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Abstract—This paper proposes a precise collaborative 

localization scheme based on multisensor fusion for leader-
follower multi-robot group. Each robot of the group is equipped 
with its own unique sensors and obtains self-localization by fusing 
two proprioceptive sensors. The lead robot uses the observer 
information to revise the self-localization of each robot. This 
paper also proposes a fusion model for the laser scanner and the 
vision sensor; the lead robot uses the vision sensor to obtain the 
target bearing by object detection technique, and then fuses the 
bearing information with the laser distance information to 
localize the target. Corresponding to the actual usage, this paper 
have analyzed and resolved the errors which are results of the 
operation delay, network delay, and other reasons. To validate 
our proposed scheme, we have implemented a team localization 
experiment with a Pioneer 3-AT robot and 3 AmigoBot robots. 
The results verify that our proposed scheme is valid and viable. 

Keywords—Multi-Sensors Fusion, Multi-Robots Localization, 
Extended Kalman Filter 

I.  INTRODUCTION  
To perform some sensible task, such as Multi-Sensors 

Fusion, Multi-Robots Localization and Extended Kalman 
Filter (EKF) autonomous navigation, the multi-robots must 
have an estimate of its current position. Therefore, the 
localization is one of the important questions for the multi-
robots group. Many people have done some significant 
research regarding the robot localization which can be 
classified into a few categories.  Some research focus on 
information fusion with different sensors, [1] fuses sonar and 
vision sensor information. [2] fuses laser and vision sensor 
information. Another research attempts to obtain precise 
localization with different fusion algorithms. [3][4][5] obtain 
localization information using Extended Kalman Filter, the 
algorithm can predict non-linear system effectively under 
Gauss white noise. [6][7] estimate the relative position 
between each two members of the robot team using maximum 
likelihood estimation. [8][9] use the ordinary least squares and 
particle filter method respectively. Moreover, some proposed 
schemes attempt to research the problem from a form of 
collaboration: Each robot is equipped with the same set of 
proprioceptive sensors and exteroceptive sensors, then fuse the 
proprioceptive data with the exteroceptive data which is 
obtained by considering the most general relative observation 
between each of the two robots[5][10]. [11] addresses a 

leader-follower formation of mobile robots. Throughout this 
investigation, most research focus on the theory and 
simulation, and few schemes have proposed an integrated 
solution and applied to actual usage. 

This paper proposes an integrated scheme for the multirobot 
group. Each robot is equipped with its own unique sensors. All 
robots localize itself with proprioceptive sensors fusion. The 
lead robot uses the exteroceptive sensors to obtain the 
observation information, which can be fused with the 
proprioceptive data of each robot to revise self-localization. 
The precise localization can then be determined.  

The features of our proposed scheme are as the following: 
 Each robot is equipped with its own exteroceptive sensor 

and works with the leader-follower formation. The lead 
robot is equipped with a laser and a vision sensor which 
the other individual robot member isn’t equipped for. 
This mechanism is more realistic for the actual 
applications. 

 Propose a novel sensor fusion form for the laser and 
vision sensors: We obtain the target bearing with 
monocular vision sensor based on object detection 
technique and obtain the target distance information from 
the laser sensor. Then we can obtain the target 
localization by fusing the two sensors’ information. The 
fusion mode is different from [1] [2] etc. 

 Corresponding to the actual usage, we have analyzed and 
resolved the errors which are the results of the operation 
delay, network delay, and others. This paper has 
performed the relevant experiments to prove the scheme. 

 
The remainder of this paper is organized as follows. Section 

II introduces the proposed scheme. Section III illustrates the 
theory of localization and the relevant algorithms. Section IV 
analyzes and resolves the error. Section V presents the 
performance evaluations. Section VI summarizes this paper 
and presents the conclusions. 

