude). Many GIS software’s have
been developed and integrated to precisely plot and display
positional information, such as ArcGIS, MapPoint, Google
Maps etc. Companion papers [6,7] describes the GIS system
that was developed along this work as a separate Process to
remotely track the robot on a web page embedding Google
Maps APIs. Google APIs are freely available and accessible on
the internet, and provide satellite maps as well as street maps.
GIS systems incorporate several layers, each providing a
different set of information to represent positional data. Google
APIs provides the ability to embed many types of layers to
enhance the quality of the data representation of the GIS
system. This service as shown in Figure 11 is used to plan the
path, Geo-fence specifications and waypoint location. Like
wise options are available for the robot to be controlled and
commanded over the web as a Tele-robot if need be.

Figure 11. GIS system used for Planning.

V. RESULTS AND DISCUSSION
As a test example the Path Planning and Navigation System

for Service Robots was successfully developed and deployed. It
has also been established that Middleware can be used reliably
to integrate disparate systems and processes and helps in
smooth evolution of Complex Dynamical Systems.

The integration of the process modules was seamless. It has
been established that dynamic heterogeneous systems can be
evolved such as:- an embedded RTOS controller of the robot
communicating through a GPRS mobile network, through a
Windows based communication server that is a client/server
application over TCP/IP, communicating the raw data acquired
over a secure connection to be structured, processed, validated
and fused at a remotely located server running on a different
version of a Windows system across a Firewall, to be further
stored in an Open Source Spatial MOD Database System
running on MySQL, for further reporting and tracking of the
robot movements in near Real Time over a Web based GIS
Tracking system continuously and accurately on a Map and
send the information stored or created such as a Geofence or
Route all the way back to the robot. - all in a few hundreds of

milliseconds. Lastly it should be noted that our hybrid
approach has considerably evolved over time based on lessons
learnt real-time and in distributed systems.

VI. CONCLUSION

Modules and components have been developed for an
asynchronous, loosely coupled to uncoupled, process based,
and safe-fail system as discussed and reported in this paper.
The processes have been successfully deployed across hybrid
and heterogeneous platforms from dedicated RTOS processors
on the robot to distributed and disparate server machines
connected through the World Wide Web. It has also been
established that middleware can be used reliably to integrate
disparate systems and processes and helps in smooth evolution
of Complex Dynamical Systems.

Having demonstrated how these strategies can be
successfully implemented using the distributed networked
software infrastructure such as Middleware, Webware and
Hardware, a major challenge lies as future work in
understanding how to make the most of it especially,

• understanding the tradeoffs between Knowledge

representations that are process based reactive,
deliberative or hybrid and

• how to reduce the risk by managing software related
failures in network controlled systems.

ACKNOWLEDGEMENTS
The authors wish to thank Monash University Sunway Campus
for providing a seeding research grant to purchase GPS
modules, sensors, software and equipment necessary for the
conduct of these experiments.

REFERENCES
[1] R. A. Brooks, Intelligence without Reasoning, IJCAI 91, Sydney,
Australia, Aug.1991.

[2] Arkin, R. C. Integrating behavioral, perceptual, and world knowledge in
reactive navigation, in `Robotics and Autonomous Systems, Vol. 6, pp. 105-
22- year 1990

[3] Cattoni, Roldano (IRST - Istituto per la Ricerca Scientifica e
Tecnologica); Di Caro, Gianni; Aste, Marco; Caprile, Bruno, Bridging the gap
between planning and reactivity: a layered architecture for autonomous
indoor navigation, IEEE International Conference on Intelligent Robots and
Systems, v 2, 1994, p 878-885

[4] Erann Gat, Integrating reaction and planning in a heterogeneous
asynchronous architecture for mobile robot navigation, ACM SIGART
Bulletin, v.2 n.4, p.70-74, Aug. 1991

[5] Ibrahim, M.Y. (Sch. of Appl. Sci. & Eng., Monash Univ., Clayton,
Vic., Australia); Fernandes, A. Study on mobile robot navigation techniques,
IEEE International Conference on Industrial Technology , 2004, pt. 1, p 230-6
Vol. 1

[6] A.U. Alahakone, S.V. Ragavan, "Geographic Information System for Path
Planning and Navigation of Mobile Objects" Proceedings of Conference on
Innovative Technolgoies in Intelligent Systems & Industrial Applications,
Kuala Lumpur , Malaysia. 17th -19th November 2007.

