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Abstract—An modified dislocated feedback method is proposed
to acquire the synchronization of the whole unified chaotic
system. This method is based on the Lyapunov stability theory,
and overcome the limitation of the original dislocated feedback
method. Numerical simulations are also provided to show the
effectiveness of the method.

Index Terms—unified chaotic system, Lyapunov stability the-
ory, dislocated feedback, synchronization

I. INTRODUCTION

Since the pioneering work of Pecora et al. in 1990[1], chaos
synchronization has recently attracted great attentions, and a
great deal of efforts have been devoted to its study. Previously,
many different techniques and methods have been proposed
for achieving chaos synchronization, such as, feedback syn-
chronization[2,3], adaptive synchronization[4,5,6], generalized
synchronization[7,8], impulsive synchronization[9,10], etc.

In 1963, Lorenz found the first classical chaotic attrac-
tor[11]. In 1999, Chen and Ueta found another chaotic attrac-
tor[12], which is similar, but not topologically equivalent to the
Lorenz attractor. In 2002, Lü and Chen also found the critical
attractor between the Lorenz and Chen attractor[13]. To bridge
the gap between the Lorenz attractor and Chen attractor, Lü
et al. presented a unified chaotic system[14]. It includes the
Lorenz and Chen systems as two extremes, respectively, and
Lü system as a transition system[15].

Recently, Tao[16] investigated the dislocated feedback
method, which has been used to control the Lorenz sys-
tem[17,18] and the unified system[19], and has also realized
the synchronization of the Lorenz system[16]. However, we
found that it can’t realize the synchronization of the whole
unified chaotic system according to the original dislocated
feedback method, can only do the part when α ≤ 1/29. In
this paper, according to modify the control input ui, i = 1, 2,
an modified dislocated feedback method is proposed to acquire
the synchronization of the whole unified chaotic system. This
method is based on the Lyapunov stability theory, and over-
come the limitation of the original dislocated feedback method.

The rest of this paper is organized as follows. Section
II describes the unified chaotic system. A modified dislo-
cated feedback synchronization is proposed in Section III.
Numerical simulations are provided in Section IV to show the

effectiveness of the proposed method. Section IV gives some
conclusions and discussions.

II. THE UNIFIED CHAOTIC SYSTEM

Fig. 1. Lorenz chaotic attractor

Fig. 2. Lü chaotic attractor

Fig. 3. Chen chaotic attractor
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The unified chaotic system can be described by the follow-
ing differential equations:


ẋ = (25α + 10)(y − x)
ẏ = (28 − 35α)x − xz + (29α − 1)y
ż = xy − 8+α

3 z,
(1)

where α ∈ [0, 1], which contains the canonical Lorenz system
and Chen system as two extremes and Lü system as a special
case. What is interesting is that, as the parameter α changes
continuously from 0 to 1, the resulting system remains con-
tinuously to be chaotic. Obviously, when α = 0, α = 0.8,
and α = 1, it is the Lorenz chaotic attractor, Lü chaotic
attractor and Chen chaotic attractor, as shown in Figs. 1, 2,
3, respectively.

III. MODIFIED DISLOCATED FEEDBACK

SYNCHRONIZATION OF THE UNIFIED CHAOTIC SYSTEM

In Ref.[16], the dislocated feedback method was given
to synchronize the Lorenz chaotic system. However, as this
method is carried on the unified chaotic system, we found that
it can not synchronize the whole unified system, can only do
the part when α ≤ 1/29. In this section, we will synchronize
the whole unified chaotic system through a modified dislocated
feedback method.

A. the synchronization of the unified chaotic system according
to the original dislocated feedback method

Let the system (1) is the drive system, then the response
system is described by


ẋ1 = (25α + 10)(y1 − x1) + u1

ẏ1 = (28 − 35α)x1 − x1z1 + (29α − 1)y1 + u2

ż1 = x1y1 − 8+α
3 z1,

(2)

where u1, u2 are the dislocated feedback gains.
According to the original method of dislocated feedback

synchronization which was given in Ref.[16], let the dislocated
feedback gains u1 = 0, u2 = −k2(x1 − x), respectively, then
the response system can be described by:


ẋ1 = (25α + 10)(y1 − x1)
ẏ1 = (28 − 35α)x1 − x1z1 + (29α − 1)y1 − k2(x1 − x)
ż1 = x1y1 − 8+α

3 z1.
(3)

Let the system errors be e1 = x1 − x, e2 = y1 − y, e3 =
z1 − z. Thus, the error system is given by:


ė1 = (25α + 10)(e2 − e1)
ė2 = (28 − 35α)e1 − xe3 − ze1 − e1e3

+(29α − 1)e2 − k2e1

ė3 = xe2 + ye1 − 8+α
3 e3 + e1e2.