II. SCHEME 
The localization process is composed of the following two 

phases. 
 Initialization phase: The lead robot takes a picture of the 

target using the vision sensor. The horizontal projection 
Pt (refer to Fig.4) of the target can be obtained using the 



 

         

camera calibration technique. Then we can figure out the 
angle θt between Pt and the camera center axis. Based on 
the angle θt and the angle ηk between the camera center 
axis and the laser center, the distance between the robot 
and the target can be obtained (refer to Fig.1). With this 
strategy, the lead robot can localize itself by observing 
two fixed landmarks. We also can obtain the relative 
localization of each member robot with the same way.  

 Run phase: At run time, each robot localizes itself by 
fusing the proprioceptive data. The lead robot observes 
the two landmarks using laser and vision sensors, and 
fuses the observation data with proprioceptive sensors 
data. Then revises self-localization in terms of this fusion 
result. Each member receives the observation information 
from the lead robot via AD-HOC network, and fuses it 
with proprioceptive sensors data to revise self-
localization.  

III. THEORIES AND ALGORITHMS 

A. Exteroceptive Sensor Model 
1) Laser model 
The lead robot is equipped with a Leuze ROD4 laser 

scanner, which have 190 degree angle of view and 50 meter 
maximal distance. Each scan unit is 0.36 degree and every 
scan can get 529 sample points. The laser model can be 
described as Fig.1.  

N

190 / 0.36° °
kθ

kd

( ),k kO d θ

x
 

Fig.1 The laser scanner model 
N is the laser center bearing, θk is the angle between the object 
O and x horizontal axis. Therefore, the detected object can be 
expressed with polar coordinate as (dk, θk)T, or with Cartesian 
coordinates as 

( )cos , sin , 1,...,k k k k ku d d k Nθ θ= =   (1) 
2) Sonar array model 
Sonar provides direct range information at low cost. Each 

member robot is equipped with a sonar array, which is 
composed of 10 densely dispersed sonar sensors; 8 sensors are 
fixed in the robot head, the rest are fixed in the robot tail. The 
sonar array can detect target of 120 degree range. The 
detection distance range is from 15cm to 7 meters. The sonar 
array model is the same as the laser model, and can be 
expressed with polar coordinates as (dk, θk)T. 

3) Vision sensor model 
In a general pinhole camera model, the relationship between 

a 3D point [x,y,z,1]T and its 2D image projection [u,v,1]T can 
be represented by the following equation: 
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fcx and fcy are the two ponderances of the camera’s focal length 
and (cx,cy)T is the principal point of the image. The real camera 
is affected by lens distortion. The main source of lens 
distortion is the radial distortion, which is caused by light rays 
bending. Then the equation (2) can be expressed as,
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where k1,k2, and k3 are the radial distortion coefficients, 
r2=(x/z)2+(y/z)2.Following the camera calibration algorithm of 
[13], the camera’s interior parameter fcx, fcy,,cx,cy, k1,k2,k3 can be 
obtained. Therefore, the projection of the 3D point (x1,y1,z1,1)T 
is  (u1,v1,1)T on the virtual image plane (refer to Fig.4). 
According to equation (3), the new projection point (u1

c,v1
c)T 

can be formulized as: 
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B. Self Localization 
Since the precision is very low with the robot navigated by 

an odometer, the discrete Kalman filter is applied to fuse the 
odometer with gyroscope data for the linear model. We define 
state parameter X= [vL,vR,wg]T, The state function is 
Xk+1=Ak+1Xk+wk, where Ak+1 is the state switching matrix is 
from k to k+1 time, and wk is the process Gauss noise with 
covariance matrix Q. [12] have used the same proprioceptive 
sensors model as refering to its state switching matrix: 
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; β is the revision coefficient which is 

obtained by the iterative experiments. The observation 
function is Zk=HkXk+vk and the observation value can be 
obtained from the proprioceptive sensors. Therefore the 
measure matrix Hk is the identity matrix I. 