[7] Veera Ragavan, V. Ganapathy, “A General Telematics Framework for
Autonomous Service Robots ”, IEEE on Conference Automation Science and
Engineering, Scottsdale USA, Sept 2007.

[8] Service Continuity in Networked Control Using Etherware Baliga, G.;
Graham, S.; Lui Sha; Kumar, P.R. Distributed Systems Online, IEEE Volume
5, Issue 9, Sept. 2004 Page(s): 2 - 2

[9] Falcom product website –
http://www.falcom.de/fileadmin/downloads/documentation/STEPPIII/STEPPI
II_flyer_v1.0.0_pre_web.pdf

[10] Heck, B.S.; Wills, L.M.; Vachtsevanos, G.J., Software technology for
implementing reusable, distributed control systems, Control Systems
Magazine, IEEE Volume 23, Issue 1, Feb. 2003 Page(s):21 - 35

[11] S. Bagchi and K. Kawamura, “An Architecture of a Distributed Object-
Oriented Robotic System”, Proc. IEEEIRSJ International Conference on
Intelligent Robots and Systems (IROS’92), pp. 71 1-716.

[12] D. J. Miller and R. C. Lennox, “An Object-Oriented Environment for
Robot System Architectures”, Proceedings 1990 IEEE International
Conference on Robotics & Automation, pp. 352-361, 1990.

[13] Helkne Chochon, “Object-oriented design of mobile robot control
systems,” 2nd ISER, Toulouse, France, June 1991, pp. 317-328.

[14] Urmson, C.; Simmons, R.; Nesnas, I., "A generic framework for robotic
navigation" , Aerospace Conference, 2003. Proceedings. 2003 IEEE Volume
5, March 8-15, 2003 Page(s):5_2463 - 5_2470

[15] Kulich, M., Kout, J., Preucil, L., Mazl, R., Chudoba, J., Saarinen, J.,
Suomela, J., Halme, A., Driewer, F., Baier, H., Schilling, K.,
Ruangpayoongsak, N., Roth, H.: PeLoTe – a Heterogeneous Telematic
System for Cooperative Search and Rescue Missions. Urban search and
rescue: from Robocup to real world applications, in conjunction with the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sendai (Japan), September 28, 2004.

[16] Lindstrom, M., Oreback, A., & Christensen, H.I.: BERRA: research
architecture for service robots, Robotics and Automation, 2000. Proceedings
ICRA '00. IEEE International Conference on ,Volume: 4 , 24-28 April 2000
Pages:3278 - 3283 vol.4

[17] Kortenkamp, D., Bonasso, R. P. & Murphy, R., Artifcial Intelligence and
Mobile Robots - Case Studies of Successful Robot Systems, AAAI Press / The
MIT Press. eds (1998).

[18] Anders Oreback & Henrik I. Christensen: Evaluation of Architectures for
Mobile Robotics, Autonomous Robots, Volume 14, Issue 1, January 2003,
Pages 33 – 49

[19] Scott M. Lewandowski, "Frameworks for component-based client/server
computing", Source ACM Computing Surveys (CSUR) archive Volume 30 ,
Issue 1 Pages: 3 – 27

[20] Stefan Enderle, Hans Utz, Stefan Sablatnög, S. Simon, G. K.
Kraetzschmar, G. Palm, “ Miró: Middleware for Autonomous Mobile
Robots”, IFAC Conference on Telematics Applications in Automation and
Robotics – 2001.