(4)

Consider the Lyapunov candidate function

V =
1
2
(
1
β

ė1
2 + ė2

2 + ė3
2),

where β > 0. Then we have

V̇ = 1
β e1ė1 + e2ė2 + e3ė3

= − 25α+10
β e2

1 + [ 1
β (25α + 10) − z + (28 − 35α)

−k2]e1e2 + (29α − 1)e2
2 + ye1e3 − 8+α

3 e2
3

≤ − 25α+10
β e2

1 + [ 1
β (25α + 10) + M3 + (28 − 35α)

−k2]e1e2 + (29α − 1)e2
2 + ye1e3 − 8+α

3 e2
3

= − 25α+10
β e2

1 + (σ − k2)e1e2 + (29α − 1)e2
2

+ye1e3 − 8+α
3 e2

3,

where σ = 25α+10
β + M3 + 28 − 35α,

when k2 ≤ σ, we have,

V̇ ≤ − 25α+10
β e2

1 + (σ − k2)|e1e2| + (29α − 1)e2
2

+M2|e1e3| − 8+α
3 e2

3

= −|e|T P |e|,
(5)

where M2 and M3 are the boundaries satisfying |y|, |y1| ≤ M2,
|z|, |z1| ≤ M3, |e| = (|e1|, |e2|, |e3|)T and

P =


 25α+10

β
k2−σ

2 −M2
2

k2−σ
2 1 − 29α 0

−M2
2 0 8+α

3


 .

To make the origin of error system(4) be asymptotically
stable, the symmetrical matrix P should be positive definite.
That is,


25α+10
β > 0

25α+10
β (1 − 29α) > (k2−σ)2

4

( (8+α)(25α+10)
3β − M2

2
4 )(1 − 29α) − (8+α)(k2−σ)2

12 > 0.
(6)

From the second inequality of (6), we can notice that, only
when α ≤ 1

29 , this formula is reasonable. So it is limited to
synchronize the whole unified system with original dislocated
feedback method. In the next section, we will modify the
dislocated feedback method to synchronize the whole unified
chaotic system.

B. Modified dislocated feedback synchronization of the unified
chaotic system

In this part, according to modify the control inputs ui, i =
1, 2, the modified dislocated feedback method is proposed to
realize the synchronization of the whole unified chaotic system.

Theorem 1. Let u1 = 0, u2 = −k2(x1 − x) −
29(y1 − y). Then the new response system (7) and
the drive system (1) realize synchronization when σ −√

( 4(25α+10)
β − 3

8+αM2
2 )(30 − 29α) < k2 ≤ σ.

Proof. Let u1 = 0, u2 = −k2(x1 − x) − 29(y1 − y), then
we have the new response system as follows:


ẋ1 = (25α + 10)(y1 − x1)
ẏ1 = (28 − 35α)x1 − x1z1 + (29α − 1)y1

−k2(x1 − x) − 29(y1 − y)
ż1 = x1y1 − 8+α

3 z1.

(7)



Let the system errors be e1 = x1 − x, e2 = y1 − y, e3 =
z1 − z. Thus, the error system is given by


ė1 = (25α + 10)(e2 − e1)
ė2 = (28 − 35α)e1 − xe3 − ze1 − e1e3

+(29α − 30)e2 − k2e1

ė3 = xe2 + ye1 − 8+α
3 e3 + e1e2.

(8)

Consider the Lyapunov candidate function

V =
1
2
(
1
β

ė1
2 + ė2

2 + ė3
2),

where β > 0.Then we have

V̇ = 1
β e1ė1 + e2ė2 + e3ė3

= − 25α+10
β e2

1 + [ 1
β (25α + 10) − z + (28 − 35α)

−k2]e1e2 + (29α − 30)e2
2 + ye1e3 − 8+α

3 e2
3

≤ − 25α+10
β e2

1 + (σ − k2)e1e2 + (29α − 30)e2
2

+ye1e3 − 8+α
3 e2

3,

when k2 ≤ σ, we have,

V̇ ≤ − 25α+10
β e2

1 + (σ − k2)|e1e2| + (29α − 30)e2
2

+M2|e1e3| − 8+α
3 e2

3

= −|e|T P |e|,
where |e| = (|e1|, |e2|, |e3|)T and

P =


 25α+10

β
k2−σ

2 −M2
2

k2−σ
2 30 − 29α 0

−M2
2 0 8+α

3


 .

To make the origin of error system (8) be asymptotically
stable, the symmetrical matrix P should be positive-definite.
That is,


25α+10
β > 0

25α+10
β (30 − 29α) > (k2−σ)2

4

( (8+α)(25α+10)
3β − M2

2
4 )(30 − 29α) − (8+α)(k2−σ)2

12 > 0.
(9)

It can also be written by,


25α+10
β > 0

(k2−σ)2

4 < 25α+10
β (30 − 29α)

(k2−σ)2

4 < ( 25α+10
β − 3M2

2
4(8+α) )(30 − 29α).

(10)

Then, we have

25α+10
β (30 − 29α) − ( 25α+10

β − 3M2
2

4(8+α) )(30 − 29α)

= (30 − 29α)( 25α+10
β − 25α+10

β + 3M2
2

4(8+α) )

= (30 − 29α) 3M2
2

4(8+α) ,

from 0 < α < 1, we have

(30 − 29α)
3M2

2

4(8 + α)
> 0,

and then

25α + 10
β

(30−29α)−(
25α + 10

β
− 3M2

2

4(8 + α)
)(30−29α) > 0.