Fig.2 presents data which the robot is navigated with the 
fusion of two proprioceptive sensors. The result shows that the 
fusion navigation is approaching more closely to the real track 
comparing with the odometer navigation. 
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Fig.2 The self-localization course line 

C. Fusion Rivision 
1) Process model 
The Arc model [4] is used to described the navigation state 

with bearing changing as illustrated in Fig.3, 
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Fig.3 The state model of robot 

We define the state parameter [ , , ]TX x y θ= , the process 
model can be deduced as: 
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where wk is the process Gauss noise with covariance matrix Q, 
( ), T

k k ku D δθ= Δ  is the proprioceptive sensors input, Dk is the 
arc length and θk is the turning angle. The two parameters can 
be obtained from the fusion result of the proprioceptive 
sensors.  

 
2) Observation Model 
In this subsection, we obtain the observation information of 

the target from the vision sensor and laser scanner, which is 
illustrated in subsection a). Then we deduce the observation 
functions from the observation model in Fig.5. 

a) Object detection 
From Fig.4, P is the extracted center point of the object, O 

is the camera model’s pinhole, OCo is the camera center axis, 
vCou is the virtual image plane, p(ut,vt) is the projection of P in 
the virtual image plane, pt is the projection of p to the axis Copt, 
and Pt is projection of P to the horizontal plane zOx . The 
relative angle to the recognized object from robot denoted as θt 

at time t. θt can be deduced as 1
2

tan * tan
2

c
image t

t
image
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width

θ α−
⎛ ⎞−
⎜ ⎟=
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⎝ ⎠
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where 2α is the camera’s field of view, and 
widthimage×heightimage is the image’s size. Therefore, the 
object’s distance information can be obtained from equation (1) 
with θt. 

 
Fig.4 Object detection model 

 

b) Relation model 
Since only the position information of the members can be 

obtained from the observation information from the lead robot, 
we can only revise the position coordinate of the individual 
members. The relative model of laser scanner and vision 
sensor is illustrated as Fig.5. 

In Fig.5, 1 is the lead robot, 2 is one of the members and 
LMA, LMB are the fixed landmarks. Black line N is the lead 
robot course and red line C is the center axis of the camera. 
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Fig.5 The relation model of multirobot 

Some well-defined conditions are declared as the following: 
1. A polar coordinate is used to describe the relative position 

between the robots and the landmarks. The LMA is set to 
be the coordinate origin, and the directed line LMA to LMB 
is the positive direction of the coordinate horizontal axis. 
The distance between LMA and LMB is DAB; 

2. ηk is the angle between C and N. The parameter changes 
with the Pan, Tilt and Zoom device (PTZ) running, and 
can be obtained from PTZ directly. 

The following metrics represent the naming manner: 
1. Segment: Name with the position of the start point and the 

end point. For instance, DAB is the segment from LMA to 
LMB. 

2. Angle: Name with three vertex points, and angle vertex is 
placed the middle position. For instance, θ1AB is the angle 
of 1,A and B three vertex points. 

According to sensors model, the distance parameters which 
can be obtained from Fig.5 directly are; D12,DA1,DB1,  and the 
angle parameters are; θ21C，θC1A，θC1B. Therefore we can 
deduce the polar coordinate of the lead robot as  
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The course of the lead robot is (θ1AB+ηk-θC1A).  
And the polar coordinate of the member can be deduced as  
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c) Observation function 
For the member robot, the polar coordinate (DA2, θ2AB) can 

be transformed to Cartesian coordinate (xk,yk). The distance 
observation function is represented as  

( ) ( )2 2d d g g
j j j j k j k j jZ H X v x x y y v= + = − + − +   (6) 

where vj
g is Gauss white noise.  



 

         

For the lead robot, the polar coordinate (DA1, θ2AB) can be 
transformed to Cartesian coordinate (xk,yk). The distance 
observation function can be formulized as 2 2

k k k dZ x y v= + + . The 
course is 1 1AB k C Aθ θ η θ= + − , where 1C Aθ  and kη  are measurable 
parameters and the observation function of the course can be 
abbreviated as  
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k k k k k
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where vk
b is Gauss white noise.  

 

IV. EORROR HANDLE 
The aforementioned scheme is quite viable in theory. 

However, corresponding to actual usage, there are some non-
negligible errors described in the following. 

A. Object Detection Delay 
The localization process of monocular vision sensor is 

composed of three phases: imaging, object detection, and 
bearing compute. The elapse time of this period is uncertain. 
The robot will leave from the position which is taking picture 
and ended in a few angle deviations. Thus, according to the 
object detection model, there is an error that the distance data 
is obtained from the laser scanner using this angle. 

Since the elapse time of object bearing detection results in 
the deviated angle, the time cost is determined to be <= 250ms 
in terms of our experiments. To handle the error, we use the 
twin imaging method; we place down a colorized column on 
each member robot, which can be detected within a short time. 
At the first imaging phase, we snatch the whole robot with 
object detection algorithms, and mark the rough object field. 
At the second imaging phase, we only snatch the colorized 
column image from that field and compute the object bearing. 
Then we use it to get the distance information from laser 
scanner data. The second process time would cost about 
<=40ms. We can figure out the maximal angle deviation is 
arctan[(600*40/1000)/D] if assuming the robot move speed 
<=600ms(refer to the experiment). However, for the target, the 
scan angle of the laser scanner is arctan( target width /D), 
where D is the distance between the laser scanner and target. 
In this experiment, the target width is much greater than 
(600*40/1000)mm. Therefore the problem is solved.  

B. Network Delay 
The lead robot sends the observation information to the 

relevant member via AD-HOC network. This process will take 
some time. The relevant robot would leave from the prior 
position after receiving the data. Thus, there are some errors 
that the member fuses the receiving data with its current 
proprioceptive data.  

In our model, the robot moves around origin O with radius 
R. As Fig.6 represents, (x,y) is the actual coordinate of the 
robot and (x’,y’) is the estimated position. The robot is 
observed at position (xk1,yk1), then reach the position (xk2,yk2) 
after interval Δt: Δt is equal to the localization time plus the 
network transmission time. 
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Fig.6 Network delay revision model 

Assuming the proprioceptive sensors have n times data fusion 
within Δt, we reserve the state serial {X1,X2,…,Xm} where  
X={x,y,θ},m>n. After receiving the observation information, 
we fuse it with the data extracted from the reserved series. 
(xk1,yk1) is the estimated position from data fusion. In terms of 
the proprioceptive sensors model, we can fit an estimated 
trajectory with the reserved series. Then we deduce the new 
estimated position ( )' '

2 2,k kx y , which is the actual position that 
the robot should move to. 

The remaining problem is to compute the network 
transmission time. In this experiment, the network time 
protocol (NTP) is used to get the synchronous time. The lead 
robot acts as the NTP server, and the members are the NTP 
clients. The robots obtain the synchronous time at the 
initialization phase. The experiment result denotes the 
precision of the synchronous time is within 10 milliseconds. 

C. Observation Blockage 
The member self-localization is revised with the observation 

information. However, the member can’t be observed by the 
lead robot as illustrated in Fig.7 (R1 is the lead robot, R2 and 
R3 are the members. The course bearing of R1 is N1 and of R2 
is N2) where three robots are move onto a same straight line, 
the lead robot has no way to observe R3.  
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Fig.7 Observation blockage model 

This problem would be divided into two cases. The first 
cases is when R3 moving to the position of R3’ after a period 
of time. For this case, we navigate R3 with its proprioceptive 
sensor fusion when R3 was blocked by R2 until R3 can be 
observed. The proprioceptive sensors information would then 
be discarded. The second case is R3 moving to the blocked 
position of R3’’, and going forward with the bearing N3 for a 
longer period of time. The distance D12 between R1 and R2 is 
measurable, the distance D23 between R2 and R3’’ can be 
obtained from sonar sensor, and θ123 can be determined by the 



 

         

measurement of the vision sensor. Thus, the distance D13 can 
be deduced as; 2 2

12 23 12 23 1232 cosD D D D θ+ − . 