Thus,

25α + 10
β

(30 − 29α) > (
25α + 10

β
− 3M2

2

4(8 + α)
)(30 − 29α).

Then, the second inequality of (10) can be deleted, we can
only consider the third one of it:

(k2 − σ)2

4
< (

25α + 10
β

− 3M2
2

4(8 + α)
)(30 − 29α).

Obviously, we can get

|k2 − σ| <

√
(
4(25α + 10)

β
− 3

8 + α
M2

2 )(30 − 29α),

again
k2 ≤ σ,

in the end, we have

σ −
√

(
4(25α + 10)

β
− 3

8 + α
M2

2 )(30 − 29α) < k2 ≤ σ.

Hence, the matrix P is positive-definite as σ −√
( 4(25α+10)

β − 3
8+αM2

2 )(30 − 29α) < k2 ≤ σ, 0 < β <
4(25α+10)(8+α)

3M2
2

, M2 and M3 are the boundaries satisfying
|y|, |y1| ≤ M2, |Z|, |Z1| ≤ M3.

According to the Lyapunov theorem, e1, e2, e3 → 0 for t →
∞. Therefore, the response system (7) and the drive system
(1) will realize synchronization.

IV. A NUMERICAL EXAMPLE

In this section, to verify and demonstrate the effectiveness
of the proposed method, we discuss the simulation results for
Lorenz, Lü and chen system. In simulation experiments, values
of the parameter k is chosen for 10.

Case I: Lorenz system. When α = 0, Eqs.(1) is Lorenz
system. The simulation results are shown in Fig.4-5. It can be
seen that the synchronization errors converge to zero rapidly.
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Fig. 4. the synchronous error between systems (1) and (7) with k2 = 10
and α = 0

Case II: Lü system. When α = 0.8, Eqs.(1) is Lü system.
The simulation results are shown in Fig.6-7. It can be seen
that the synchronization errors converge to zero rapidly too.
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Fig. 5. the synchronous error between systems (1) and (7) with k2 = 10
and α = 0.8

Case III: Chen system. When α = 1, Eqs.(1) is Chen
system. Under the same simulation condition of Case I and
Case II, the simulation results are given in Fig.8-9. It can
also be seen that the synchronization errors converge to zero
rapidly.
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Fig. 6. the synchronous error between systems (1) and (7) with k2 = 10
and α = 1

V. CONCLUSION

This letter modified the dislocated feedback method to syn-
chronize the unified system. And the fundamental synchronous
criteria is given for the modified dislocated feedback synchro-
nization. Moreover, the numerical simulations are given to
show the effectiveness of the criteria.

ACKNOWLEDGMENT

This work was supported by the National Nature Sci-
ence Foundation of China(Grant No.110771012), the Re-
search Fund for the Doctoral Program of Higher Educha-
tion(No.20070004030) and Beijing Jiaotong University Sci-
ence Foundation of China(No.2005sm063).

REFERENCES

[1] L. M.Pecora and T.L.Carroll , “Synchronization in chaotic systems”, Phys
Rev Lett, 64, 821-824, 1990

[2] X. Zhang and Shin,K.G. “Delay analysis of feedback-synchronization sig-
naling for multicast flow control”, Networking, IEEE/ACM Transactions
on, 11(3), 436-450, 2003

[3] C.H.Tao and X.F.Liu, “Feedback and adaptive control and synchronization
of a set of chaotic and hyperchaotic systems”, Chaos Solitons and
Fractals, 32(4), 1572-1581, 2007

[4] X.C.Pu, H.L.Wu and J.M.Zheng,“An self-adaptive synchronization con-
troller for unified chaotic systems”, Chinese Control Conference, 7-11,
906-910, 2006

[5] H.H.Chen, “Adaptive synchronization of chaotic systems via linear bal-
anced feedback control”, Journal of Sound and Vibration, 306(3-5),
865-876, 2007

[6] Y.G.Yu, “Adaptive synchronization of a unified chaotic system”, Chaos
Slitons and Fractals, 36(2), 329-333, 2008

[7] G.H.Li, “Generalized projective synchronization between Lorenz system
and Chens system”, Chaos Solitons and Fractals, 32(4), 1454-1458,
2007

[8] J.Z.Yang and G.Hu, “Three types of generalized synchronization”, Physics
Letters A, 361(4-5), 332-335, 2007

[9] B. Liu, X.Z. Liu, G.R. Chen and H.Y. Wang, “Robust impulsive syn-
chronization of uncertain dynamical networks”, Circuits and Systems I:
Regular Papers, IEEE Transactions on, 52(7), 1431-1441, 2005

[10] Y.W.Wang, Z.H.Guan and H.O.Wang, “Impulsive synchronization for
Takagi-Sugeno fuzzy model and its application to continuous chaotic
system”, Physics Letters A, 339, 325-332, 2005

[11] Lorenz EN, “Deterministic non-periodic flows”, J Atmos Sci, 20, 130-
141, 1963

[12] G.R.Chen and T.Ueta , “Yet another chaotic attractor”, Int J Bifur Chaos,
9, 1465-1466, 1999
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