V. PERFORMANCE EVALUATION 

A. Experiment Environment 
To validate our proposed scheme, we have implemented a 

team localization experiment described as the following: 
 Robots and sensors 
Our multi-robots group is composed of a Pioneer 3-AT and 

three AmigoBot. Fig.8 represents the lead robot which is 
equipped with a Leuze ROD4 laser scanner whose capability 
is referred in the Laser Model subsection. The monocular 
vision sensor is fixed upon the PTZ. Each member robot is 
equipped with a sonar array whose capability is referred in the 
Sonar Model subsection. 
This experiment set the moving speed of the robots is 
<=600mm per second.  

 Experiment scenario 
Fig.8 shows the experiment is implemented in a clear indoor 

field. Two landmarks are placed with fixed height and distance. 
We paint some colorized lines, circles, and curves as 
designated course line. Let the members follow the lead robot 
navigating along the course line. Those robots navigate by 
estimating their position with multisensors data fusion. We 
mark down the actual course line which can be used for 
capability contrast.  

 Communication condition 
Each robot is equipped with WiFi device which support 

IEEE 802.11b standard. All robots compose a mobile AD-
HOC network. 
 

 
Fig.8 The experiment scenario 

B. Experiment 
The whole experiment includes the initialization phase 

localization and the run time localization. The following 
metrics are used for the following subsection.  

BR: The robot hasn’t been revised by the observation 
information of the lead robot and only navigated by the 
proprioceptive sensors. 

AR: The robot has been revised by the observation 
information of the lead robot. 

1) Initialization localization 
Each robot is motionless at this phase and obtains self-

position by the observation information of the lead robot. 
Therefore, the localization precision is relied on the precision 

of the laser scanner and the vision sensor. The experiment 
result shows the error is less than 10mm. 

2) Run time localization 
a) The robots course line 

Fig.9 represents the actual course line of the three members 
along with the designated course. As top right corner describes, 
the three course lines are corresponding to three members 
respectively. 

As seen from Fig.9, the BR course line obviously deviates 
from the designated course line during the experimental period. 
This phenomenon is resulted from the cumulative effects of the 
proprioceptive sensors. The AR course line deviates less from 
the designated course line, and does not have the obvious 
cumulative deviation. 

The lead robot course line is represented as Fig.10. 

b) The course contrast 
To quantifiably illuminate the performance of the proposed 

scheme, we sample the three course lines every 150mm to 
record the deviation values in Fig.9 and Fig.10. We have done 
five data statistics from 5 different experiments and figured 
out the average value as the illustrated in Fig.11. 

As seen from Fig.11, in contrast with BR, the AR has less 
deviations and no cumulative deviation. The AR deviation of 
the lead robot is less than the member’s; this is because the 
lead robot appends self deviation when revises the member 
self-localization with observation information.  
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Fig.9 The three members course line 
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Fig.10 The lead robot course line 
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Fig.11 The  course deviation contrast 

 
c) Error handling for observer blockage 

To validate the proposed strategy for the error handling 
method for observer blockage, we perform a scenario as in 
Fig.12. 
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Fig.12 A scenario for error handle 
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Fig.13 The course line for error handle 

 
The two member robots R2 and R3 follow the lead robot 
moving along a determined course line which has a small 
curvature.  R3 is blocked by R2, the lead robot R1 cannot 
observe R3 commonly. The experiment result is illustrated as 
Fig.13. 

Fig.13 shows the course deviation of R2 is less than the 
course deviation of R3. This is because R3 obtains the 
observation information by using the sonar sensor whose 
precision is less than the laser scanner. However, the deviation 
of R3 is limited to an acceptable range. The experiment result 
proves the proposed handling strategy is viable. 

VI. CONCLUSION 
We have proposed a precise localization scheme for multi-

robots group based on multi-sensors’ information fusion. Each 
robot localizes itself using the proprioceptive sensors fusion 
and then the self-localization is revised by the observation 
information. The discrete Kalman filter is used to fuse two 
proprioceptive sensors, and the extended Kalman filter is used 
to fuse the proprioceptive data with the exteroceptive data. We 
also have proposed a novel fusion model for the two 
exteroceptive sensors. The results of our experiment validate 
that the proposed scheme can achieve precise localization with 
low error range. Moreover, the error is not cumulative. 
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